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Abstract
Linear Discriminant Analysis (LDA) is a popular method for dimensionality reduc-

tion and classification. In real-world applications when there is no sufficient labeled
data, LDA suffers from serious performance drop or even fails to work. In this paper,
we propose a novel method called Spectral Transduction Semi-Supervised Discriminant
Analysis (STSDA), which can alleviate such problem by utilizing both labeled and unla-
beled data. Our method takes into consideration both label augmenting and local struc-
ture preserving. First, we formulate label transduction with labeled and unlabeled data
as a constrained convex optimization problem and solve it efficiently with a closed-form
solution by using orthogonal projector matrices. Then, unlabeled data with reliable class
estimations are selected with a balanced strategy to augment the original labeled data set.
At last, LDA with manifold regularization is performed. Experimental results on face
recognition demonstrate the effectiveness of our proposed method.

1 Introduction
During the past decades, Linear Discriminant Analysis (LDA) [11] has been one of the most
popular dimensionality reduction methods in pattern recognition field. It has been applied to
a wide range of classification tasks with great success, such as face recognition, text classi-
fication, etc. However, when there are only few labeled data samples relative to the number
of dimensionality, which is the so-called small sample size (SSS) problem [10], the perfor-
mance of LDA will seriously deteriorate. Under such situation, the generalization capability
of LDA on test samples cannot be guaranteed. In order to address this problem, several nu-
merical solutions have been proposed, e.g., PseudoLDA [13], PCA+LDA [1], LDA/QR [21],
NullLDA [10], and DualLDA [19].
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Another possible solution for SSS problem is to learn with both labeled and unlabeled
data. It is more natural and reasonable since in reality we usually have a large supply of
unlabeled data and comparatively insufficient labeled data. Assigning labels requires labo-
rious human effort, so it is expensive or hard to obtain. Moreover, accurate labeling may
need some expert knowledge. Therefore, it is desirable to make good use of unlabeled data
to improve the classification performance. In the past few years, semi-supervised learning
has aroused a great deal of interest in the machine learning community. Some representa-
tive methods include: Co-training [5], transductive support vector machines [3], graph-based
methods [6]. A good survey of semi-supervised learning can be found in [24].

Recently, some Linear Discriminant Analysis algorithms under semi-supervised setting
have been proposed in the literature. Cai et al. first put forward semi-supervised LDA
algorithm called SDA [8], which exploits the local neighborhood information of data points
in performing dimensionality reduction. Later, Zhang and Yeung presented another method
called SSDA [22] in which a robust path-based similarity measure is used to capture global
manifold structure of the data. Similarly, SMDA [20] and UDA [15] also perform LDA under
semi-supervised setting through manifold regularization. All the methods stated above can
be considered as one class since they share the similar idea of exploiting the local or global
geometric structure of both labeled and unlabeled data. Methods of this class have a main
drawback in that no class-wise information, which is essential for LDA in scatter matrices
estimation, is explored from unlabeled data.

More recently, a new algorithm called SSDACCCP [23] has been proposed, which ex-
plores label information from unlabeled data and uses the augmented labeled data to per-
form LDA. In this method, unlabeled data is involved in maximizing the optimality crite-
rion of LDA. The class labels for unlabeled data are estimated by solving the optimization
problem through the constrained concave-convex procedure (CCCP). Compared with previ-
ous approaches mentioned above, SSDACCCP leads to significant performance improvement.
However, this method suffers from the disadvantage of the non-convex optimization, where
CCCP works in an iterative way and the final solution generally depends on its initial value.
Moreover, although manifold assumption can be adopted (as in M−SSDACCCP) in the la-
bel estimation step, no structure preserving strategy is used in performing LDA with the
augmented labeled data, which may not be the best choice for the still unlabeled samples.

