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Abstract 

In this paper, we propose a group-sensitive multiple 
kernel learning (GS-MKL) method to accommodate the 
intra-class diversity and the inter-class correlation for 
object categorization. By introducing an intermediate 
representation “group” between images and object 
categories, GS-MKL attempts to find appropriate kernel 
combination for each group to get a finer depiction of 
object categories. For each category, images within a 
group share a set of kernel weights while images from 
different groups may employ distinct sets of kernel weights. 
In GS-MKL, such group-sensitive kernel combinations 
together with the multi-kernels based classifier are 
optimized in a joint manner to seek a trade-off between 
capturing the diversity and keeping the invariance for each 
category. Extensive experiments show that our proposed 
GS-MKL method has achieved encouraging performance 
over three challenging datasets. 

1. Introduction 
Recently, various learning approaches have been 

developed to improve object categorization [1, 2, 3, 4, 8, 11, 
20]. Significant improvements have been achieved over 
several public datasets, such as Caltech, Pascal VOC and 
ImageCLEF. However, object categorization is still a 
challenging task. The essential reason lies in that the 
images within a category would exhibit diversity while the 
images from distinct categories would produce correlations 
in low-level visual attributes (e.g. color, texture, and shape). 
We may refer to such phenomena as “intra-class diversity” 
and “inter-class correlation” in this study. 

Fig.1 illustrates the example images from WikiPediaMM 
dataset [9]. Given the category “bridges”, positive samples 
can be grouped into three sub-categories, each of which 
produces distinct visual appearance. On the other hand, 
negative samples from other categories (e.g., “buildings”, 
“cities by night”) may exhibit similar visual attributes to 
some samples of “bridge”. We argue that, to elegantly and 
robustly categorize objects over extensive image data-sets, 
it is meaningful to effectively model both intra-class 
diversity and inter-class correlation. 

 

*First two authors contributed equally to this work. 

Positive Images Negative Images
 

Fig. 1. Illustration of intra-class diversity and inter-class 
correlation of object “bridges”. Double-headed arrows stand for 
the visual correlation between images. A thicker arrow indicates 
stronger visual correlation. 

 
Various classifiers based on distance metrics (e.g. [17]) 

or kernels (e.g. [3, 5]), which aim to maximize inter-class 
distance (or interval), have been applied to object 
categorization. In particular, multiple kernel learning 
(MKL) methods [10, 22, 30] have shown great advantages 
in this task recently (e.g. [5, 18]). Instead of using a single 
kernel in support vector machine (SVM) [21], MKL learns 
an optimal kernel combination and the associated classifier 
simultaneously, providing an effective way of fusing 
informative features and kernels. However, these methods 
basically adopt a uniform similarity measure over the 
whole input space. When a category exhibits high variation 
as well as correlation with other categories in appearance, 
they are difficult to cope with the complexity of data 
distribution. 

On the other hand, several sample-based methods [11, 19, 
20, 29] have been proposed to capture the characteristics of 
individual samples. For example, a sample-specific 
ensemble kernel learning method is proposed in [29] to 
explore the relative contributions of distinct kernels for 
each sample. In practice, such methods have yielded 
promising discriminative power. But expensive 
computation is incurred to learn sample-based similarity 
measures. More importantly, heavily respecting individual 
samples may overwhelm the intrinsic properties of a 
category so as to make the classifier less reliable.  

In this paper, we attempt to introduce an intermediate 
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representation “group” between object categories and 
individual images to seek a trade-off between capturing the 
diversity and keeping the invariance for each category in 
training classifiers. Given an object category, the image 
samples with similar visual appearance are clustered into a 
group so that the intra-class diversity can be represented by 
a set of groups. On the other hand, inter-class correlation 
can be represented by the correlation between the groups 
from different categories.  

Consequently, we incorporate group into the MKL 
framework and propose a group-sensitive multiple kernel 
learning (GS-MKL) method for object categorization. In 
GS-MKL, the image-to-image similarity is represented as a 
weighted combination of multi-kernels, where the kernel 
weights not only depend on the corresponding kernel 
functions, but also on the groups that two comparing 
images belong to. Instead of a uniform or sample-specific 
similarity measure, such group-sensitive similarity measure 
is shown effective in dealing with both intra-class diversity 
and inter-class correlation. 

In GS-MKL, the group-sensitive kernel weights together 
with the associated classifier are jointly optimized by a 
gradient descent wrapping canonical SVM solver [30]. 
Over three datasets (i.e., Caltech101, Pascal VOC2007 and 
WikipediaMM), we have shown that GS-MKL can 
significantly alleviate the negative effects of intra-class 
diversity and inter-class correlation, coming up with a more 
robust discriminative power for object categorization. 

