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Abstract

The distribution disparity is often inevitable between the
pedestrian training examples and the test data from a spe-
cific application scenario, which may result in unsatisfac-
tory detection accuracies. In this paper, we investigate how
to efficiently adapt a generic boosting-style detector for a
new scenario, e.g., with a distinctive capture view-angle,
with only very limited examples (e.g., ~ 200). The basic no-
tation is to transfer the auxiliary knowledge encoded within
the well-trained detector to a new scenario. When spe-
cific to boosting-style detectors, this auxiliary prior knowl-
edge includes the selected features and the weights for the
weak classifiers. For a new scenario, these features are
reused and shifted to the most discriminative positions and
scales, and the weights are further adapted by covariate
shift, which introduces the covariate loss. Extensive experi-
ments on cross-view detector adaption show the encourag-
ing detection accuracy improvements brought by our pro-
posed algorithm with very limited new examples.

1. Introduction

Many practical solutions have been presented to visual
object detection/location problems [31, 9, 24, 19]. Although
the typical objects to be detected are frontal human face [31]
and pedestrian [24], it has been shown that these approaches
are general and can be extended for other objects, e.g., au-
tomobile, profile face. By inheriting these successes, con-
struction of new types of object detectors may be straight-
forward, namely, to collect sufficient training examples, and
then select a proper detection approach, finally train the de-
tector. Many object detection tasks are still beyond the ca-
pability of the state-of-the-arts, but even for those nearly
solved tasks, the high initial cost, i.e., the cost in acquiring
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Figure 1. Distribution disparity problem illustrated by examples
selected from the different view-angles.

sufficient training examples, may prohibit building practical
systems for different application scenarios.

The high initial cost inherently arises from the fact that
most current solutions are based on statistical learning tech-
niques, which boost building trainable object detectors.
Consequently, several thousand positive examples are typi-
cally required to train a detector. The requirement of large
number of examples is also aggravated by the large vari-
ation of object’s appearance. Furthermore, the cost in col-
lecting the positive data is often very high, since each exam-
ple needs to be located, and even aligned manually. On the
other hand, several thousand negative images which do not
contain positive instances are also required. Because that in
the training phase, the detector bootstraps the hard negative
examples from these images to ensure that the false positive
rate is very low, e.g., 1074,

In practice, the data distribution disparity is often in-
evitable between the training data and those from a specific
application scenario as view-angle change. Here, let’s take
the pedestrian detection as an example, the appearance of a
pedestrian may be substantially changed when the capture
view-angle is changed (see Figure 1). If we take the ex-
amples captured from the overhead view-angle as test data
while use the detectors trained with data from the frontal
view-angle, the performance would be far from satisfaction.
Otherwise, the detectors are needed to be re-trained with ex-
amples collected from the new view-angle. The high initial
cost issue is un-avoided for this naive approach. Rather than
discarding examples from the frontal view-angle, one natu-
ral question is whether we can obtain a new detector by 1)
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utilizing the knowledge within the well-trained detector and
examples from the frontal view-angle, and 2) only requiring
very limited examples from the overhead view-angle. The
purpose is efficiently alleviating the high initial cost issue.
We give a positive answer in this paper.

As we elaborate in this paper, the proposed approach
is to transfer the pedestrian detector cross view-angles.
Although the examples captured from the different view-
angles have great appearance difference, there exists cer-
tainly close relationship between them. In other words,
the detector learned from the frontal view-angle can pro-
vide many valuable clues in training a new detector for the
overhead view-angle. To determine which part in the old
detector is still useful, we utilize a small amount of labeled
new data captured from the new view-angle, called target-
distribution training data. We instead call the data from
the frontal view-angle as auxiliary-distribution data, since
some of the data might be still useful for the target task.
We transfer the detector from the auxiliary task into the tar-
get task by exploiting the relationship between the auxiliary
data and the target data, which naturally leads to an instance
of classical transfer learning [3, 25, 7, 28, 8].