It has been proved that the number and quality of labeled samples have an exponential
effect on reducing the classification error [9]. Therefore, in this paper, we continue to pursue
in the direction of exploring label information from unlabeled training samples for LDA. Our
proposed method, Spectral Transduction Semi-Supervised Discriminant Analysis (STSDA),
works in a different way from [23]. It comprises three stages. First, we formulate label
transduction with labeled and unlabeled data as a convex optimization problem with pair-
wise constraints and solve it efficiently with a closed-form solution. Then, some unlabeled
data with reliable class estimations are selected through a balanced strategy to augment the
original labeled data set. At last, LDA with manifold regularization is performed. Compared
with previous related methods, our work has advantages in the following aspects: 1) We
take into account both label augmenting and local structure preserving. 2) The optimiza-
tion problem is convex which could be solved effectively in an analytical manner with a
global optimal solution. 3) The balanced data selection strategy is more effective than the
preliminary method.

The rest of this paper is organized as follows. In Section 2, some background knowledge
is introduced. In Section 3, we present our proposed semi-supervised discriminant analysis
algorithm in detail. Experiments and analysis are presented in Section 4. Finally, Section 5
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gives some concluding remarks.

2 Background
Since the proposed method is a further development of LDA [11] and Normalized Cuts [16],
we start by summarizing and discussing these two approaches.

2.1 Linear Discriminant Analysis
Suppose we are given a data set of n labeled samples X = {xi}n

i=1, where xi ∈Rd . X can be
divided into C disjoint classes Πk,k = 1, . . . ,C, where class Πk contains nk samples. Linear
Discriminant Analysis (LDA) tries to seek for an optimal transform W by maximizing the
following objective function

J(W) = trace
(

WT Sb W
WT SwW

)
, (1)

where Sb is the between-class scatter matrix, and Sw is the within-class scatter matrix. The
definitions of Sb and Sw are

Sb =
C
∑

k=1
nk(mk−m)(mk−m)T ,

Sw =
C
∑

k=1
∑

xi∈Πk

(xi−mk)(xi−mk)T ,
(2)

where m = (∑n
i=1 xi)/n is the sample mean of the whole data set X and mk =

(
∑xi∈Πk

xi
)
/nk

is the mean of class Πk. When the dimensionality of data is larger than the sample size, the
scatter matrices of Sb and Sw are singular, thus the small size problem occurs.

2.2 Normalized Cuts
From the perspective of graph model, the training data can be represented by an undirected
graph G = (V,E) with weight matrix S. V = {1, ...,n} is the vertex set corresponding to all
data samples in X and the edge set E ⊆ V ×V represents the relationship between these
samples. Specifically, we put an edge between node i and j if xi and x j are among k nearest
neighbors of each other. Each edge is assigned a weight which is defined by

Si j =

{
e
−‖xi−x j‖2

2
2σ2 , if xi ∈Nk(x j) or x j ∈Nk(xi)

0 , otherwise.
(3)

Nk(xi) denotes the set of k nearest neighbors of xi and σ is a scaling parameter which
controls the decreasing speed of Si j with the distance between xi and x j.

Normalized Cuts is a kind of graph partition criterion that can be formulated as a convex
optimization problem with closed-form solution. If we partition the vertex set into two dis-
joint sets A and B satisfying A∪B = V and A∩B = φ , the Normalized Cuts of this graph is
defined as

Ncut(A,B) =
cut(A,B)

asso(A,V )
+

cut(A,B)
asso(B,V )

, (4)

where cut(A,B) = ∑i∈A, j∈B Si j and asso(A,V ) = ∑i∈A, j∈V Si j. Let z ∈ {−1,1}n be the class
indicator vector, d = S1n be the n×1 vector containing the row sums of S where 1n denotes
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the n× 1 vector of all 1’s. Let D = diag(d) be the n× n diagonal matrix, and L = D−S is
called Laplacian matrix. With these notations, we can rewrite Eq. (4) as :

Ncut(A,B) =
zT Lz

2dT (1n + z)
+

zT Lz
2dT (1n− z)

=
(zT Lz)dT 1n

zT (1T
n dD−ddT )z

, (5)

where dT 1n is a constant with no influence on the solution. To be concise, denote Q =
1T

n dD−ddT . The final optimization problem becomes:

minNcut(A,B) = min
zT Lz
zT Qz

. (6)

The above method can be easily generalized to multi-class cases through α−β swap, which
is used in many graph cuts applications [7].