Our main contributions are summarized as follows: 
� We have proposed a group-sensitive multiple kernel 

learning method GS-MKL for robust object categorization, 
where both intra-class diversity and inter-class correlation 
are taken into account. 
� We formulate GS-MKL in a general and flexible 

learning framework. When the group number declines to 
one, GS-MKL is reduced to canonical MKL. When the 
group number reaches up to the number of training images, 
GS-MKL becomes a sample-specific MKL. 
� We have achieved promising results comparable to the 

state-of-the-art results on Caltech101 and Pascal VOC2007, 
and significant improvements over canonical MKL across 
three datasets. 

The remainder of this paper is organized as follows. In 
Section 2 we brief the related work. In Section 3, we 
introduce the GS-MKL framework for object 
categorization. The GS-MKL learning algorithm is 
presented in Section 4. We present the experimental results 
in Section 5. Finally we conclude this paper in Section 6. 

2. Related Works 
In computer vision, many research efforts have been 

devoted to characterizing visual statistics for a number of 
object categories in the past decades. Kernel based method 

is one of attractive research areas for object categorization 
in recent years. Diverse kernels such as pyramid matching 
kernel (PMK) [15], spatial pyramid matching kernel (SPK) 
[3], proximity distribution kernel (PDK) [16] and 
chi-square kernel [33] are delicately designed to compute 
the similarity of image pair on certain features that 
represent particular visual characteristics. 

Recently, multi-kernel based classifiers have been 
introduced into object categorization yielding promising 
results. In [5, 18], multiple features (e.g., appearance, shape) 
are employed and kernels (e.g., PMK and SPK with 
different hyper-parameters) are linearly combined in MKL 
framework. Like the canonical MKL [10], these methods 
adopt a uniform kernel combination strategy over the 
whole input space. However, in the presence of significant 
intra-class diversity and inter-class correlation, they may be 
difficult to deal with complex data distribution and suffer a 
degraded performance. 

More recently, sample-specific MKL methods are 
proposed in [23] by adopting a sample-specific kernel 
weighting strategy. The basic idea is that kernel weights not 
only depend on the kernel functions but also on the samples. 
Compared with canonical MKL, a sample-specific MKL 
tend to reflect the relative importance of different kernels at 
each sample rather than at the level of object category. 
Despite of some performance improvements, learning too 
many parameters may lead to the expensive computation as 
well as the high risk of over-fitting.  Although our proposed 
GS-MKL and other methods [5, 18, 23] reviewed above are 
all extended from MKL framework, GS-MKL provides a 
mechanism of evaluating multi-kernels over groups 
(sub-categories). 

In addition, GS-MKL is different from classifier 
ensemble methods which train multiple classifiers 
separately using different data subsets or features and then 
combine the classifiers to obtain better performance. 
Although our method also partitions training data into 
groups, GS-MKL learns a single classifier based on the 
group-sensitive kernel combinations which adapt with the 
local data distributions of object sub-categories. Also, 
GS-MKL couples feature/kernel weighting and classifier 
leaning in a joint optimization problem. 

3. Group-Sensitive MKL Framework 
Let � � 1

, N

L i i i
D x y

�
�  be a training image dataset, where ix  

denotes the ith sample and � �1iy � � denotes the binary label 
for a given object category, and N is the number of training 
samples. Based on the labeled dataset LD , we aim to train a 
multi-kernels based classifier with a decision 
function ( )f x  to predict the object category of an 
unlabeled image x . 
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Fig. 2.Three paradigms of object categorization using (a) Canonical  MKL, (b) Group-sensitive MKL, and (c) Sample-specific MKL. In 
the figure, images with green bounding boxes are positive samples while those with red bounding boxes are negative samples for “bridge”. 
Note that sample-specific MKL will learn two sets of kernel weights even for two images with quite similar appearance (e.g. x1and x2). 

3.1. Canonical MKL 
SVMs have been proven to be efficient tools for solving 

classification problems. However, the discriminative 
power of SVMs heavily relies on kernel selection which is 
generally accomplished by cross-validation. Instead of 
selecting a single kernel, MKL [10] learns a convex kernel 
combination and the associated classifier simultaneously. 
The combination of multi-kernels is defined as follows: 

1
( ) ( )

M

i m m i
m

K x ,x K x ,x�
�

� 	                                                     (1) 

with 
1

1 and 0  ,
M

m m
m

m� �
�

� 
 �	 where M is the total 

number of  kernels, mK  is a positive definite kernel 
associated with a reproducing kernel Hilbert space (RKHS), 
and � � 1

M
m m�

�
are kernel weights which are optimized during 

training. Each mK can employ different kernel functions 
and use different feature subsets or data representations. 

