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Abstract. The puncture method for dealing with black holes in the numerical

simulation of vacuum spacetimes is remarkably successful when combined with the

BSSN formulation of the Einstein equations. We examine a generalized class of

formulations modelled along the lines of the Laguna-Shoemaker system and including

BSSN as a special case. The formulation is a two parameter generalization of the choice

of variables used in standard BSSN evolutions. Numerical stability of the standard

finite difference methods is proven for the formulation in the linear regime around flat

space, a special case of which is the numerical stability of BSSN. Numerical evolutions

are presented and compared with a standard BSSN implementation. We find that a

significant portion of the parameter space leads to stable evolutions and that standard

BSSN is located near the edge of the stability region. Non-standard parameter choices

typically result in smoother behaviour of the evolution variables close to the puncture

and thus hold promise for improved accuracy in, e.g., long-term BH binary inspirals,

and for overcoming (numerical) stability problems still encountered in some types of

black-hole simulations, e.g., in D ≥ 6 dimensions.
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1. Introduction

Accelerated bodies generate gravitational waves (GWs) in analogy to the emission

of electromagnetic waves by accelerated charges. The first direct detection of GWs,

expected in the course of the next decade, will not only provide us with the first strong

field tests of Einstein’s general relativity but also open up an entire new window to the

universe. The strongest source of GWs are compact binary systems involving neutron

stars and black holes (BHs). Such compact objects have been known for a long time to

represent the natural end product of stellar evolution. For instance, stellar-mass BHs

are suspected to be the compact members in X-ray binaries [1]. In addition there is now

strong observational evidence for the existence of supermassive BHs (SMBHs) at the

center of many if not all galaxies [2, 3]. Astrophysical observations in recent decades

have thus promoted BHs from the status of a mathematical curiosity to that of a key

player in many astrophysical processes.

While GW emission from compact objects has been theoretically predicted for quite

a while, the waves’ weak interaction makes their direct observation a daunting task,

possible only by using modern high precision technology. In particular, there exists now

an international network of ground-based laser interferometers (LIGO [4, 5], GEO600

[6, 7], VIRGO [8] and TAMA [9]) operating at or near design sensitivity. A space-

borne interferometer called LISA [10] is scheduled for launch in about one decade to

supplement such observations with exceptional accuracy in a lower frequency band. Still,

the understanding of the radiated wave patterns is crucial for the first detection of GWs

as well as for the interpretation of the measured signal. Eventually, the community will

be able to gain information about characteristic parameters of the BH system observed

via GWs such as the mass ratio and spins.

The modeling of these binary sources of GWs currently employs a variety of

techniques. The inspiraling phase of a binary black-hole (BBH) prior to merger as well

as the ringdown phase after the merger can be modeled accurately by the approximate

post-Newtonian [11] and perturbation methods [12], respectively. In order to simulate

the late inspiral and merger of a BBH, however, numerical methods are required to

solve the fully non-linear Einstein equations. A numerical treatment requires us to

cast the Einstein equations into the form of a time evolution system. This is most

commonly done by using the canonical Arnowitt-Deser-Misner “3+1” decomposition

[13] as further developed by York [14]; the 4-dimensional spacetime is decomposed into

a family of 3-dimensional hypersurfaces labeled by a time coordinate. The geometry

of spacetime is determined by the induced 3-metric γij on the hypersurfaces and their

extrinsic curvature Kij , which describes their embedding. The coordinates are described

by the lapse function α and the shift vector βi. These gauge functions represent the

coordinate freedom of general relativity (GR).

For a long time, numerical methods based on this approach faced a variety

of problems including the specific formulation of the evolution equations, suitable

coordinate choices and the treatment of singularities inherent in the spacetimes. The
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year 2005 brought about the eventual breakthrough, the first complete simulations of a

BBH coalescence [15, 16, 17]. The ensuing years have produced a wealth of results on

BBH inspiral pertaining to BH recoil, spin precession and GW data analysis to name

but a few (see [18, 19, 20, 21, 22] for recent reviews).

The current generation of successful numerical codes can be divided into two

categories. The first class uses the so-called Generalized Harmonic Gauge (GHG)

formulation employed in Pretorius’ original breakthrough. The second type of codes is

commonly referred to as Moving Puncture codes, the method underlying the simulations

of the Goddard and Brownsville groups. In spite of the remarkable robustness of both

methods, it is fair to say that our understanding of why these techniques work so

well is limited. The Moving Puncture method in particular has proven robust in even

the most demanding simulations of BBHs involving nearly critical spins and velocities

close to the speed of light [23, 24, 25, 26]. Previous investigations of this method have

concentrated on the structure near the singularity and the impact of gauge conditions

[27, 28, 29, 30, 31].

The purpose of the present work is to shed additional light on which ingredients of

the Moving Puncture method make this technique so successful. The particular focus

of our study is on the underlying formulation of the Einstein equations, the Baumgarte-

Shapiro-Shibata-Nakamura (BSSN) formulation [32, 33] as well as a modified version

thereof modeled along the lines of the alternative evolution system proposed by Laguna

and Shoemaker (LaSh) in 2002 [34]. Such a study is beyond purely academic interest.

While the currently employed techniques appear to work well for 3+1 dimensional

simulations in the framework of Einstein’s general relativity, there is strong motivation

to push numerical relativity further. A main target of gravitational wave observations

is the testing of GR versus alternative theories of gravity (see [35] for an overview,

[36] for solutions of rotating holes in Chern-Simons modified gravity and [37] for

hyperbolicity studies of scalar tensor theories of gravity). A further application of

numerical relativity, in the context of high energy physics, as motivated by so-called TeV

gravity scenarios [38, 39, 40, 41, 42], or by the (conjectured) Anti-de Sitter/Conformal

Field theory (AdS/CFT) correspondence [43, 44, 45], will be the simulation of BHs

in higher dimensions [46, 47, 48, 49, 50, 51, 52, 53, 54, 55] or non-asymptotically flat

spacetimes (see, e.g., [56] for a recent approach).

An improved understanding of the success of the 3+1 GR techniques will be crucial

in extending numerical relativity successfully along these lines of future research. From

a more practical point of view, alternative schemes might simply be more efficient and

result in reduced computational requirements. Unfortunately, we will see further below

that the LaSh system does not result in faster simulations.

This paper is structured as follows. The formulation of the LaSh evolution scheme

is presented in Sec. 2. In Sec. 3 well-posedness and numerical stability of the LaSh

system are studied. The LaSh formulation, implemented as an extension to the Lean

code [57], is tested numerically with head-on collision and inspiraling BH binaries. The

numerical results are presented in Sec. 4. Finally Sec. 5 contains our conclusions.
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2. The LaSh Formulation

2.1. The ADM equations

Both the BSSN and LaSh systems are typically presented as a simultaneous conformal

decomposition and readjustment of the ADM equations [33, 58, 59]. For our purposes

such a presentation will not suffice. Instead, the addition of definition-differential

constraints which alters the characteristic structure of the system and guarantees well-

posedness and the conformal decomposition that changes to a convenient form of the

evolved variables are considered separately.