The key assumption of our transfer learning is that
the shared features may handle the overall appearance
change/distortion caused by view-angle change. The shared
features means that these local features may be semantically
identical, but are observed in both auxiliary data and tar-
get examples possibly at different positions and scales (see
Figure 2(a)). Therefore, it is desirable to find the correspon-
dence of local features between the different view-angles —
utilizing the auxiliary data yet transferring the discrimina-
tive power of the auxiliary detectors.

In this paper, we approach this in boosting-style detec-
tor [31, 30] for view-adaptiveness. The reason is that the
boosting-style detector has been successfully applied in the
detection of various objects, e.g., face [31] and pedestrian
[30]. Boosting-style detector constructs weak classifiers
based on local image patches, which may only be partly
changed in positions and scales cross view-angles. There-
fore, we can say that the patch-level features may be shared
cross view-angles although the overall appearances are dif-
ferent. The states (left-top and right-bottom coordinates)
of the image patches, need be transferred and tailored to
the target data, and thus we propose the feature shift pro-
cess. By feature shift, we stochastically search for the
shared image patches in target data with the maximal mar-
gin rule. The advantages of such a process include that:
1) the stochastic searching can quickly locate the image
patches in the target examples; and 2) the maximal mar-
gin criterion can retain the discriminating ability of the old
detectors.

Further in grouping these shifted local pathes into the
target detectors, the covariate shift [27] is applied in the
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exponential loss to optimize the weights of the weak clas-
sifiers. By covariate shift, the auxiliary data can be re-
utilized with the target data via the covariate loss in the hope
of retaining the generalization ability of the derived detec-
tors. Rather than adopting the batch optimization (which is
computation-intensive, because the weights are optimized
by iterative approximation) [16, 34], we instead propose a
fast computation scheme by additive approach to calculate
the weights sequentially.

The rest of this paper is structured as follows. The re-
lated work is further summarized in Section 2. Section 3
first reviews the loss function for the classical boosting-style
detector, followed by the details of our proposed solution
to transferring pedestrian detector cross view-angles. The
comparison experiments are discussed in Section 4. The
conclusive remarks are made in Section 5.

2. Related Work

The possible solutions to the high initial cost problem
are partly related to the three popular research topics, i.e.,
co-training, multi-task learning and transfer learning.

Co-training: A family of the related works are the co-
training [6] based methods to utilize the unlabeled examples
for the detector. In co-training, multiple independent detec-
tors are applied to automatically label the same examples.
If some of the detectors have high confidences on a par-
ticular example, the label of the example can be obtained
to retrain the remaining ones. The detectors are iteratively
improved with all the labeled examples [20]. To avoid the
time-costing retraining process, the seminal idea [20] in-
spires the research in [18][33] to combine the co-training
with the online method [23] for updating the detector. These
ideas can be concluded as re-training new detector via co-
training to label enough target examples, rather than utiliz-
ing the auxiliary data. However, co-training requires differ-
ent visual cues to build the independent detectors.

Multi-task learning: Learning for multiple related tasks
simultaneously can be advantageous, in terms of perfor-
mance relative to learning for these tasks independently
[7, 15]. There have also been various attempts to theoret-
ically study multi-task learning [4, 5]. In computer vision,
the representative work is the jointBoost [29], which simul-
taneously trains several object detectors behaving well than
independently learned ones. Recently, Ahmed et al. [2] also
propose to learn shared feature simultaneously from pseudo
(auxiliary) tasks and target task, with convolutional neural
networks (CNN) for building the several visual object clas-
sifiers. Multi-task learning can partly solve the the defi-
ciency of training examples. However, multi-task learning
requires that new task has sufficient examples to simultane-
ously learn with other related tasks. The high initial cost
cannot be avoid within the context of multi-task learning.