3 Spectral Transduction Semi-Supervised Discriminant
Analysis

In this section, we present our semi-supervised discriminant analysis algorithm in three
phases: spectral transduction via constrained Normalized Cuts, labeled data set augment-
ing and LDA with local structure preserving. The overall algorithm is then summarized
followed by a short discussion.

3.1 Spectral Transduction via Constrained Normalized Cuts
Suppose we have n training data samples, l samples of them x1, . . . ,xl are with class labels
from C classes Πk,k = 1, . . . ,C, and the rest samples xl+1, . . . ,xn are unlabeled. Note that
l � n. To explore more label information from the training set, we try to predict the labels
of unlabeled data as accurately as possible. More specifically, we utilize the global struc-
ture of labeled and unlabeled data to carry out spectral transduction based on Normalized
Cuts method, and formulate the transduction procedure as a pairwise constrained convex
optimization problem.

Let us consider the supervisory information in the form of pairwise similarity and dis-
similarity constraints, which are included in S and D , respectively.

S = {(xi,x j)|xi and x j belong to the same class},
D = {(xm,xn)|xm and xn belong to different classes}.

(7)

Pairwise constraints are weaker than label information since labeled data can be converted
to pairwise constraints but not vice versa.

We denote each pairwise similarity constraint (xi,x j) ∈S by an n-dimensional indica-
tor vector uk (k-th, k = 1, . . . , |S |), which has only two non-zero elements: uk(i) = 1 and
uk( j) = −1. Since the class indicators zi and z j are equal (both 1 or -1 for two class prob-
lem), we have uT

k
z = 0. Let U = [u1, ...,u|S |] be the positive constraints matrix, where |S |

denotes the cardinality of S . Then, the pairwise similarity constraints can be expressed
as UT z = 0. Similarly, each dissimilarity constraint (xm,xn) ∈ D can be represented by
an indicator vector vk with only two non-zero elements: vk(m) = 1 and vk(n) = 1. Since
zm + zn = 0, we have vT

k
z = 0. Define V = [v1, ...,v|D |] as the negative constraints matrix.
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The pairwise dissimilarity constraints can be expressed as VT z = 0. Consequently, we have
the following constrained Normalized Cuts formulation which is an extension of Eq. (6):

min
z

zT Lz
zT Qz

s.t. UT z = 0 ; VT z = 0. (8)

Solving this constrained optimization problem can be facilitated by using orthogonal
projection matrices. Let U ∈ Rn be a subspace spanned by columns of U with U⊥ as its
null orthogonal space. PU and PU⊥ are the orthogonal projection matrices onto U and U⊥,
respectively. From the definition above, PU⊥z is the projection of z onto U⊥ and it satisfies
the property as follows:

∀ z ∈ U⊥ , PUz = 0 ; PU⊥z = z. (9)

According to [12], PU can be calculated directly from U as PU = U(UT U)−1UT . It can be
easily verified that PU⊥ = I−PU, where I is the identity matrix. Therefore, if z is a feasible
solution, it must satisfy PU⊥z = z. In the same sense, PV⊥ is defined as the orthogonal
projection matrix on the null orthogonal space spanned by V and it can be computed in a
similar way. With these transformations, Eq. (8) can be expressed as:

min
z

zT Lz
zT Qz

s.t. PU⊥z = z ; PV⊥z = z. (10)

The solution to this optimization problem can be finally obtained by solving a generalized
eigenvalue problem which be formulated as Eq. (11). This spectral transduction approach is
more efficient than the iterative optimization approach and can get a global optimal solution.

LPU⊥PV⊥z = λQz (11)

3.2 Labeled Data Set Augmenting
By applying constrained Normalized Cuts based spectral transduction, we estimate the class
labels of all the unlabeled data points in the training set. In this subsection, we aim to select
some unlabel data points whose label estimation are with sufficiently high confidence.