 For binary classification, the decision function of 
canonical MKL is given as follows: 

1 1
( ) ( ) ,

N M

i i m m i
i m

f x y K x ,x b� �
� �

� �	 	                                       (2) 

where � � 1

N

i i�
�

 and b are the coefficients of the classifier, 
corresponding to the Lagrange multipliers and the bias in 
the canonical SVM problem. In MKL, the 
coefficients i� and the kernel weights m�  can be learnt in a 
joint optimization problem (details can be found in [30]). 

3.2. GS-MKL 
As shown in Fig. 2a, canonical MKL employs a uniform 
kernel combination over the whole input space. Instead of 
learning a global kernel combination, GS-MKL learns a set 
of group-sensitive kernel combinations to adapt with the 
complexity of data distribution. 

As shown in Fig. 2b, images from the same category are 
clustered into different groups by a pre-process (see Sec. 
5.3 for details). Then the kernel weights in GS-MKL not 
only depend on the kernel functions, but also on the groups 
that the two images belong to. Let ( )c x and ( )ic x be the 
group ids of image x and ix respectively. The combined 
kernel form in Eqn. 1 can be rewritten as: 

( ) ( )

1
( ) ( )i

M c x c x
i m m m i

m
K x ,x K x ,x� �

�
� 	 ,                                    (3) 

where ( )c x
m� and ( )ic x

m� are group-sensitive kernel weights 
of x and ix . Let G denote the total group number, then 

( ) 1{ ,..., ,..., }  for (1,..., ).c x g G
m m m m m M� � � �� � Accordingly, 

the decision function in Eqn. 2 can be reformulated as: 
( ) ( )

1 1
( ) ( ) ,i

N M c x c x
i i m m m i

i m
f x y K x ,x b� � �

� �
� �	 	                         (4)                   

where the coefficients 1 2[ , , , ]T
N� � ��� � and bias b have 

similar meanings as in canonical MKL. This decision 
function can be derived from the GS-MKL primal problem 
in Sec. 4.1. Compared with M kernel weights in the 
canonical MKL case, the number of group-sensitive kernel 
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weights gets rise up to G M
 . The coefficients and the 
group-sensitive kernel weights are optimized in a joint 
manner, which will be shown in Sec. 4. 

3.3. Connection with Other MKL Methods 
In this part, we show that GS-MKL can be generalized to 
canonical MKL and sample-specific MKL. 
  In the special case of 1G � , all samples belong to one 

group and share a unique set of kernel weights � �1

1

M

m m
�

�
. In 

this case, the GS-MKL is simplified to canonical MKL (see 
Fig. 2a), where 1

m�  in Eqn. 4 equals to the square root of 

m� in Eqn. 2.  
In the case of G N� , each training sample belongs to an 

individual group and thus an sample-specific kernel 
weighting strategy is employed . In this way, ( )c x

m�  only 
depends on the kernel function and the sample x . We also 
note that ( )c x

m�  is equivalent to ( )m x�  in Localized MKL 
(LMKL) [23]. Correspondingly, the decision function is: 

1 1
( ) ( ) ( ) ( , ) ,

N M

i i m i m m i
i m

f x y x x K x x b� � �
� �

� �	 	                     (5) 

The number of group-sensitive kernel weights then reaches 
up to N M
  where N G� . In this case, GS-MKL scales 
up to sample-specific MKL (see Fig. 2c). 

4. Learning GS-MKL Based Classifier 

4.1. The GS-MKL Primal Problem 
In GS-MKL, sample x is transformed via mappings 

� �
1

( ) m
Md

m m
x�

�
� � from the input space into M feature spaces 

1( ( ), , ( ))Mx x� �� , where md denotes the dimensionality of 
the mth feature space. Each feature map is associated with a 
weight vector mw . To allow the combination of kernels as 
expressed by Eqn. 3, the decision function of canonical 
MKL in Eqn. 2 can be rewritten as follows:   

( )

1
( ) , .

M c x
m m m

m
f x x b� �

�
� �	 w ( )                                          (6) 

Inspired by SVM [21], training can be implemented by 
solving the following optimization problem, which 
maximizes the margin between positive and negative 
classes as well as minimizes the classification error. 

  

2

, , , 1 1

( )

1

1 ,min
2

    . .  ( , ( ) ) 1   ,

          0          

m

i

M N

m i
b m i

M c x
i m m m i i

m

i

C

s t y x b i

i

� �
�

� � �

�

� �

�

�	 	

� 
 � �	


 �

w
w

w                  (7) 

  2
mw is a regularization term which is inversely related to 

margin, 
1

N

i
i
�

�
	  measures the total classification error, 

and C is the misclassification penalty. The optimal C can be 
obtained by cross-validation. 