Transfer learning: Transferring knowledge across re-



lated tasks is a known phenomenon in human learning [25].
The related research can be roughly divided into three cat-
egories according to the level of transferred knowledge.
Model-level transfer category first estimates the hyper prior
of model’s parameters from several tasks, and then this hy-
per prior is transferred to similar tasks, e.g., hierarchical
Bayesian models with hyper priors constrained for similar
tasks [13, 4, 32, 26]. However, the priors are often diffi-
cult to build on the discriminative classifiers [14]. Data-
level transfer category instead discovers the useful exam-
ples from the auxiliary tasks, and then uses them along with
the target data for learning [8] [27]. The third category is the
feature-level transfer, which searches for the shared features
with satisfactory performance cross domains. To uncover
these shared features, one might introduce some related
auxiliary tasks [3], or learn a distance function which be-
haves well to transfer knowledge [28]. For instance, Farhadi
et al. [12] propose to construct the stable features for recog-
nizing activities from different view-angles.Our proposed
algorithm in this paper is a hybrid of the data-level trans-
fer and feature-level transfer, and Figure 3(a) illustrates the
mechanism of our proposed algorithm.

The seemingly most promising approach for view-angle
adaptiveness problem may be the online method [23]. The
online boosting adopts essentially i.i.d assumption, while
the different view-angles make the i.i.d barely hold. There-
fore, we believe that the online boosting is unsuited for
view-angle adaptiveness.

3. Transfer Detector Cross View-angles
3.1. Boosting Detector and Basic Notations

The general approach of object detection is to learn a
classifier, which predicts the class label for a sub-window,
e.g., 1 for yes and —1 for no. Within the context of boosting-
style detector, the strong classifier H (x) can be obtained by
minimizing the exponential loss £

L= / pla,y)e D d(z, y), (1)
Q
where () is the definition field of example and label pair
(x,y) with the distribution as p(z,y), and y € {—1,+1}
is the class label for example x. The strong classifier
H(z) : x — y is the additively obtained from a set of weak
classifiers as

M=

m=1

where h,,, () is the weak classifier selected by a boosting
process, and a,,, € R is the weight characterizing the im-
portance of the weak classifier ., (). Within the context of
boosting-style detector [31, 30], the h,,, (z) essentially con-
sists of a local image patch and the classifier’s parameters.
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Figure 3. Mechanism illustration of the transfer learning for pedes-
trian detection across view-angles. (a) Transfer learning in boost-
ing, the image patches are transferred from the auxiliary task to
the target task. The weight of each image patch is also re-learned.
Note that the image patches are all normalized into the same size
to facilitate visualization purpose. (b) A weak classifier is built
upon an image patch, and the image patches with various scales
and locations generate the weak classifier pool.

That is, the weak classifier h,, (x) first extracts feature from
the predefined image patch, and then gives the decision with
the learned parameters. Figure 3(b) illustrates this relation-
ship between the image patch and the parameters. The final
object detector D is then built as a cascaded strong classifier
H(x) [31].

For view-angle adaptiveness, let 7; {(2t,yH)
be the target examples, where xﬁ e X, is iid drawn
from the target-distribution probability p;(x). Let 7, =
{(«, y#)}™, be the auxiliary examples, where 2§ € A, is
sampled from auxiliary-distribution probability p, (z)'. For
the scenario of detector transfer cross view-angles, 7, rep-
resents the examples collected from the frontal view-angle,
and 7; denotes the data captured from other view-angle,
e.g., overhead view-angle (see Figure 1).

Intuitively, if the different view-angles are related (with
overlapping areas), there should exist shared parts between
the auxiliary data 7, and the target data 7;. Therefore,
the detector D, learned from the frontal view-angle should
have shared features with the detector for the target view-
angle. To transfer the shared features, it is desirable to find
the correspondence of shared features for different view-
angles.

Hereafter, the notation ¢ and a generally represent the target data and
the auxiliary data, respectively.



(a) Auxiliary example and margin gain map.

(b) Target example and margin gain map.

Figure 2. The feature drifts from the old (pink) position to a new (blue)position. Comparing the maximal points in the margin gain map of
(a) and (b), we can see that the feature shifts to the maximum point, which corresponds to the highest discriminating capability.

3.2. Transfer Weak Classifiers by Feature Shift

Denote the state of a image patch as § = (I,¢,r,b),
where the [,¢,r, b are the left-top corner and the right-
bottom corner coordinates. Based on the above analysis,
the state of image patch should be transferred to the target
status 6; based on the target data 7; — in other words, the
new state 6; should be found by using old state as “prior”
knowledge.