In any case one must first introduce the ADM system, which has the evolution part

∂tγij = − 2αKij + Lβγij , (1)

∂tKij = −DiDjα + α[Rij − 2KikK
k
j +KijK] + LβKij . (2)

and the physical Hamiltonian and momentum constraints

H = R +K2 −KijK
ij = 0 (3)

Mi = DjK
j
i −DiK = 0 , (4)

where

Rij = Γk
ij,k − Γk

kj,i + Γk
klΓ

l
ij − Γk

ilΓ
l
kj . (5)

When closed with some gauge choice, the ADM system is typically only weakly

hyperbolic and thus does not admit a well-posed Cauchy problem. The BSSN

formulation is one of many modifications to the ADM system that can yield a strongly

(or even symmetric) hyperbolic problem when coupled to some gauge [60].

2.2. BSSN Constraint addition

Definition-differential constraint: We define the differential constraint

Gi ≡ fi − γjk
(

γij,k −
1

3
γjk,i

)

= 0 . (6)

Below it will be seen that this choice naturally makes fi coincide with the relevant BSSN

variable.

Constraint addition: The ADM equations are adjusted to

∂tγij = ADM , (7)

∂tKij = ADM+ αG(i,j) −
1

3
αγij

(

H +G,k
k

)

, (8)

∂tfi = ∂t

(

γjkγij,k −
1

3
γjkγjk,i

)

ADM
+ 2αMi + βjG(i,j)

+
1

γ
βj log(γ),jGi + βjγil(γ

1
3γlm

,j )Gm . (9)

The principal part, i.e., highest derivatives of variables added correspond exactly to

those added in the NOR formulation (with a = b = 1, c = d = −1/3 in the notation
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of [61]). It is for this reason that Gundlach and Mart́ın-Garćıa were able to identify the

two systems when analyzing the principal part [61]).

2.3. Conformal decomposition and densitization

Conformal variables and algebraic constraints: The LaSh system [34] takes as its

evolved variables

γ̃ij = γ− 1
3γij , χ = γ− 1

3 , (10)

K̃ = χ− 3
2
nKK , Ãi

j = χ− 3
2
nK (Ki

j − δijK/3) , (11)

Γ̃i = γ̃jkΓ̃i
jk = −∂j γ̃

ij . (12)

The key difference between LaSh and BSSN is that inside LaSh the trace and tracefree

parts of the extrinsic curvature are densitized. Notice, that we recover the standard

BSSN equations for vanishing densitization parameter. Note that the definition of Gi

gives

Gi = fi − γjk
(

γij,k −
1

3
γjk,i

)

= γ̃ijΓ̃
j − γ̃jkγ̃ij,k. (13)

Evolution equations and constraints: Taking a time derivative of the definitions,

substituting the evolution equations and rewriting in terms of the evolved variables gives

the LaSh equations - up to the algebraic constraints D = ln(det γ̃) = 0, S = γ̃l[iÃ
l
j] = 0,

T = γ̃ijÃij = 0, which are assumed to be satisfied exactly. The unknowns evolve

according to

∂tγ̃ij = − 2αÃij + βkγ̃ij,k + 2γ̃k(iβ
k
,j) −

2

3
γ̃ijβ

k
,k, , (14)

∂tχ = βiχ,i +
2

3
χ(αχ

3
2
nKK̃ − βi

,i) , (15)

∂tÃ
i
j = − χ−3nK/2[−DiDjα− αRi

j]
tf + (1− nK)χ

3nK/2αK̃Ãi
j

+ βk∂kÃ
i
j − Ãk

j∂kβ
i + Ãi

k∂jβ
k + nKÃ

i
j∂kβ

k , (16)

∂tK̃ = − χ− 3
2
nKDiD

iα + βk∂kK̃ + nKK̃∂kβ
k

+ χ3nK/2α(ÃijÃij + (1− 3nK)K̃
2/3) , (17)

∂tΓ̃
i = − 2Ãijα,j + 2α(Γ̃i

jkÃ
jk − 2Ãij ln(χ),j −

2

3
γ̃ij(χ3nK/2K̃),j)

+ γ̃jkβi
,jk +

1

3
γ̃ijβk

,kj + βjΓ̃i
,j −

(

Γ̃
)j

d
βi
,j +

2

3

(

Γ̃
)i

d
βj
,j , (18)

where [ ]tf denotes the trace free part, ( )d denotes the definition of those terms rather

than the evolved variable and Rij is partially rewritten in terms of Γ̃i,

Rij = Rχ
ij + R̃ij , (19)

Rχ
ij =

1

2χ
D̃iD̃jχ +

1

2χ
γ̃ijD̃

lD̃lχ− 1

4χ2
D̃iχD̃jχ− 3

4χ2
γ̃ijD̃

lχD̃lχ , (20)

R̃ij = − 1

2
γ̃lmγ̃ij,lm + γ̃k(i|Γ̃

k
|,j) +

(

Γ̃
)k

d
Γ̃(ij)k

+ γ̃lm
(

2Γ̃k
l(iΓ̃j)km + Γ̃k

imΓ̃klj

)

. , (21)
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D̃i denotes the covariant derivative compatible with the conformal metric. The physical

constraints are rewritten

H = R− χ3nK (Ãj
kÃ

k
j −

2

3
K̃2) = 0 , (22)

Mi = Ãj
i,j −

2

3
K̃,i −

nK

χ
K̃χ,i − Ãj

mΓ̃
m
ji −

3

2χ
(1− nK)Ã

m
iχ,m = 0 . (23)

The differential constraints are given by Eq. 13 and algebraic constraints by

S ≡ γ̃l[iÃ
l
j] = 0 , T ≡ γ̃ijÃij = 0 , D ≡ ln(det γ̃) = 0 . (24)

Numerical relativity codes use a technique called constraint projection to enforce the

algebraic constraints. When operations are performed which may violate the D, S and

T constraints they are enforced explicitly. It is for this reason that we need not worry

about the algebraic constraints in the construction of (14-18); the continuum system

they represent is identical to that of (7-9). BSSN evolves Ãij, so does not have the

symmetry constraint S.