We first perform LDA using all the training data with their estimated labels. Then, in
the embedding space, the label confidence is defined according to local data distribution.
Specifically, for each unlabeled data xi (i = l +1, . . . ,n), its label confidence is defined as the
proportion of data points with the same estimated label as xi among its k nearest neighbors.
Different from the previous method which makes use of a single confidence threshold for
all unlabeled data points [23], we design an alternative strategy to have a balanced data
augmenting results. For all the unlabeled data with the same estimated class labels, we sort
their confidence values in descending order and select the first m samples to augment the
original labeled data set. m is a selection scale factor which is usually chosen to be less than
the minimum of class cardinalities.

The previous confidence threshold method sometimes suffers from the disadvantage that
for some classes the number of augmented labeled data is large while for some ones very
small or even zero. In contrast, our proposed augmenting strategy is more balanced since
the augmented labeled data number for each class is equal. Consequently, the recognition
error rates of all the classes are expected to decrease, which can bring some benefits for
subsequent classification task.
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3.3 LDA with Local Structure Preserving
With the augmented labeled data set, we seek to find a global projection that can not only
improve class discriminative ability but also preserve local data structure. Based on the
cluster assumption that nearby data points are likely to be in the same class, we take into
account local structure preserving through Laplacian regularization [2]. The optimization
problem of the regularized LDA can be written as:

W∗ = max
W

trace
(

WT SbW
WT SwW+αK(W)

)
. (12)

The scatter matrixes Sb and Sw are computed with the augmented labeled data set. K(W)
is the Laplacian regularization term and the coefficient α controls the relative importance of
the discrimination and regularization. K(W) is defined as:

K(W) =
n

∑
i, j=1

(WT xi−WT x j)2Si j = WT XLXT W, (13)

where X = [x1, ...,xn] is the matrix form of the whole data set.
With the Laplacian regularizer, all data points are involved in the optimization. Thus the

local geometric structure of both labeled and unlabeled data tends to be preserved with the
transformation W. The discriminant projector W can be computed efficiently by solving the
following generalized eigendecomposition problem:

SbW = λ (Sw +αXLXT )W. (14)

3.4 The Algorithm
The algorithm of Semi-Supervised Discriminant Analysis via Spectral Transduction (STSDA)
is summarized in Table 1.

Input: Labeled data samples{(xi,yi)}l
i=1 belonging to C classes

and unlabeled data samples {xi}n
i=l+1

Output: Discriminant projector W
Phase 1: Label Transduction

Step 1: Construct the adjacency graph G;
Step 2: Solve a generalized eigenvalue problem: LPU⊥PV⊥z = λQz;

Phase 2: Labeled Data Set Augmenting
Step 3: Perform LDA on all data with estimated labels z;
Step 4: Compute label confidence in embedding space;
Step 5: Select reliable unlabeled data for each class;

Phase 3: LDA with Local Structure Preserving
Step 6: Compute Sb and Sw with the augmented labeled data set;
Step 7: Solve a generalized eigenvalue problem: SbW = λ (Sw +αXLXT )W.

Table 1: Algorithm of STSDA

In our method, two optimization problems are defined (in Phase 1 and 3) and both make
use of unlabeled data. Actually, the usage of unlabeled data in the two phases corresponds
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to the global and local meanings of the cluster assumption, respectively. In Phase 1, spec-
tral transduction based on Normalized Cuts conveys the global cluster assumption that data
points on the same manifold are likely to have the same label. In Phase 3, LDA with Lapla-
cian regularization makes use of the local assumption that nearby data points are likely to be
in the same class.

Our method belongs to the semi-supervised learning paradigm. The learned discriminant
projector W can be applied to not only the unlabeled training data but also any unseen test
data. The experiments below are conducted to solve face recognition problems under the
semi-supervised settings.

4 Experiments

In this section, we perform some experiments on real-world face recognition problems to
demonstrate the effectiveness of the proposed method.

4.1 Experimental Settings

In our experiments, we consider two public databases : CMU PIE [17] and AR [14], in order
to achieve an extensive evaluation of different methods against database changes including
illumination variations, facial expressions, occlusions and the database sizes.