To exploit the correlation between different view-angles,
the dependence between the target status ; and the auxil-
iary status 6, is assumed to be

p(04]04) x N (04, 0%1), )

where N(0,,021) is a Gaussian distribution with mean as
6, and variance matrix as 02I. The o is empirically set to be
10 pixel in this work. The Gaussian dependence in Eq. (2)
means that the target state 6; deviates from the the old state
0, locally. It is also reasonable for overlapped view-angle
change.

The state 6 can be estimated by computing the proba-
bility p(0;|7;,7,) in terms of Bayesian inference. How-
ever, the conditional probability cannot be computed di-
rectly. p(6¢| 7z, 7,) would be simplified with the conditional
independency between the 7, and 7, that is,

P(ZTa, Ti10:) = p(Tal0:)p(Te|6r). ©)
Using the Bayes’s rule twice and Eq. (3), we have
p(0:|Ty, 1a) o< p(T:10:)p(0:|Ta)- )

Then based on the Bayesian rule, we have

PO T x p(Ti00)p(0:|T)
= p(TI6) / p(6:162)p(6a|T2)d6a, (5)
where )
p(73]0;) (6)

> exp(—yth(x7))
be the margin gain of weak classifier h%(z), and the
p(6,|7,) be the probability that the weak classifier occurs
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at the state 0,. exp(—yth®(zt)) in Eq. (6) measures the
classification ability of the weak classifier h*(z) on the tar-
get data 7y, that is, the ability to separate apart the positive
and negative examples. Therefore, the essence of Eq. (5)
is to search for the target status 0; by following the largest
margin criterion.

The optimal target status ¢, can be estimated via uniform
sampling [21] as follows. A set of samples {s; };=1,... 1, are
generated by repeating 6,. After the state s; transits to s/

with Eq. (2), the state s/ is associated with the weights

L
7 o< p(Ty|s))p(st|s;) with Zﬂ'f =1. @)
1

We use the Monte Carlo approximation of the expectation
6, = Zle siw! as the optimal target state 6;. In this paper,
we set L to be 300. To give a better display of how feature
shift, Figure 7 shows the correlation between feature shift
and the corresponding classification ability.

Here we would like to highlight that the particle filter
(PF) [17, 35] for visual object tracking, which is quite dif-
ferent to feature shift in motive. Both of them use the sam-
pling method for the global maximum of the object func-
tion. However, PF is originally designed to sequentially
search for the targets, while feature shift is for improving
classification ability.

3.3. Transfer Classifier Weights by Covariate Shift

Although the auxiliary-distribution p,(x) is generally
different from the target-distribution p; () (p (z) # pi(x)),
the conditional probability distribution can be considered
equal, namely p,(y|z) = pi(y|x). Therefore, covariate
shift [27] can be used for reweighting the weak classifiers.
Applying covariate shift into loss Eq. (1), we have covariate
loss

L= e velm) L Ny emvsHilm), ®)
i=1 =1

where the 7; = % is the ratio of the target data and
a\*31973

the auxiliary data densities. Essentially, the second item



in Eq. (8) uses the p,(x;,y;) as proposal density in im-
portance sampling to reuse the auxiliary data. Rather than
estimating p;(z, y) and p,(z, y) with non-parameter proba-
bility estimation (Parzen windows [10]) or cross-validation
[27], we reformulate the density ratio r; with conditional
probability by using Bayesian rules twice:

5 e
p(tlz, y)p(z, y) 1
= a|z, T, (9)
p(t) p( \p%z)v( Y)
p(tlz, y)p(a)
= 10
p(alz,y)p() o
Assuming the p(a) = p(t), Eq. (9) can only be estimated

by ratio of condition probability, which can be modeled as
a logistic function

t = ! 11
p(tlr,y) = [k (11)
Therefore, we have
1+ e~ VYiHa(z;)
pj= o TE T (12)
1+ e—viHe(zy)
The covariate loss can be written as
— 1 + e —Yj Hfl($])
ylHt(m )
L= Ze +Z AT I (13)

=1

The loss £ comes from the two different data: the aux-
iliary data and the target data. Rather than mixture train-
ing in multi-task learning, we weight every auxiliary ex-
amples (z¢,y?). Literature [16, 34] weight the “old dis-
tribution” (corresponds the auxiliary distribution in our pa-
per) and target distribution, that is, p(z) = pa(z) + Apt(z)
(or p(z) = (1 — A)pa(x) + Ape(z)). Table 1 further
summaries the difference between multi-task learning, ap-
proaches [16, 34] and our method.