4.2. The GS-MKL Dual Problem 

Through introducing Lagrange multipliers � � 1

N
i i

�
�

 into 
the above inequalities constraint in Eqn. 7, and formulating 
the Lagrangian dual function which satisfies the 
Karush-Kuhn-Tucker(KKT) condition [10], the former 
optimization problem reduces to a max-min problem as 
follows:  

( )( )

1 1 1 1

1

  ,  wheremax min

1 ( ( )) ,
2

      s.t. 0,  0  ,

ji
N N M Nc xc x

i j i j m m m i j i
i j m i

N

i i i
i

J

J y y K x ,x

y C i

� � � � �

� �

� � � �

�

� �	 	 	 	

� � � �	

��

     (8) 

This max-min problem is the GS-MKL dual problem. J is 
a multi-object function for � and � . When � is fixed, 
minimizing J over the coefficient � is meant to minimize 
the global classification error and maximize the margin 
between positive and negative classes. When � is fixed, 
maximizing J over the group-sensitive kernel weights �  is 
meant to maximize the intra-class similarity and minimize 
the inter-class similarity simultaneously. 

4.3. Optimization Algorithm 
Similar to the parameter learning in canonical MKL, we 

adopt a two-stage alternant optimization approach. 
4.3.1 The computation of �  given �  

Fixing � , the classifier coefficient � can be estimated by 
minimizing J under the constraint 0 ,  i C i�� � � and 

1
0

N

i i
i

y�
�

�	 . Minimization of J is identical to solve the 

canonical SVM dual problem with the kernel combination 
in Eqn. 3. Consequently, minimizing J over � can be easily 
implemented as there exist several efficient SVM solvers. 
4.3.2 The computation of �  given �   

To optimize the group-sensitive kernel weights � with a 
fixed � , the objective function can be expressed as:               

  
, ,

,1 1 11
( ) ( ) ,

G G M Ng g gg
m m m i

g m ig
J S� � � �

� � ��
� �	 	 	 	�                            (9) 

where 
'

{ ( = }{ ( = '}

1( ) ( , ).
2 i j

gg
m i i j j m i j

i c x g j c x g
S y y K x x� �� 	 	�                (10) 

When G=1, 'gg
mS corresponds to ( )kS � in canonical MKL 

[22]. When G > 1, the samples within a group have the 
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same label ( � �1� ) based on the assumption that the 
intermediate representation group is introduced to capture 
the locality of each sub-category. In this case, 'gg

mS stands 
for the correlation of group g and g’ over the mth kernel 
function. When g and g’ have the same label, maximizing J 
over � is to maximize the intra-class similarity. When g and 
g’ have different labels, maximizing J over � is to minimize 
the inter-class similarity. Correspondingly, the 
optimization of J over �  can be rewritten as: 

, ,

,1 11
max  ( )  

G G M g g gg
m m m

g mg
S� �

� ��
	 	 	

�
�                                          (11) 

Note that the optimization problem in Eqn. 11 is not 
convex. Inspired by [23], instead of solving � directly, we 
use a normalized exponential weighting function to 
approximate the nonnegative � . Particularly, � is 
determined by statistical property of the group and the 
parameters of the function which are also learned from data. 
In this paper, such weighting function is defined as: 

' ' '
' 1

exp( )

exp( )

g g g
g m m m
m M g g g

m m m
m

a K b

a K b
�

�

�
�

�	
                                               (12) 

where g
ma and g

mb are the parameters of the function, and 
g
mK corresponds to a certain statistical property for the gth 

group over the mth kernel function. Let gn be the number of 

samples in the gth group. In this paper, we define g
mK as:  

{ ( = }{ ( = }

2

( , )
i j

m i j
i c x g j c x gg

m
g

K x x
K

n

	 	
�                                          (13) 

As stated in [31], ( )J � is differentiable if the SVM 
solution is unique. Such condition can be guaranteed by the 
fact that all kernel matrices are strictly positive definite. 
Thus, we take derivatives of ( )J � w.r.t. g

ma , g
mb , and use 

gradient-descent method to train the weighting function: 

1 1

( ) 2 ( ( ( )) ( ))
M G i ig g g l g

l l m m m lg
l im

J S K
a

� � � �
� �

�
� �	 	

�
� �                    (14) 

1 1

( ) 2 ( ( ( )) ( ))
M G i ig g l g

l l m m lg
l im

J S
b

� � � �
� �

�
� �	 	

�
� �                             (15) 

where l
m� is 1 if l m�  and 0 otherwise. After updating the 

parameters of the weighting function, we get a new � and 
then solve a single kernel SVM as in Sec. 4.3.1. 
4.3.3 Summarization of GS-MKL optimization process 

The optimization algorithm of GS-MKL is summarized in 
Alg. 1. The termination criteria can be the consistency of 
� or � between two consecutive steps, or a predefined 
iteration upper bound. 