The CMU PIE (Pose, Illumination and Expression) Database contains a total of 41,368
images of 68 individuals. Face images of each individual are captured under different poses,
illumination conditions, and with different expressions. In our experiment, we choose the
frontal pose (C27) with only lighting and illumination changes. For each subject, 30 im-
ages are randomly selected for the training and the rest 13 images for testing. The second
database, AR Face Database, consists of 4,000 color frontal view faces of 135 individuals
(70 men and 56 women). In our experiment, we select 100 individuals of 50 men and 50
women. Of the 26 images for each person, we split them equally to form training and testing
sets.

Before the experiments, all face images are converted to gray images with histogram
equalization and then resized to 32× 32 pixels according to the positions of two eyes. On
each training set, we randomly label q = 1,2,3, or 4 images for each class. For each con-
figuration, we perform 20 random trails and report the average recognition error rate and
standard derivation.

We compare our proposed method with some baseline and previous related methods.
More specifically, six approaches are included in our comparative study: 1) Baseline method
which directly uses original space for recognition; 2) Eigenface [18]; 3) Fisherface [1]; 4)
SDA [8]; 5) SSDACCCP [23]; 6) STSDA (our approach). For all methods stated above, after
finding a embedding space, a simple nearest neighbor (NN) classifier is then performed.

There are a few parameters involved in our experiments. In Fisherface, PCA is applied
first to avoid singularity problem and the target dimensionality is set to preserve 95% of data
energy. The regularization coefficient α in Eq. (12) is fixed to 0.1 for both SDA and STSDA.
The width parameter σ in Eq. (3) is empirically set between 4D̄ ∼ 15D̄ for constrained
Normalized Cuts and D̄/10 ∼ D̄/20 for Laplacian regularization, with D̄ representing the
mean derivations in each class.
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4.2 Recognition Results and Analysis
The recognition results on both databases are summarized in Table 2 and 3. As shown in
these two tables, the baseline method and Eigenface (based on PCA), which don’t use the su-
pervisory information, yield poor performance. Fisherface (based on LDA) method, which is
completely supervised, still cannot provide satisfied results since the number of labeled data
(64) is far less than that of the feature dimensionality (1024) and the so-called SSS problem
occurs. Especially, when there is only one labeled image for each subject in training set,
LDA-based method fails to work because the intra-person variance cannot be obtained.This

Method ] labels/class =1 ] labels/class=2
Unlabeled Error Test Error Unlabeled Error Test Error

Baseline 0.6751±0.0095 0.6711±0.0151 0.5351±0.0165 0.5381±0.0165
Eigenface 0.6867±0.0103 0.6851±0.0134 0.5165±0.0132 0.5161±0.0144
Fisherface - - 0.1615±0.0136 0.1619±0.0176

SDA 0.3577±0.0128 0.3567±0.0169 0.1134±0.0163 0.1149±0.0171
SSDACCCP 0.2631±0.0235 0.2602±0.0250 0.1195±0.0136 0.1164±0.0147

STSDA 0.0664±0.0155 0.0673±0.0185 0.0421±0.0104 0.0429±0.0120

Method ] labels/class =3 ] labels/class=4
Unlabeled Error Test Error Unlabeled Error Test Error

Baseline 0.3961±0.0203 0.3989±0.0249 0.3147±0.0169 0.3148±0.0144
Eigenface 0.4251±0.0203 0.4264±0.0251 0.3448±0.0167 0.3471±0.0165
Fisherface 0.0876±0.0165 0.0855±0.0174 0.0538±0.0087 0.0518±0.0100

SDA 0.0651±0.0147 0.0643±0.0153 0.0492±0.0120 0.0463±0.0124
SSDACCCP 0.0604±0.0109 0.0541±0.0129 0.0365±0.0094 0.0331±0.0123

STSDA 0.0408±0.0107 0.0351±0.0121 0.0309±0.0085 0.0285±0.0102

Table 2: Recognition error rates on PIE (mean±std-dev)

Method ] labels/class =1 ] labels/class=2
Unlabeled Error Test Error Unlabeled Error Test Error