3.4. Boosting the Covariate Loss

A directly method to optimize the hybrid loss can be gra-
dient based batch optimization — concatenating all {!, } as
a vector. But besides iterative optimization discussed in sec-
tion 1, it is also particularly inefficient because total exam-
ples must be used to compute the gradient and the loss at
each iteration optimization.

To avoid the inefficiency of batch optimization, our
method adopt the step-wise optimization method (a com-
parison will be illustrated in subsection 4.1). Following the
AnyBoost [22], we select the weak classifier h(x) to min-
imize a first-order expansion of Eq. (13) around h(z) = 0
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Method

‘ Loss function ‘ Comments

Multi-task
learning

tasks
and

Lo+Ly Learning all
simultaneously

indifferently.

Method[ 16,
34]

(1 — N)Lo+NLs
[16] or
Lo+AL: [34]

The A(0<A;<1) controls
the degree of adaption. If
A = 0, there is no adap-
tion process. If A = 1,
only target data is used to
learn. The optimal A can
be estimated via cross-
validation technique.

Our
method

> AiLoss(zf, yf)
+L;

The \;(0<\;<+00) acts
as example “selector”. If
Ai = 0, (xf,y) will be
useless for classifier adap-
tion; Otherwise, (zf,y;')
will contribute to adap-

~
~

tion. \; can be estimated
via Eq. (9).

Table 1. A comparison among different methods. Note that
Loss(x§, yi) is the loss of every example, which corresponds to
e vH (@) i Eq. (1) in our work.

by Taylor expansion

(14 e~ vHa(@))eyHe(@)
(1 + eyH,:(:E))?

Z efyHt(z)yhﬁn(x) +

€Ty

>

zeT,

In this paper, we use gradient based method to find the af,

The gradient of Eq. (13) with respect to of, can be com-
puted as:
82 t (Hi4al ht)
oo = - X el
" (z,9)€T:
ht ey(Ht+a7nh7n) 1 + eina
- 3 L s,
wain, (e )

The algorithm can be computed efficiently by recording

the weight D « ¥t iteratively as follows. At the k-th

round, the weight for target data is updated D; (@<

e¥He(®) and the weight for auxiliary data is also updated
D, (e e e¥Ha(?) The k-th weak classifier hy and o is
only computed by using the weight D; and D,. The algo-
rithm can be formulated as in Algorithm 1.

3.5. Cross-view Pedestrian Detector Transfer

In this work, we implement the above transfer learning
algorithm based on the cascaded detector proposed by Viola
and Jones in [31]. To transfer cascaded AdaBoost detector,

yhy,(x). (14)



Algorithm 1. Covariate shift boost (CovBoost).

Algorithm 2. Cross-view Detector Transfer.

1: Given: The target examples 7, the auxiliary examples 7,
and the learned auxiliary classifier H,(x).

2: Initialize weight D¢(xz;) = 1 for each target example, the
weight D, (z;) = 1 for every auxiliary examples, and com-
pute the V (z;) = 1+e~¥He(®3) for every auxiliary example.

3: Form=1,.... M

4: Find the weak classifier h’, () from the shifted feature set by
maximizing the weighted loss

POEICAAE +z s LA
5: Find coefficient o}, that minimize the weighted loss
Vi(z;)
— D¢ (xi)e — 2
I

zj)e ¥
via gradient based optimization method.
6: Update the weights by

At t
—yioy, by,

at ht,

Di(a:) = Dis)e ™V n"m ) D, (2;) =

7: End for
8: Output: target strong classifier H; = ), al ht,(z).

the classifiers of every stage in the cascade structure are up-
dated sequentially, and the target data are filtered through
all the cascade stages with zero false negative rate. The
detailed transfer learning algorithm is formalized as Algo-
rithm 2.