2.4. Gauge conditions

The successful evolution of binary BH systems has been possible with the now standard

1+log variant of the Bona-Massó slicing condition,

∂tα = −2αK + βi∂iα. (25)

Stationary data for this gauge has been studied in [27, 28, 29, 30, 31, 62]. In our

numerical evolutions the Γ-driver shift condition

∂tβ
i = µSB

i + ξ1β
j∂jβ

i , (26)

∂tB
i = ∂tΓ̃

i − ξ2β
j∂jΓ̃

i − ηBi + ξ1β
j∂jβ

i , (27)

is used with (µS, ξ1, ξ2, η) = (1, 0, 0, 1) unless otherwise stated. We refer to the

combination of the 1+log lapse and Γ-driver shift as “puncture gauge”. Conditions

in which the lapse and shift are promoted to the status of evolved variables are often

called live gauge conditions. In analytic studies however it is common to consider a

fixed, densitized lapse

Q = γ−nQ

2 α = χ
3nQ

2 α. (28)

and fixed shift. In contrast to BSSN the LaSh system takes the densitized lapse Q as

a dynamical variable. It is evolved according to the 1+log condition (25) rewritten in

terms of Q. The original LaSh system [34] is modified here by the consideration of

different densitization parameters nK and nQ for the extrinsic curvature and the lapse.

When comparing the computational cost of BSSN and LaSh in section 4 we additionally

evolve LaSh in the downstairs form of the conformal extrinsic curvature Ãij. Whereas

in [63] the focus was on changing PDE properties of the formulation and holding the

variables fixed, here we consider the effect of a change of variables alone.
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3. Well-posedness and numerical stability

The well-posedness of the LaSh system with either the puncture gauge or a fixed

densitized lapse and shift is guaranteed (assuming that the D,S and T constraints are

satisfied) by the results of [61], so verifying these properties for the system linearized

around flat space is in its own right uninteresting. However we wish to demonstrate

the numerical stability of the LaSh system around flat-space. The approach for the

semi-discrete scheme is analogous to that for the continuum system, so we first tackle

that problem. In Sec. 3.1 we briefly recap the theoretical background. Next, in Sec. 3.2

we use characteristic variables to demonstrate well-posedness for the continuum system.

The analysis is then extended to the semi-discrete case, and follows closely the method

of [64, 65]. Finally, we deal with the algebraic constraints in the fully-discrete system

by demonstrating that the natural semi-discrete limit of the standard implementation

(with constraint projection) is given by the systems considered in Sec 3.2.

3.1. Theoretical background

Continuum system: The linear, constant coefficient, first order in time and second

order in space time evolution problem

∂tu = P [∂x]u, u(t = 0, x) = f(x) (29)

is called well-posed with respect to a norm || · || if for every smooth, periodic f(x) there

exists a unique smooth spatially periodic solution and there are constants C,K such

that for t ≥ 0

||u(t, ·)|| ≤ KeCt||u(0, ·)||. (30)

A hermitian matrix Ĥ(ω) is called a symmetrizer of the system if the energy û∗Ĥû is

conserved by the principal part of the Fourier transformed system, with

K−1Iω ≤ Ĥ ≤ KIω, Iω ≡
(

ω2 0

0 I

)

, (31)

for some K > 0 constant, for every frequency ω in Fourier space (û denotes the Fourier

transformed function.) We say that the Hermitian matrices A,B satisfy the inequality

A ≤ B if y†Ay ≤ y†By for every y. Well-posedness is equivalent to the existence of

a symmetrizer [66], which is in turn equivalent to the existence of a complete set of

characteristic variables.

Discrete system: We introduce a grid

xj = (xj1, yj2, zj3) = (j1h, j2h, j3h), (32)

with ji = 0, . . . Nr − 1 and h = 2π
N

is the spatial resolution. We denote

D+vi =
1

h
(vi+1−vi), D−vi =

1

h
(vi−vi−1) , D0vi =

1

2h
(vj+1−vj−1) .(33)
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The standard second order accurate discretization is written

∂i → D0i , ∂i∂j → D
(2)
ij =

{

D0iD0j i 6= j

D+iD−i i = j
(34)

For brevity, we do not consider higher order discretization. Fourier transforming reveals

D̂
(1)
i =

i

h
si , D̂

(2)
ij =

{

− 1
h2 sisj i 6= j

− 4
h2 t

2
i t

2
j i = j

(35)

We abbreviate si = sin ξi and ti = sin ξi/2, and write

ξr = ωrh = −π +
2π

N
,−π +

4π

N
, ..., π. (36)

where ωr = −N
2
+ 1, ..., N

2
and r = 1, 2, 3. The time step k is related to the spatial

resolution h through the Courant factor k = λch. Finally, we use the notation

ω2 = −ηijD̂0iD̂0j , Ω2 = −ηijD̂
(2)
ij , (37)

where ηij is just the identity matrix, so that Ω2 =
∑3

i=1 |D̂+i|2. The results for numerical

stability with a polynomial method of lines time-integrator are analogous to the result

at the continuum: if there exists a hermitian Ĥ(ξ) for every grid frequency ξ such that

the energy û∗Ĥû is conserved by the Fourier-transformed semi-discrete principal system

and satisfies

K−1IΩ ≤ Ĥ ≤ KIΩ, IΩ ≡
(

Ω2 0

0 I

)

, (38)

with K as above, then it is possible to construct a discrete symmetrizer for the semi-

discrete problem without lower order terms. If the spectral radius of the product of

the time-step and the semi-discrete symbol is bounded by a value that depends on the

time-integrator, then the system is stable with respect to the norm

||u||2h,D+
≡ ||us||2h + ||uf ||2h +

3
∑

i=1

||D+ius||2h, (39)

where the subscript distinguishes between variables that appear as second derivatives

in the continuum system. The estimate

||un∆t||h,D+ ≤ KeCn∆t||u0||h,D+, (40)

then holds. For details we refer the reader to [64].

Discussion: A straightforward way to construct characteristic variables for the

continuum system is to perform a 2+1 decomposition. One then ends up with decoupled

scalar, vector and tensor sectors which are hopefully straightforward to diagonalize.

Diagonalisability of a system guarantees the existence of a complete set of eigenvectors,

which in turn guarantees well-posedness in some norm. For the discrete system, a similar

approach is not possible with the standard discretization because the various blocks of

the system remain coupled. This complication is caused by the fact that under the

standard discretization the second derivative is not equivalent to a repeated application
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of the first derivative. We will see in the following sections that this forces us to consider

significantly larger matrices, and that for the main case of interest, the stability of the

LaSh formulation with puncture gauge, the calculation is impractical. One may also

consider the numerical stability of systems with the D2
0 discretization, in which second

derivatives are approximated by repeated application of the centered difference operator

D0. In this case it is possible to make a 2+1 decomposition of the semi-discrete system.