In Alg. 1, the step size of each iteration, ( )t�  and ( )t� , 
can be fixed as a small constant or determined with a line 

search method which needs additional canonical SVM 
optimizations for better convergence. Optimizing the 
classifier coefficients and group-sensitive kernel weights is 
a gradient descent wrapping canonical SVM solvent 
process. Note that the proposed algorithm does not 
guarantee convergence to global optimum and the initial 
parameters g

ma and g
mb  may affect the solution quality. 

 
Algorithm 1: GS-MKL Optimization Process 
1: Initialize g

ma and g
mb  with small random numbers for  

1, ...,g G� and 1, ...,m M� . 
2: while the termination criterion is not met do 
3:      Calculate kernel weights � as Eqn.12 

4:      Calculate ( )( )

1
( ) ( )ji

M c xc x
i j m m m i j

m
K x ,x K x ,x� �

�
� 	  

5:      Solve � using the canonical SVM with ( )i jK x ,x  

6:      ( ) ( )  g g t
m m g

m

Ja a
a

� �
� �

�
� for 1,...g G� and 1,...m M�  

7:     ( ) ( )  g g t
m m g

m

Jb b
b

� �
� �

�
� for 1,...g G� and 1,...m M�  

8: end while 
 

5. Experiments 
In the experiments, we treat object categorization as the 

multi-class classification problem in the one-vs.-all setting. 
As we assume that no prior knowledge is available about 
the image data distribution, we empirically evaluate the 
optimal grouping strategy and determine a proper group 
number. And then we evaluate the performance of our 
proposed GS-MKL on three datasets. 

5.1. Dataset 
Extensive experiments are performed on Caltech101 [6], 

Pascal VOC2007 [7] and WikipediaMM [9] datasets. 
Caltech101 involves 102 object categories, where each 
category containing 31 to 800 images. Pascal VOC2007 
consists of 20 object categories, where 2501 images taken 
in real-world are provided for training, 2510 for validation 
and 4952 for test. WikipediaMM dataset contains some 
150,000 real-world web images from Wikipedia that cover 
75 topics. In our experiment, 33 topics, each of which 
contains more than 60 positive samples, are employed. 
Note that some topics not only share similar visual 
appearances, but also produce semantic correlations, e.g., 
“house architecture” versus “gothic cathedral” and 
“military aircraft” versus “civil aircraft”. Compared with 
Caltech101, Pascal VOC2007 and WikiPediaMM exhibit 
higher intra-class diversity and inter-class correlation with 
more background clutter but less alignment. 
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5.2. Features and Kernels 
Several feature descriptors are involved in our 

experiments. Two local appearance features 
(dense-color-SIFT (DCSIFT) and dense-SIFT (DSIFT) 
[3]), two shape features (self-similarity (SS) [32] and 
pyramid histogram of orientated gradients (PHOG) [33]), 
and one texture feature (Gabor feature) are used. In 
particular, DCSIFT is computed in CIE-lab 3-channels 
over a square patch of radius with the spacing of r. We take 
r = 4, 8 and 12 pixels to allow scalability. Likewise DSIFT 
and Gabor feature are calculated in gray channel. SS 
descriptor is used to capture a correlation map of a 5×5 
patch with its neighbors at every 5th pixel. The correlation 
map is quantized into 10 orientations and 3 radial bins to 
form a 30 dim descriptor. We employ k-means to quantize 
these descriptors to obtain codebooks of size k (say, 400) 
respectively.  

For PHOG, two spatial pyramid kernels of gradient 
orientation are calculated to measure the image similarity in 
shape. PHOG-180degree employs 20 orientation bins and 
PHOG-360degree uses 40 orientation bins. For the other 
feature descriptors, we implement two kernel functions (i.e., 
SPK [3] and PDK [16]). For SPK, an image is divided into 
cells and the features from the spatially corresponding cells 
are matched across two images. The resulting kernel is a 
weighted combination of histogram intersections from 
coarse cells to fine cells. A 4-level pyramid is used with the 
grid sizes of 8×8, 4×4, 2×2 and 1×1 respectively. For PDK, 
local feature distributions of the K-nearest neighbors are 
matched across two images. The resulting kernel combines 
the local feature distributions at multiple scales, e.g. K = 
1,…, k, where k is set to (8, 16, 32) ranging from the finest 
to the coarsest neighborhood. 

5.3. Sensitivity Study of Grouping 
In our experiments, grouping is a pre-processing step for 

GS-MKL. We have tried out two methods, k-means and 
probabilistic latent semantic analysis (pLSA) [25], to 
cluster images from each category into groups. Other 
grouping methods can be utilized. There is no prior 
knowledge about the number of sub-classes in an object 
category and the optimal number of groups for GS-MKL. 
Hence, we empirically identify the optimal group numbers 
for three datasets. For each category, images are clustered 
into Ng groups (from 1 to 5). For Caltech101 and 
WikipediaMM, 20 images are randomly selected for training 
and 10 images for validation to find the optimal group 
number Ng for each object category. For Pascal VOC2007, 
2501 training images and 2510 validation images are 
employed to find the optimal Ng for each object category. 