4. Experiments

The proposed algorithm has been thoroughly tested on
both synthetic and real data sets. In both case we illustrate
the effects of CovBoost and feature shift.

4.1. Synthetic Data Experiments

Following the second toy data in [27], we show experi-
ments on two dimensional (2-D) data to emphasize the ef-
ficacy of usage of auxiliary data in Figure 4. The synthetic
data consists of two parts: auxiliary data and target data,
where 2000 auxiliary data and 30 target data are generated
from the distributions in Figure 4(a). The result of Figure
4(c) is trained on target data via AdaBoost. While, Figure
4(d) is obtained by trained on auxiliary data and target data
via CovBoost. Comparing the decision planes in (c) and
(d), (d) is very close to the ground truth. One can imme-
diately see that the use of auxiliary data can help to obtain
more accuracy classifier. The source code is available at
http://www.jdl.ac.cn/user/jbpang/adaption.htm.

Further in comparing the efficacy of “batch optimiza-
tion” [16, 34] with our method, we only select 80 weak
classifiers to optimize the covariate loss Eq. (13). For the
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1: Given: The target positive examples 7, ", the target negative
images 7, , the learned auxiliary cascaded detector D, =
{HX(z),..., HE (2)}, where HF(x) is k-th stage auxiliary
classifier and the auxiliary examples{7.*} from k-th stage
training process.

2: Fork=1,... K

- HF(x) = Transfer in Boosting(HY, 7,7, 7,7, T.F), via
feature shift and CovBoost.
- Bootstrap the hard negative examples from the target
negative images set 7, .
End For

3: Output: The target detector Dy = {H/ (z),..., H (z)}.

batch optimization, the {af, },,—1 ... so are concatenated as
a vector, and optimized with toolbox supplied by Matlab
(under PC with 2GB RAM, and 2.66GHz intel CPU). 500
examples are generated from the target distribution to eval-

Da(zj)e " i (2 luate the accuracy of different optimization methods. The

comparisons are given in Table 2. Our approach achieves
approximate 400 times faster than bath optimization with-
out damaging the accuracy.

‘ Method Running Time | Accuracy |
| Batch Optimization | 349.26+ 6.63 (sec.) | 0.56 0.046 |
| Our method 0.76+ 0.035 (sec.) | 0.774+0.083 |

Table 2. A comparison among the different optimization meth-
ods. The results are the averages of 10 random repeats, as

well as their standard deviations. The accuracy is evaluated as:
1— ##the miss-classified
F#£total examples  *

4.2. Real Data Experiments

In this subsection, we evaluate the effectiveness of the
proposed algorithm for transferring pedestrian detector be-
tween two distinctive view-angles. The testset is obtained
from the PETS 2007 [1], which was captured from the real
environment with different humans activities. We manually
labeled this dataset, and divide it into the training set and
test set. In every labeled frame, each pedestrian is marked
with a hand-drawn box around the whole human body. For
the training set, only 220 positive target examples (with re-
flection images) from the Dataset S7 view3 are randomly
selected and normalized into the size of 64 x 128 pixels, and
150 negative frames without pedestrians are used as nega-
tive examples. The Dataset S8 view3 is labeled at every 10
frame as the test set, which finally includes 300 frames with
973 pedestrian instances. The auxiliary data is borrowed
from INRIA pedestrian dataset [9].

The evaluation protocol of PASCAL Visual Object
Classes challenge [11] is adopted in this work for measuring
algorithmic performance. A correct detection is recognized,
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Figure 4. Synthetic data. Subfigure (a) and (b) show the toy data and corresponding decision plan. Subfigure (c) and (d) show the result
of classifiers trained on different data set respectively. In Subfigure (c) and (d), the legend “T,-p”,“T,-n", “T}-n”,and “T}-p” represents
the positive auxiliary data, the negative auxiliary data, the negative target data, the positive target data respectively. Note that only 30%

auxiliary data is displayed for better illustrating the decision plane.