Baseline 0.8902±0.0089 0.8915±0.0089 0.8311±0.0065 0.8285±0.0098
Eigenface 0.8928±0.0097 0.8959±0.0088 0.8359±0.0076 0.8371±0.0109
Fisherface - - 0.6702±0.0183 0.6633±0.0161

SDA 0.8897±0.0085 0.8911±0.0098 0.5711±0.0188 0.5677±0.0169
SSDACCCP 0.7056±0.0253 0.7236±0.0226 0.5549±0.0249 0.5782±0.0216

STSDA 0.3557±0.0122 0.4507±0.0106 0.3177±0.0142 0.4141±0.0200

Method ] labels/class =3 ] labels/class=4
Unlabeled Error Test Error Unlabeled Error Test Error

Baseline 0.7794±0.0103 0.7808±0.0082 0.7359±0.0146 0.7442±0.0097
Eigenface 0.7861±0.0096 0.7929±0.0085 0.7476±0.0139 0.7588±0.0083
Fisherface 0.5651±0.0143 0.5518±0.0179 0.4688±0.0182 0.4606±0.0143

SDA 0.4683±0.0176 0.4602±0.0156 0.4166±0.0175 0.3981±0.0135
SSDACCCP 0.4508±0.0175 0.4778±0.0179 0.3795±0.0187 0.4063±0.0155

STSDA 0.3344±0.0143 0.3939±0.0151 0.3271±0.0206 0.3728±0.0131

Table 3: Recognition error rates on AR (mean±std-dev)
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is a classical challenge in face recognition called recognition from single training image
problem [4], which have not been completely solved yet. The SDA method, which performs
better than Fishface, exploits unlabeled data to preserve their manifold structure while with-
out exploring class-wise information. As for SSDACCCP, it mainly augments labeled data in
a iterative way while no structure preserving strategy is used in performing LDA. Among all
presented methods, the proposed STSDA achieves the best results. By exploring discrimina-
tive knowledge and preserving local data structure, our STSDA method leads to significant
performance benefits.

Moreover, the changes of recognition error rates with the number of labeled data are
studied. As illustrated in Figure 1 and 2, the error rates of baseline and Eigenface methods

(a) (b)

Figure 1: Recognition error rates as a function of the number of labeled data on PIE. (a)
unlabeled data error rates, (b) test data error rates.

(a) (b)

Figure 2: Recognition error rates as a function of the number of labeled data on AR. (a)
unlabeled data error rates, (b) test data error rates.
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decrease significantly with the increasing number of labeled data for PIE database where
the intra-person variability is small. While for AR database where the intra-person variance
is lager than the inter-person variance, the performance changes of these two methods are
much slower. As for Fisherface method, the recognition error rates decrease rapidly with
increasing number of labeled data. When we add one more labeled data for each subject,
the overall recognition error rate has a reduction of nearly 10%. The change trends of SDA
and SSDACCCP are similar. The only difference between them is that when there is only
one labeled image for each class, SSDACCCP method gives better performance since addi-
tional discriminative knowledge is explored from unlabeled data. Compared with all above
methods, our proposed STSDA method achieves fairly low and stable recognition error rates.
This is owe to the effectiveness of spectral transduction and balanced label augmenting strat-
egy. In particular, when we confront with single training image recognition problem, the
reduction of recognition error rate for STSDA is very remarkable.

5 Concluding Remarks
In this paper, we propose a novel spectral based discriminant analysis approach under semi-
supervised setting. Different from some previous work, our method considers both label
augmenting and local structure preserving. On one hand, spectral transduction is utilized
for label estimation and is formulated as a convex optimization problem with pairwise con-
straints. This optimization problem can be solved efficiently with a closed-form solution.
In addition, unlabeled data with reliable class estimations are selected to augment the la-
beled data set through the proposed balanced data selection strategy. On the other hand,
both labeled and unlabeled data are utilized to preserve local structure by using manifold
regularization. Experimental results on real-world face recognition tasks demonstrate the
effectiveness of our method.
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