In Tab.1, we list the best categorization results over the 
validation set and the corresponding mean group number 
for k-means and pLSA on three datasets. Clearly, Ng 

ranging from 2.3 to 4.4, relates to the intra-class diversity 
of the dataset. From the table, we can see that pLSA 
outperform k-means slightly over three datasets. As a 
generative method, pLSA does not need explicit distance 
measure, which seems more robust against the distance 
based method. In the following experiments, we employ 
pLSA to group images with the optimized Ng derived from 
validation. 

 

Table1. Comparison of two grouping methods 

Dataset Grouping 
method 

Best 
Performance  

Mean Ng 
Per category

Caltech101 
k-means 78.6 2.5 

pLSA 80.4 2.3 

Pascal 
VOC2007 

k-means 54.2 4.2 
pLSA 56.7 3.8 

WikipediaMM
k-means 60.0 4.4 

pLSA 61.2 3.9 

5.4. Experiment Results 
5.4.1 Experiment on Caltech101 

In this set of experiments, we randomly select Ntrain and 
Ntest images for training and test respectively, where 
Ntrain={10, 15, 20, 25, 30} and Ntest=15. We compare our 
GS-MKL approach with several recent methods [2-4, 6, 11, 
14, 18, 26, 27]. As shown in Fig. 3, GS-MKL has achieved 
promising results comparable to the top performances of 
the state-of-the-art methods. 
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Fig. 3. Performance of GS-MKL and other recent methods on 
Caltech101dataset. GS-MKL: number of training samples (mean 
recognition rate), 10 (65.1), 15 (73.2), 20 (80.1), 25 (82.7), 30 
(84.3).  
 

From Fig. 3, we note that when Ntrain=10, GS-MKL 
obtains the performance of 65.1%, which is a bit lower than 
the best one (69.5%) [26]. This may attribute to the 
inefficacy of grouping methods when training samples are 
too sparse. Compared with other methods, GS-MKL has 
obtained better performance when Ntrain >10. When Ntrain is 
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set to 30, the mean recognition rate reaches up to 84.3%, 
achieving a significant increase by 7.9% over canonical 
MKL (implemented as [30]). This shows that further 
optimization of kernel weights over groups yields better 
feature (kernel) combination for object categorization. 
5.4.2 Experiment on Pascal VOC 2007 
In this set of experiments, we employ 5011 images for 
training and 4952 for test respectively. Tab. 2 compares the 
performances of GS-MKL to canonical MKL and some 
other recently published methods [8, 28, 34, 35]. It is 
worthy of note that the approach INRIA_genetic [8] 
obtained the best performance in the Pascal VOC2007 
challenge. The official performance metric Average 
Precision (AP) [7] is used to evaluate the performance. 

 

Table 2. Average Precision of GS-MKL and other methods on the 
Pascal VOC 2007 dataset 

categories [8] [34] [28] [35] MKL GS-
MKL

aero plane 77.5 63.0 65.0 65.0 74.1 79.4
bicycle 63.6 22.0 44.3 48.0 53.9 62.4

bird 56.1 14.0 48.6 44.0 46.6 58.5
boat 71.9 42.0 58.4 60.0 62.2 70.2

bottle 33.1 43.0 17.8 20.0 37.5 46.6
bus 60.6 50.0 46.4 49.0 55.6 62.3
car 78.0 62.0 63.2 70.0 70.7 75.6
cat 58.8 32.0 46.8 49.0 48.4 54.9

chair 53.5 37.0 42.2 50.0 54.0 63.8
cow 42.6 19.0 29.6 32.0 34.7 40.7

dining table 54.9 30.0 20.8 39.0 50.1 58.3
dog 45.8 29.0 37.7 40.0 40.7 51.6

horse 77.5 15.0 66.6 72.0 76.6 79.2
motorbike 64.0 31.0 50.3 59.0 59.8 68.1

person 85.9 43.0 78.1 81.0 82.5 87.1
potted plant 36.3 33.0 27.2 32.0 38.3 49.5

sheep 44.7 41.0 32.1 35.0 40 48.8
sofa 50.6 37.0 26.8 42.0 48.2 56.4
train 79.2 29.0 62.8 68.0 68.1 75.9