Detection accuracy

[34] with Haar feature (lambda=0.1) | |
[34] with Haar feature (lambda=0.3)
[34] with Haar feature (lamdda=0.8) | |

[34] with Haar feature (lambda=7)
Our approach

2 s 4 5 6 7 8

False positives rate x10™*
Figure 5. Comparison with other methods. For better viewing,
please see original color pdf file.

when the rate of the overlapping a, between the predicted
bounding box B,, and ground truth bounding box B ex-

area(BpNBgt) < 0.5.

ceeds 0.5, i.e., a, = arca(ByUB.)

4.2.1 Analysis of the Algorithm

First, we compare our transfer learning algorithm with the
Taylor expansion based method in [34]. Because it is the
most related work for detector adaption. For a fair com-
parison, we use the Haar features as in [34], and tune all
the listed values of the parameter A\, which is the relative
importance of the target data in [34]. Report [34] only up-
dates the weight «,,, by optimizing the hybrid loss as listed
in Table 1. The transferred detector achieves approximate
84% accuracy at 10~* false positive rate, which is close to
the result on INRIA data, 84% — 89%, learned with linear
support vector machines (SVMs) and HOG features in lit-
erature [9]. However, SVMs is trained on several thousand
examples, while our result is achieved with very small ini-
tial cost, and only few hundred examples are required.
Note that the performance of the auxiliary detector is not
plotted in Figure 5, because the auxiliary detector rejects all
image patches as the negative examples in this experiment,
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Figure 6. The distribution of ;. The mean of \; is 0.334 with
standard deviation (std) 3.115.

namely the performance of the auxiliary detector stays at
the origin point.

The reusability of auxiliary data: To analysis the
reusability of auxiliary data, Figure 6 shows the distribu-
tion of \; at different scales. It is obvious that the \; of the
most of auxiliary examples concentrate around 0.1, which
means that auxiliary data does contribute to detector adap-
tion. Interestingly, the mean of \;, 0.334, is consistent with
the best performance value in [34]. (In Figure 5, best per-
formance is obtained at A = 0.3). However, our method
doesnot need cross-validation to select the best \;, without
lowering the accuracy. The large std, 3.115, shows that a
few examples in auxiliary data may live in the target distri-
bution. Because that larger A\; means that p,(x,y) is larger
than p,(x,y), that is, example (z,y) is more close to the
target data than auxiliary data.

Feature shift: An analysis is done to study the efficacy
of feature shift: remove or keep “feature shift”process at
Step 2 in Algorithm 2. Figure 7 shows that feature shift
gives near 10% improvement in accuracy.
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Figure 7. The efficacy of feature shift.

5. Conclusions and Future Work

In practice, there exist both necessity and feasibility for
transferring generic pedestrian detectors to a new scenario.
The difficulties to collect universal training data make a
well-trained detector easy to fail in specific scenarios with
disparate view-angles. The possibilities to reuse the generic
detector come from the fact that the new samples in new
scenarios may still share common local patches with those
data used for training the generic pedestrian detector.

In this paper, we investigate how to transfer boosting-
style detector for new view-angle. The underlying truth
is that the weak classifiers correspond to the local image
patches. This makes the shared local patches very suitable
for transferring weak classifiers cross view-angles via fea-
ture shift. Then the covariate shift is utilized to transfer the
auxiliary data for updating the weights for the weak classi-
fiers. In addition, the efficiency in the covariate shift step is
guaranteed by the step-wise optimization method.

Currently the detector transfer is founded on the assump-
tion that there exists sufficient shared features cross view-
angles, but when the change of view-angle is huge, the ap-
pearance of the pedestrian may vary sharply. Thus, there
may exist only very few image patches shared with the aux-
iliary data. How to transfer pedestrian detector to a new
scenario with huge view-angle disparity is one of our fu-
ture research directions. A possible solution is to utilize
3D pedestrian model for estimating the underlying variation
mechanism of the local image patches cross view-angles,
and then perform the transfer learning by allowing for vari-
ations between the shared structures or local patches.
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