Unfortunately, the discretization suffers from the problem that the highest frequency

mode on the grid is not captured by the scheme. For the Fourier transformed system

this property implies that the transformed spatial derivatives vanish, which typically

prevents one from building an estimate on the highest frequency mode. Although

artificial dissipation may restore stability, we do not consider the D2
0 discretization

further.

3.2. Continuum system

Fixed densitized lapse and shift: We begin by linearizing the LaSh system around flat-

space. Following [66, 64] we Fourier transform in space, and make a pseudo-differential

reduction to first order. Spatial derivatives transform according to ∂i → ıwi. The system

has a complete set of characteristic variables with characteristic speeds (0,±ω,±√
nQω).

A conserved quantity for the system may be trivially constructed from the characteristic

variables. It is straightforward but tedious to demonstrate that the conserved quantity

is equivalent to the norm

||u||2fd = ||γij||2 + ||Kij||2 + ||fi||2 +
3
∑

k=1

||γij,k||2 (41)

Puncture gauge: For simplicity we consider the time-integrated Γ-driver shift condition

∂tβi = fi. (42)

The transformed vector of evolved variables is û = (γ̂ij, α̂, f̂k, K̂lm, β̂n). The principal

symbol is

P̂ µ
ν =















0 0 0 −2δliδ
m
j 2ıwω̂(iδ

n
j)

0 0 0 −2ηlm 0

0 0 0 −4
3
ıηlmwω̂k −w2

(

δnk + 1
3
ω̂nω̂k

)

1
2
w2[δilδ

j
m + 1

3
ηijω̂lω̂m]

tf w2ω̂lω̂m ıw[ω̂(lδ
k
m)]

tf 0 0

0 0 δkn 0 0















.

(43)

We denote wi = wŵi, with w = |w|. Here “trace-free” denotes that the trace is removed
in downstairs indices. The characteristic variables can be constructed from the matrix

T−1 =

















− 1
3
ıwηij − 1

3
ıw ω̂k 0 0

0 ± 1
√

2
ıw 0 ηlm 0

0 −ıw ω̂k ±
√

2
3
ηlm ±

√

2
3
ıwω̂n

0 0 −ω̂(iδ
k
j)

+ ω̂iω̂jω̂
k 0 ±ıw[ω̂(iδ

n
j)

− ω̂iω̂jω̂
n]

1
2
ıw[δipδ

j
q + 1

3
ω̂pω̂qηij ]tf − 8

3
ıw[ω̂pω̂q]tf −[δk

(p
ω̂q) − 2ω̂pω̂qω̂k]tf ±[δlpδ

m
q − 11

3
ηlmω̂pω̂q]tf ±2ıw[ω̂pω̂q]tfω̂n

















(44)
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through Uc = T−1u. The characteristic speeds corresponding to each row are

(0,±
√
2w,±

√

2/3w,±w,±w). The conserved quantity is given by
(

−4a

ǫ1
+ f

(

1− 1

ǫ3
− 4

ǫ5
− 8

3ǫ7

))

w2

4
|γ̂ij|2 +

(a

9
+

c

2
+ d
)

w2|α̂|2 + ew2|β̂i|2 + f |K̂ij|2

+

(

e− aǫ1 − f

(

ǫ3 + ǫ5 +
2ǫ7
3

))

|f̂i|2

≤ EC ≤ (45)
(

4a

(

1

3
+

1

ǫ2

)

+ f

(

28

9
+

1

ǫ4
+

4

ǫ6
+

8

3ǫ8

))

w2

4
|γ̂ij|2 +

(

a

9
+

c

2
+ d+

256

27
f

)

w2|α̂|2

+ (2d+ 4e+ 16f)w2|β̂i|2 +
(

3c+ 2d+
436

9
f

)

|K̂ij|2

+

(

a(3 + ǫ2) + 3d+ 4e + f

(

14 + ǫ4 + ǫ6 +
2ǫ8
3

))

|f̂i|2 .

By choosing a = 1
24
, c = d = f = 1, e = 26 and ǫ1 = 2, ǫ2 = ǫ4 = ǫ6 = ǫ8 = 1, ǫ3 = 4,

ǫ5 = 16, ǫ7 = 8 we obtain

K−1||û||2pg ≤ EC ≤ K||û||2pg (46)

where K = 125, and have demonstrated that the conserved quantity is equivalent to

the norm

||û||2pg = w2||γ̂ij||2 + w2||α̂||2 + w2||β̂i||2 + ||K̂ij||2 + ||f̂i||2 . (47)

Parseval’s relation implies equivalence with

||u||2pg = ||γij||2 + ||α||2 + ||βi||2 + ||Kij||2 + ||fi||2 +
3
∑

k=1

(||γij,k||2 + ||α,k||2 + ||βi,k||2)(48)

in physical space.

3.3. Discrete system

Fixed densitized lapse and shift: We now consider the semi-discrete system with fixed

densitized lapse and shift. As in the continuum case we linearize around flat-space.

The difference operators transform as described in Sec. 3.1. We consider only the case

nQ = 1. We define

τ̂ = ηij γ̂ij, Γ̂i = f̂i −
2

3
D0iτ̂ . (49)

Decomposing the system into trace, off-diagonal, and diagonal terms adjusted by the

weighting t4i γ̂ii = γ̃ii and t4i Γ̂i = Γ̃i various sectors of the system decouple. In the

following γij explicitly means i 6= j. The principal symbol is

(0) Γ̂i, (50)
(

0 −2
1
2
Ω2 0

) (

τ̂

K̂

)

, (51)
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0 0 −2

0 0 0
1
2
Ω2 1 0













γ̂ij
D̂0(iΓ̂j)

K̂ij






, (52)







0 0 −2

0 0 0
1
2
Ω2 1 0













γ̃tfii
(D̂0iΓ̃i)

tf

K̃tf
ii






. (53)

The characteristic variables are

Γ̂i , K ± ıΩ

2
τ , Kij ±

ıΩ

2
γij ±

ı

Ω
D0(iΓj) ,

(

K̃ii ±
ıΩ

2
γ̃ii ±

ı

Ω
D0iΓ̃i

)tf

(54)

and have speeds (0,±ıΩ,±ıΩ,±ıΩ). The system has a pseudo-discrete reduction to first

order that admits a symmetrizer for every grid-frequency. One must treat the lowest

frequency separately, but in that case the principal symbol vanishes and so admits the

identity as a symmetrizer. By the equivalence of norms in finite dimensional vector

spaces we then have numerical stability in the pseudo-discrete norm

||û||2h,fd = Ω2||γ̂ij||2h + ||K̂ij||2h + ||f̂i||2h + ||γ̂ij||2h, (55)

provided that the von-Neumann condition given by

λC ≤ C0

2χ2
, (56)

where C0 = 2 and C0 =
√
8 for iterated Crank-Nicholson or fourth-order Runge-Kutta

and 2χ2 = Ωh, is satisfied. Parseval’s relation guarantees equivalence with the discrete

norm

||u||2h,D+,fd = ||γij||2h + ||Kij||2h + ||fi||2h +
3
∑

k=1

||D+kγij||2h (57)

in physical space.