TV monitor 53.2 62.0 33.3 49.0 47.2 54.4
Mean AP 59.4 36.7 44.9 50.2 54.5 62.2

 
The mean AP of GS-MKL is 62.2%, which is better than 

that of [8, 28, 34, 35]. GS-MKL has obtained the best 
results for 13 out of 20 categories. Over 10% improvements 
are obtained for two categories (i.e., “chair” and “potted 
plant”). Such results show the advantage of GS-MKL in 
handling the intra-class variation on real world image data. 
Under the same experimental setting, GS-MKL obtains 
better results for all 20 categories and 14.1% improvement 
on MAP against canonical MKL. This demonstrates that 
GS-MKL has better discriminative power than MKL by 
taking into account the intra-class diversity. 
5.4.3 Experiment on WikipediaMM  

On WikipediaMM dataset, we further evaluate four 

typical multi-kernels based methods, i.e., unweighted 
multiple kernel (UMK) (equal kernel weights for 
multi-kernels), canonical MKL, sample-specific MKL 
(SS-MKL) (implemented as [23]) and our proposed 
GS-MKL. For each image category, Ntrain={10, 15, 20, 25, 
30} images are randomly picked out for training and the 
remaining images for test. 

The results of five runs are shown in Tab. 3. We can see 
that GS-MKL outperforms three other multi-kernels based 
methods significantly on the dataset of real web images. 
Compared with UMK and MKL, GS-MKL obtains 
different degrees of improvements. Such results may be 
attributed to the ability of GS-MKL in adapting with the 
intra-class diversity and inter-class correlation. Note that 
the result of SS-MKL is just slightly lower than that of 
GS-MKL when Ntrain<20; but their performance gap 
becomes larger with more training images. This shows that 
GS-MKL is more effective in seeking a trade-off between 
diversity and invariance within an object category. 

 
 

Table3. Performance of four multi-kernels based methods on 
WikipediaMM.  

Ntr 10 15 20 25 30 

UMK 38.9±0.7 42.0±0.6 44.8±0.5 47.0±0.5 49.2±0.4

MKL 45.0±1.0 50.1±0.8 54.3±0.8 56.1±0.7 58.2±0.6

SS-MKL 47.3±1.6 53.4±1.3 56.2±0.9 57.8±1.1 60.5±1.0

GS-MKL 49.2±1.2 56.6±1.0 61.0±1.0 64.3±0.8 67.6±0.9
 

5.5. Time complexity 
We implemented GS-MKL in C++. In each iteration of 

algorithm 1, we need to solve a canonical SVM problem 
with the group-sensitive kernel weights optimized by a 
gradient descent method. The time complexity of the 
gradient calculation is ignorable compared to the SVM 
solver. As those in canonical SVM solvers, using hot-start 
(i.e., providing previous � as input) may accelerate the 
training process. Given the convergence termination 
criteria, the number of iterations before convergence 
depends on the training data and the step sizes. During 
training each category over 5k image samples on Pascal 
VOC2007 , the canonical MKL needs about 20 minutes, 
and GS-MKL needs 40 to 60 minutes to converge on server 
(8 Corel 3.0 GHz, 8GB RAM). 

6. Conclusion  
In this paper, we argue that modeling intra-class 

diversity and inter-class correlation among images is 
essential to improve the discriminative power of an object 
categorization method. To this end, we have introduced an 
intermediate representation “group” in the MKL 
framework, and proposed a GS-MKL method to learn both 
the parameters of group-sensitive kernel weights and the 
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classifier in a joint manner. Our GS-MKL has yielded 
promising results over Caltech101, Pascal VOC2007 and 
WikipediaMM datasets based on existing visual features 
and kernels.  

In current implementation, grouping process is regarded 
as a pre-process followed by GS-MKL and the optimal 
group number is obtained over a validation set. In the future 
work, we will attempt to integrate the optimizations of three 
different stages (i.e., grouping, kernel combination and 
classifier learning). Additionally, we will employ more 
effective kernel functions and visual features in GS-MKL. 

7. Acknowledgments 

The work is supported by grants from Chinese NSF under 
contract No. 60605020 and No. 90820003, National 
Hi-Tech R&D Program (863) of China under contract 
2006AA010105, and National Basic Research Program of 
China under contract No. 2009CB320906.  Also this work 
is supported in part by the research fund from NLPR, 
Institute of Automation, Chinese Academy of Sciences, 
and Microsoft Research Asia Internet Services Theme. The 
authors would like to thank Hong Chang and Yu Su for 
their valuable suggestions. 

8. References 
[1] L. Fei-Fei, P. Perona. A bayesian hierarchical model for 

learning natural scene categories.  In CVPR 2005.  
[2] H. Zhang, A. Berg, M.Maire, J. Malik. SVM-KNN: 

discriminative nearset neighbor classification for visual 
category recognition. In CVPR, 2006.  

[3] S. Lazebnik, C. Schmid, J. Ponce. Beyond bags of features: 
spatial pyramid matching for Recognizing Natural Scene 
Categories. In CVPR 2006. 

[4] A. Bosch, A. Zisserman, X. Muoz. Image classification 
using random forests and ferns. In ICCV 2007. 