Puncture gauge: The principal symbol is a 19x19 matrix which contains several

parameters. We are able to compute characteristic speeds for the system, but they are

complicated, so we do not display them here. The lowest freqency mode is again trivial

to analyze. In that case the pseudo-discrete reduction to first order has a vanishing

principal symbol, and thus admits the identity as a symmetrizer. For the non-maximal

modes the principal symbol is complicated. As previously stated, performing a 2 + 1

decomposition on the semi-discrete symbol is not helpful, since the various sectors of

the system remain coupled. We were therefore unable to find the eigenvectors of the

matrix. We considered various subsectors of the full system. Since the (α,K) subsector

is exactly the second order in space wave equation, it is trivial to demonstrate numerical

stability. We considered also the subsector (fi,βj) with the other variables frozen, and

find characteristic speeds and variables. Once the two blocks are coupled to give the

(α,fi,K,βj) subsector, we did not manage to compute eigenvectors in finite time. It

is possible to find a complete set of characteristic variables for the highest frequency
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grid-mode, since the principal symbol in that case takes a simpler form. In Sec. 4 we

present robust stability tests of the numerical implementation, which provide evidence

that the system is formally numerically stable.

Puncture gauge with non-standard spatial discretization: We are able to find a complete

set of characteristic variables for a slightly altered spatial discretization. If one insists on

using the D2
0 operator for the divergence terms ∂i∂jβ

j in the evolution of fi the principal

symbol becomes, with û = (γ̂ij, α̂, f̂k, K̂lm, β̂n),

P̂ µ
ν =















0 0 0 −2δliδ
m
j 2D̂(0iδ

n
j)

0 0 0 −2ηlm 0

0 0 0 −4
3
ηlmD̂0k −Ω2δnk + 1

3
D̂n

0 D̂0k

1
2
[Ω2δilδ

j
m − 1

3
ηijD̂

(2)
lm ]tf −D̂

(2)
lm [D̂0(lδ

k
m)]

tf 0 0

0 0 δkn 0 0















.

(58)

As before, one has to consider the lowest and highest frequency grid modes seperately,

because in those cases the principal symbol of the system takes a different form. For

the lowest frequency mode the principal symbol of the pseudo-discrete reduction to

first order again vanishes, and can be dealt with as before. For the sub-maximal

frequencies the characteristic variables can be constructed and have characteristic speeds

(0,±ı
√
2Ω,±ı

√

(3Ω2 + ω2)/3,±ıΩ,±ıΩ). The 0-speed characteristic variable is

U0 = D̂0if̂
i +

1

2
(ω2 − Ω2)α̂ +

1

6
(3Ω2 + ω2)τ. (59)

The lapse characteristic variable is

U±
√
2 =

√
2K̂ ± ıΩα̂, (60)

The longitudinal shift characteristic variable is

U±2/
√
3 = ıD̂0iβ

i − 4ı

ω2 − Ω2
K̂ ±

√
3

3Ω2 + ω2
D̂0if

i ∓ 4
√
3√

3Ω2 + ω2(ω2 − 3Ω2)
α̂, (61)

and the transverse shift modes are

Ui±1 = Ω(D̂0iD̂
k
0 + ω2δki)βk ± (D̂0iD̂

k
0 + ω2δki)fk. (62)

To see that there are only two characteristic variables here one must contract with the

vector si. Finally the remaining characteristic variables are

Uij±1 = [D̂
(2)
ij + ω2D̂0(iδ

k
j)]

tfβ̂k ∓
ı

Ω
[D̂

(2)
ij D̂k

0 ]
tff̂k + ω2[δk(iδ

l
j) + ηklD̂

(2)
ij ]K̂kl

± 1

2
ıω2Ω[δl(iδ

m
j) −

1

3Ω2
ηlmD̂

(2)
ij ]tfγ̂lm , (63)

where [ ]tf denotes that the object is trace-free in downstairs indices. For the highest

frequency mode the D0 operator in the principal symbol vanishes. However, the symbol

still has a complete set of characteristic variables. The conserved quantity may then

be constructed as before with a sum over the grid-modes. The conserved quantity is
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obviously a norm since it contains every grid-mode, and is therefore equivalent to the

standard

||u||2h,D+,pg = ||γij||2h + ||α||2h + ||βi||2h + ||Kij||2h + ||fi||2h

+

3
∑

k=1

(||D+kγij||2h + ||D+kα||2h + ||D+kβi||2h) (64)

in physical space.

As the calculation does not rely in any significant way on the flat background, it

should be simple to extend to the case in which one linearizes around an arbitrary,

constant in space background. It may then be possible to extend to the case with

variable coefficients in space following [66]. We also anticipate no problems in extending

the calculation to higher order finite difference (FD) approximations. In our numerical

tests in Sec. 4 we do not perform evolutions with this discretization.

3.4. The algebraic constraints

In this section we demonstrate that the numerical stability of standard numerical

implementation of the linearized LaSh (and BSSN) systems, which includes the

conformal decomposition of the evolved variables, depends only upon the analysis of

the previous section. In order to do so, we show that there is a one-one correspondence

between solutions of the original and decomposed systems.

In the linear regime the conformal decomposition is simply a linear combination

of the undecomposed variables subject to linear constraints. Consider the semi-discrete

system under such a decomposition. Start by defining the decomposed state vector on

time slice by v = Tu. Here and in what follows we suppress spatial indices. Assume

that u has m elements. Then T is an l ×m matrix, v has l elements. We denote the

pseudo-inverse of T by S, a matrix which maps from the image of T in Rl back to Rm

such that

ST = Im. (65)

If the evolution equations for u are given by Pu and those for the decomposed variables

are P̄ v then the two are related as P̄ = TPS. Denote by ⊥ the projection operator

which maps to the m dimensional hypersurface in Rl on which the algebraic constraints

are satisfied. The algebraic constraints are

C = v− ⊥ v. (66)

Consider first the semi-discrete system. Suppose that at a given time the constraints

are satisfied. Then we find

∂tC = P̄ v− ⊥ P̄ v = TPu− ⊥ TPu = 0, (67)

where the last equality holds because directly after the application of T the algebraic

constraints are satisfied, and therefore the projection operator does nothing. Therefore

in the semi-discrete system if the constraints are satisfied initially they remain so,
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and there is a one-one correspondence between solutions of the decomposed and

undecomposed systems.

For the fully discrete system we take an explicit polynomial time-integrator Q for

the undecomposed variables and the modified time integrator ⊥ Q for the decomposed

system. Now consider the difference between constraint satisfying data un and vn = Tun

integrated with the two methods. For brevity we subsume the timestep ∆t into P and

P̄ . One finds that

vn+1 − Tun+1 = ⊥ Q[P̄ ][vn]− TQ[P ][un]

= ⊥ Q[TPS][Tun]− TQ[P ][un]

= ⊥ TQ[P ][un]− TQ[P ][un]

= TQ[P ][un]− TQ[P ][un] = 0, (68)

where we have used linearity of the system, polynomiality of the time-integrator and the

fact that directly after the application of T the algebraic constraints are automatically

satisfied, so the projection operator does nothing. Thus the two integration methods

are equivalent as desired. Note that in these calculations the modified time integrator

⊥ Q could be replaced by Q since the unprojected time-step introduces no constraint

violation. We have verified these calculations by explicitly comparing evolutions of

the linearized conformal LaSh system with and without constraint projection. We

prefer to discuss the natural linearization of the non-linear method, which includes

the projection. In the non-linear case the unprojected timestep can introduce algebraic

constraint violations.

4. Numerical Experiments

The LaSh system is implemented inside the Lean code [57] which is based on the

Cactus computational toolkit [67] and the mesh refinement package Carpet [68, 69].

Initial data is constructed by solving the constraint equations with theTwoPunctures

spectral solver provided by [70].

We perform the following set of numerical evolutions:

Robust stability tests We perform a subset of the so-called apples with apples tests

[71] to demonstrate numerically that the evolution system is formally stable with

various choices of the densitization parameters;

Puncture stability We evolve a single BH with different choices of the densitization

parameters to establish what restriction is placed on them by insisting on long-term

stable puncture simulations;

Head-on collisions We compare BSSN evolutions of the head on collision of two BHs

with those performed with LaSh. We focus on consistency of the extracted physics

at finite resolution;

Binary black hole inspiral We compare BSSN evolutions of inspiraling BHs

(Goddard R1 [72]) with those performed with LaSh. We consider the computational
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Figure 1. (Color online) Apples with apples stability test using a low (50 grid points,

black solid lines), medium (100 grid points, red dashed lines) and high (200 grid points,

green dashed-dotted lines) resolution. The tests were performed with the densitization

parameters (nQ, nK) = {(0, 0), (0.5,−0.5), (−0.5, 0.5)} from left to right, respectively.

costs of simulations with the two systems as well as consistency of the results.

4.1. Robust stability

In Sec. 3.3 we did not succeed in demonstrating numerical stability of the LaSh system

with the puncture gauge using standard discretization. We therefore perform robust

stability tests following the method in Ref. [71]. The numerical domain is given by

−0.5 < x < 0.5, −0.06/∆ < y < 0.06/∆ and −0.06/∆ < z < 0.06/∆ with

periodic boundary conditions. We use three different resolutions h = 0.02/∆, where

∆c = 1, ∆m = 2 and ∆f = 4. The expansion in the y- and z- direction incorporates

the three grid points required for fourth order FD stencils. The initial data are given

by small perturbations of the Minkowski spacetime

γij = ηij + ǫij . (69)

The ǫij are independent random numbers in the range (−10−10/∆, 10−10/∆), so that

terms of the order O(ǫ2) are below round-off accuracy. This means that the evolution

remains in the linear regime unless instabilities occur.

We monitor the performance of each simulation by calculating the maximum norm

of the Hamiltonian constraint as a function of time. For this study we focus on three

choices of the densitization parameters (nQ, nK) = {(0, 0), (0.5,−0.5), (−0.5, 0.5)}. The
results of the robust stability test are plotted in Fig. 1. For all choices of (nQ, nK),

including the BSSN scaling (0, 0), we obtain stable evolutions.

4.2. Puncture stability

We next perform evolutions of a single puncture, studying a wide range of non-trivial

densitization parameters. The hyperbolicity analysis of the continuum LaSh scheme

presented in Sec. 3.3 is not affected by the choice of densitization parameters provided

that the algebraic constraints are enforced. In the previous section we have seen
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that various choices of the densitization parameters yield evolution systems that are

numerically stable. Here we demonstrate that those parameters must be chosen more

carefully in order to achieve long-term evolutions of puncture data. We evolve a single,

non-rotating BH until t = 500M . The BH is initially given by two punctures with mass

parameter m1,2 = 0.5M located at z = ±10−5M . Using the notation of Sec. II E of

Ref. [57], the grid setup is given in units of M by

{(96, 48, 24, 12, 6, 2, 1, 0.5), 1/32} . (70)

We vary both nQ and nK in the interval [−1, 1] in steps of ∆n = 0.1. The lifetimes Tl of

the simulations are determined as functions of the densitization parameters. The first

occurrence of “nans” in the right-hand side of the densitized lapse Q is used as a measure

of the lifetime whenever the simulations did not survive for the entire evolution. In Fig. 2

we show the results of this parameter study as a contour plot. In particular, a single

puncture can be evolved for at least t = 500 M using the LaSh system with parameters

indicated by the light blue area in the figure. Negative values of the lapse densitization

parameter nQ < −0.3 combined with positive values of the curvature densitization

parameter nK > 0 let the simulations crash after a short time. In contrast, long term

stable evolutions are obtained for the parameter range nQ ∈ [−0.3, 0.9], nK ∈ [−1, 0],

including the BSSN scaling nQ = nK = 0.

 0
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Figure 2. (Color online) Contourplot of the lifetime Tl as function of the densitization

parameter nQ and nK . Areas colored in dark blue indicate a short lifetime whereas

light blue coloring stands for a lifetime of at least Tl = 500M .

We can partially understand this behaviour by considering single puncture initial

data and their influence on the evolution equations (14-18). On the initial slice the

densitized lapse Q is given by

Q0 = χ
3nQ

2 α0 = χ
3
2
(nQ+1/3), (71)

corresponding to a pre collapsed lapse α. Since χ vanishes at the puncture we require

nQ > −1
3
to obtain a regular densitized lapse Q0 on the initial timeslice, in agreement
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Figure 3. (Color online) Right hand sides of the densitized lapse Q (left

panel) and of the trace of the extrinsic curvature K̃ (right panel) after

an evolution time of t = 100M . We take parameter pairs (nQ, nK) =

{(0, 0), (0.2,−0.2), (0.4,−0.4), (0.6,−0.6), (0.8,−0.8), (1,−1)}.

with the findings of our parameter study; simulations with nQ < −0.3 crash immediately.