[5] M. Varma, D. Ray. Learning the discriminative 
power-invariance trade-off. In ICCV 2007. 

[6] L. Fei-Fei, R. Fergus, P. Perona. Learning generative visual 
models from few training examples: an incremental bayesian 
approach testing on 101 object categories. In Workshop on 
Generative-Model Based Vision, CVPR, 2004.  

[7] M. Everingham, L. VanGool, C. K. I. Williams, J. Winn, A. 
Zisserman. The PASCAL visual object classes challenge 
2007 (VOC2007) results. http://www.Pascal-network.org/ 
challenges/VOC/voc2007/workshop/index.html. 

[8] M. Marsza�ek, C. Schmid, H. Harzallah, J. Weijer. Learning 
Object Representations for Visual Object Class Recognition. 
In Workshop on Visual Recognition Challenge, ICCV2007. 

[9] www.imageclef.org/2008/wikipedia. 
[10] F. R. Bach, G. R. G. Lanckriet, M. I. Jordan. Multiple kernel 

learning, conic duality, and the SMO algorithm. In ICML, 
2004. 

[11] A. Frome, Y. Singer, F.Sha, J. Malik. Learning 
globally-consistent Local distance functions for shape-based 
image retrieval and classification. In ICCV 2007. 

[12] S. Fidler, M. Boben, A. Leonardis. Similarity-based 
cross-layered hierarchical representation for object 
categorization. In CVPR 2008 

[13] J. Sivic, B. Russell, A. A. Efros, A. Zisserman. Discovering 
objects and their location in images. In ICCV 2005. 

[14] G. Wang, Y. Zhang, L. Fei-Fei. Using dependent regions for 
object categorization in a generative framework. In CVPR, 
2006. 

[15] K. Grauman, T. Darrell. Pyramid match kernels: 
Discriminative classification with sets of image features. 
Tech. Report MIT CSAIL TR 2006-020, MIT, March 2006. 

[16] L. Haibin, S. Soatto. Proximity distribution kernels for 
geometric context in category recognition. In ICCV 2007. 

[17] K. Q. Weinberger, J. Blitzer, L. K. Saul. Distance metric 
learning for large margin nearest neighbor classification. In 
NIPS 2005. 

[18] A. Kumar, C. Sminc. Support kernel machines for object 
recognition. In  ICCV 2007. 

[19] O. Chum, A. Zisserman. An exemplar model for learning 
object classes. In CVPR2007. 

[20] T. Malisiewicz, A. A. Efros. Recognition by association via 
learning per-exemplar distances. In CVPR 2008. 

[21] J. Platt. Advances in Kernel Methods - Support Vector 
Learning, chapter Fast Training of Support Vector Machines 
using Sequential Minimal Optimization, pages 185–208. 
MIT Press, 1998. 

[22] S. Sonnenburg, G. Raetsch, C.Schaefer, B.Scholkopf. Large 
scale multiple kernel learning. JLMR, (2006) 7,1531–1565. 

[23] M. Gonen,  E. Alpaydin. Localized multiple kernel learning. 
In ICML 2008. 

[24] D. Lowe. Object recognition from local scale-invariant 
features. In ICCV 1999. 

[25] T. Hofmann.  Probabilistic latent semantic indexing. In ACM 
SIGIR 1998. 

[26] S. Todorovic, N. Ahuja. Learning subcategory relevancies 
for category recognition. In CVPR2008. 

[27] J. Mutch, D. G. Lowe. Multiclass object recognition with 
sparse, localized features. In CVPR, 2006. 

[28] G.Wang, D.Hoiem, D.Forsyth. Learning Image Similarity 
from Flickr Groups Using Stochastic Intersection Kernel 
Machines. In MIR2008 

[29] Y. Lin, T. Liu, C. Fuh. Local ensemble kernel learning for 
object category recognition. In  CVPR 2007. 

[30] A. Rakotomamonjy, F. Bach, Y. Grandvalet, S. Canu. 
SimpleMKL. JLMR, (2008) 9, 2491-2521. 

[31] O. Chapelle, V.Vapnik, O. Bousquet, S. Mukherjee. 
Choosing multiple parameters for support vector machines. 
Machine Learning, (2002) 29, 131-159. 

[32] E. Shechtman, M. Irani. Matching local self-similarities 
across images and videos. In CVPR 2007. 

[33] A. Bosch, A. Zisserman, X. Munoz. Representing shape with 
a spatial pyramid kernel. In CIVR 2007. 

[34] C. Galleguillos, A. Rabinovich, S. Belongie. Object 
Categorization using Co-Occurrence, Location and 
Appearance. In CVPR2008. 

[35] F. Khan, J. Weijer, M. Vanrell. Top-Down Color Attention 
for Object Recognition. In ICCV2009.  
 

443