Next consider the evolution equations on the initial timeslice. For our initial data they

reduce to

∂tγ̃ij = 0, ∂tχ = 0 , (72)

∂tÃ
i
j = χ−3nK/2[DiDjα + αRi

j]
TF , (73)

∂tK̃ = − χ−3nK/2DiDiα , (74)

∂tΓ̃
i = 0 . (75)

Insisting on initially regular evolved variables at the puncture, Eqs. (72-75) require

nK ≤ 0, also in agreement with our study; numerical experiments violating this condition

immediately fail.

For further illustration we plot in Fig. 3 the time derivatives of the densitized lapse

Q and the trace of the extrinsic curvature K̃ after an evolution time of t = 100 M . As

we simoultaneously increase nQ and decrease nK , we obtain smoother profiles. Note

that the BSSN case nQ = 0 = nK produces the steepest gradients in this comparison.

A systematic study of the exceptionally benign behaviour of a non-trivial densitization

on the accuracy of 10-15 orbit simulations, especially of spinning, precessing binaries,

is beyond the scope of this paper. Our results may, however, point at fertile ground for

future research of the LaSh system.

4.3. Head-On Collisions

In this section we study in depth the stability properties of numerical simulations of

equal-mass head-on collisions performed with the LaSh system. For this purpose we

evolve model BL2 of Table II in [57], i.e. two non-spinning holes of with irreducible

mass Mirr,i = 0.5 M starting from rest at z1,2 = ±5.12 M . The computational grid
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Run Grid Setup d/M nQ nK 104Erad/M

HD1c {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/40} 10.24 0.0 0.0 5.51

HD1m {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/44} 10.24 0.0 0.0 5.52

HD1f {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/48} 10.24 0.0 0.0 5.53

HD2 {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/48} 10.24 0.2 −0.2 5.53

HD3c {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/40} 10.24 0.4 −0.4 5.51

HD3m {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/44} 10.24 0.4 −0.4 5.52

HD3f {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/48} 10.24 0.4 −0.4 5.53

HD4 {(256, 128, 72, 32, 16)× (4, 2, 1), h = 1/48} 10.24 0.6 −0.6 5.53

Table 1. Grid structure and physical initial parameters of the simulations of a head-

on collsion of an equal mass BH binary. The grid setup is given in terms of the

radii of the individual refinement levels as well as the resolution near the punctures

h (see Sec. II E in [57] for details). The table further shows the initial coordinate

separation d/M of the two punctures. Erad/M is the fraction of the total BH mass

that is radiated as gravitational waves. All parameters are given in units of the total

BH mass M = M1 +M2.

consists of a set of nested refinement levels given in units of M by

{(256, 128, 72, 32, 16)× (4, 2, 1), h} , (76)

where we have usually chosen h = M/48, unless denoted otherwise. We consider

the densitization parameters (nQ, nK) = {(0, 0), (0.2,−0.2), (0.4,−0.4), (0.6,−0.6)},
denoted as models HD1 - HD4 in Table 1. For models HD1 - HD3 we have chosen

the Γ-driver shift conditions 27 with (µS, ξ1, ξ2, η) = (1, 0, 0, 1), whereas in case of model

HD4 the Γ-driver shift conditions 27 have been taken with (µs, ξ1, ξ2, η) = (3/4, 1, 1, 1)

[73]. Information about gravitational waves emitted during the plunge has been obtained

by the Newman-Penrose scalar Ψ4. In Fig. 4 we present the real part of the dominant

mode Ψ20, rescaled by the extraction radius rex = 60M , for models HD1-HD4. Note,

that the imaginary part of Ψ4 vanishes due to symmetry. We find that the waveforms

generated by the different models agree well. We study the convergence of models HD1

and HD3 by using three different resolutions hc = M/40, hm = M/44 and hf = M/48

referred to as coarse, medium and high resolution. The differences of the ℓ = 2, m = 0

mode of the resulting gravitational radiation are displayed in Fig. 5 and demonstrate

overall fourth order convergence for both models. We estimate the discretization error

at high resolution in the waveforms Ψ20 to be 0.4%, similar to the error reported in [57]

for the corresponding BSSN evolutions.

The amount of energy that is radiated throughout the head-on collision computed

from, e.g., Eq. (22) in Ref. [56] (see also [19]) is Erad/M = 0.0553% for models HD1f ,

HD2, HD3f and HD4, again in excellent agreement with Ref. [57]. We estimate

the discretization error in the radiated energy to be 0.4% and the error due to finite

extraction radius to be 1.6%.

As for single BH evolutions, we observe smoother time derivatives of Q and K̃

for non-vanishing choices of nQ and nK . We illustrate this behaviour in Fig. 6 which
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Figure 4. (Color online) Real part of rexMΨ20, the dimensionless Newman-Penrose

scalar, where rex = 60M , for model HD1f (black solid line), HD2 (red dashed line),

HD3f (green dashed-dotted line) and HD4 (blue dotted line).
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Figure 5. (Color online) Convergence analysis of the real part of Ψ20 of the Newman

Penrose scalar Ψ4, re-scaled by the extraction radius rex = 40M , for models HD1 (left

panel) and HD3 (right panel) in Table 1. We show the difference between the low and

medium resolution (black solid line) and the medium and high resolution (red dashed

line). The latter has been amplified by a factor of Q = 1.58 expected for fourth order

convergence

shows the time derivatives along the z axis obtained for different values of nQ and nK

at t = 10 M .

4.4. Inspiraling Black-Holes

In this section we will demonstrate how BBHs can be evolved successfully using the

LaSh formulation of the 3+1 Einstein equation in combination with the moving puncture

approach. For this purpose we consider the initial configuration labeled R1 in Table I of
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Figure 6. Right hand sides of the densitized lapse Q (left panel) and of the trace of

the extrinsic curvature K̃ (right panel) after an evolution time of t = 10M for models

HD1f (solid line), HD2 (dashed line), HD3f (dashed-dotted line) and HD4 (dotted

line).

Run ES Grid Setup nQ nK 102Erad/M

BSSN BSSN {(256, 128, 64, 24, 12, 6)× (1.5, 0.75), 1/48} - - -

LaSh0 LaSh {(256, 128, 64, 24, 12, 6)× (1.5, 0.75), 1/48} 0.4 −0.4 -

LaShc LaSh {(256, 128, 64, 24, 12, 6)× (1.5, 0.75), 1/52} 0.4 −0.4 3.69

LaShm LaSh {(256, 128, 64, 24, 12, 6)× (1.5, 0.75), 1/56} 0.4 −0.4 3.68

LaShf LaSh {(256, 128, 64, 24, 12, 6)× (1.5, 0.75), 1/60} 0.4 −0.4 3.67

Table 2. Grid structure, evolution system ES and initial parameters of the simulations

of quasi-circular inspirals. The grid setup is given in terms of the radii in units of M

of the individual refinement levels as well as the resolution near the punctures h (see

Sec. II E in [57] for details). In case of the LaSh scheme we also specify the densitization

parameters nQ and nK . The final column lists the radiated energy Erad extracted at

rex = 60 M for models LaShc-LaShf . Models BSSN and LaSh0 have only been run

until t = 50M in order to compare their computational cost.

Ref. [72]. This configuration represents a non-spinning, equal-mass binary with a total

ADM mass of M = 0.9957 in code units. The bare-mass parameters are m1,2 = 0.483

and the BHs start at position x1,2 = ±3.257 with linear momentum P1,2 = ±0.133

in the y-direction. The specifications of the grid setup, in the notation of Sec. II E

of Ref. [57], are given in Table 2. For this model we have used the Γ-driver shift

condition 27 with (µs, ξ1, ξ2, η) = (3/4, 1, 1, 1) as suggested in Ref. [73]. As before,

we study the convergence properties by performing simulations of model LaSh with

resolutions hc = 1/52, hm = 1/56 and hf = 1/60. In the left panel of Fig. 7 we present

the real part of the ℓ = 2, m = 2 mode of Ψ4, extracted at rex = 40M , obtained

by models LaShc, LaShm and LaShc. The right panel of Fig. 7 shows the differences

between the coarse and medium and medium and high resolutions of the amplitude
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Figure 7. (Color online) Left: Real part of the dominant ℓ = 2, m = 2 mode of

the dimensionless Newman-Penrose scalar rMℜ(Ψ4), where the extraction radius is

rex = 40M . The waveforms are shown for models LaShc (black solid line), LaShm

(red dashed line) and LaShf (green dash-dotted line). Right: Convergence analysis of

the Amplitude (upper panel) and phase (bottom panel) of the dominant ℓ = 2, m = 2

mode of the Newman Penrose scalar Ψ4. We show the differences between the coarse

and medium resolution (black solid line) and medium and high resolution (red dashed

line). The latter difference has been amplified by Q4 = 1.43, indicating fourth order

convergence.

(upper panel) and phase (bottom panel). The latter differences have been rescaled

by the factor Q4 = 1.43 corresponding to fourth order convergence. The resulting

discretization error in amplitude and phase are ∆A/A ≤ 1% and ∆φ ≤ 0.1 rad.

The energy radiated in gravitational waves is Erad/M = 3.67± 0.13% for the high

resolution run LaShf in Table 2 which is in good agreement with the BSSN results of

Ref. [57].

Run mem. [GByte] tr [CPUhours] v̄ [M/hour]

BSSN 55 290 4.2

LaSh0 70 430 2.9

modLaSh 55 335 3.7

Table 3. The required memory mem., the total runtime tr in CPUhours and the

average speed v̄ in units of physical time M per real time hour of the test simulations

using the BSSN (model BSSN in Table 2), the original LaSh (model LaSh0 in Table 2)

and the modified LaSh scheme. The simulations have been run for t = 50M using 24

processors.

Finally, we compare the computational performance of both, the BSSN and LaSh

evolution scheme. For this purpose we have evolved models LaSh0 and BSSN

until t = 50M on the Magerit cluster [74] in Madrid which is part of the Spanish

Supercomputing Network [75]. Magerit uses PowerPC-970FC processors running at
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2.2GHz. The required memory, runtime and average speed obtained for 24 processors

are shown in Table 3. The original LaSh system requires about 30 % more memory

than the BSSN system and is about a factor 1.4 slower. The overhead of the LaSh

system is not unexpected. First, the LaSh system involves a larger number of grid

functions; the tracefree part of the extrinsic curvature Âi
j is not symmetric and thus

requires 9 independent components instead of 6 for the BSSN variable Ãij . Second,

the densitization of variables requires extra variables and involved more complicated

expressions on the right hand sides of the corresponding evolution equations. These

effects can be partly eliminated, however, without loosing the appealing properties of

the LaSh system. For this purpose, we have tested a modified version of the original LaSh

system, denoted as modLaSh in Table 3. Here we evolve Ãij instead of the trace-free

part of the extrinsic curvature with mixed indices Ãi
j . As expected, this modification

equals the BSSN system in memory requirements and also significantly reduces the

computational costs relative to the original LaSh system. At the same time, however,

modLaSh preserves the flexibility that has enabled us to obtain smoother behaviour of

the variables close to the puncture as compared with the BSSN scheme.

5. Conclusions

Motivated by a desire to better understand which are the important ingredients of

the moving puncture method, we have studied the LaSh formulation of the Einstein

equations. Provided that the algebraic constraints of the system are imposed the

formulation is equivalent to BSSN. Therefore we have investigated how the choice of

evolved variables effects the success of numerical simulations of puncture initial data.

The change of variable is parametrized by the densitization parameters (nQ, nK).

We started by demonstrating that LaSh is formally numerically stable when

linearized around flat space for arbitrary densitization parameters, with fixed shift and

densitized lapse. A special case of this calculation is the numerical stability of BSSN.

We attempted to show numerical stability of the system coupled to the puncture gauge,

but find that the required calculations are too complicated even for computer algebra

unless we move away from the standard discretization.

We performed four types of numerical tests. The first class of tests includes robust

stability test, specifically the so-called apples with apples tests. We find that the LaSh

formulation is numerically stable for various choices of the densitization parameters.

Next, we found that long term stable evolutions of single BH spacetimes requires a

more careful choice of the densitization parameters. It is interesting to note that the

parameter choice corresponding to the BSSN system is located near the edge of the

permissible range. Furthermore, we have identified parameter choices which result in

smoother profiles of the time derivatives of the evolution variables near the puncture

as compared with the BSSN case. It will be interesting to investigate the impact of

this behaviour on the accuracy of inspiral simulations lasting 10 − 15 orbits. While

such a study is beyond the scope of this paper, it may provide fertile ground for direct
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application of the results presented in this work.

We have further evolved head-on collisions as well as quasi-circular inspirals of

binary BHs. For both cases, we have achieved long-term stable evolutions for a wide

range of non-trivial parameter choices (nQ, nK). The evolutions produce convergent

waveforms consistent with the BSSN results and comparable accuracy. As mentioned

above, we plan to compare the accuracy of both systems for more demanding inspiral

simulations in future work. In any case, the binary simulations confirm the above finding

that non vanishing values of nQ and nK facilitate evolutions with smoother profiles of

the evolution variables in the neighborhood of each puncture.

In summary, our results highlight the importance of the choice of variables for

numerical calculations aside from any continuum PDE considerations. This opens up

the possibility of significantly reducing errors in simulations of astrophysical binaries

with large spins or mass ratios and also overcome stability issues reported for higher

dimensional BH simulations [49].
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