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Abstract: The Ricci and energy-momentum tensors have the same algebraic sym-

metries. In the Einstein equations they look “dual” to each other, in that interchang-

ing them and inverting the gravitational coupling leaves the equations invariant. It

may then be expected that their differential symmetry Lie algebras would also be

identical. Using cylindrically symmetric static spacetimes it is shown that they are

not identical and neither algebra is a subset of the other.
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1. Introduction

Lie symmetries of various geometrical and physical quantities in general relativity

have been studied for some time [1, 2]. Isometries, or Killing vectors (KVs), the

vector fields along which the metric tensor, g, remains invariant under Lie transport,

have been used to construct new solutions of the Einstein field equations (EFEs)

Rab −
1

2
Rgab = κTab; (a, b = 0, 1, 2, 3) (1.1)

where R is the Ricci tensor, T the energy-momentum tensor, R the Ricci scalar and

κ the gravitational coupling 8πG/c4. While the KVs give the symmetries inherent in

the space itself, invariance under the Lie transport of the energy-momentum tensor

gives the symmetries of the matter content of the space (called matter collineations

or MCs [3, 4]), and hence is more relevant physically. Since it appears in the EFEs

with the Ricci tensor, the symmetries of the Ricci tensor (called Ricci collineations

or RCs [1, 2]) are also physically relevant. These vector fields also provide invariant

bases for the classification of the solutions of the EFEs. A vector field ξ is an MC if

the Lie derivative of the energy-momentum tensor vanishes along ξ

£ξT = 0. (1.2)

In component form, the MC equation (1.2) takes the form

ξcTab,c + Tacξ
c
,b + Tbcξ

c
,a = 0. (1.3)

Here comma denotes a partial derivative with respect to the coordinates. For four

dimensional space these are ten coupled partial differential equations which are to

be solved for the four components of the vector ξ =(ξ0, ξ1, ξ2, ξ3). If the energy-

momentum tensor in the last equation is replaced by the Ricci tensor, the vector

field is an RC, and if it is replaced by the Riemann curvature tensor, the vector field

is called a curvature collineation (CC) [1, 2]. It is well known that every KV is a

CC and every CC, in turn, is an RC but the converse is not true in general. Mutual

relationships between different spacetime symmetries are represented graphically in

the inclusion diagram in Ref. [5]. An interesting question arises here about the place

of MCs in this diagram, and that is the subject of this paper.

There has been recent interest in the study of RCs of plane symmetric [6], spheri-

cally symmetric [7], cylindrically symmetric [8] and various other classes of spacetimes

[9]. As mentioned earlier, if the components of the energy-momentum tensor, Tab, in

Eq.(1.3) are replaced by those of the Ricci tensor, we get RCs. Due to the similarity of
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the mathematical form of the Ricci and the energy-momentum tensors, and similar-

ity of their collineation equations, attempts were made to obtain the results for MCs

from those of RCs [10, 11] by replacing the Ricci tensor by the energy-momentum

tensor. These attempts assume that because of the identity of the algebraic symme-

tries of the two tensors their differential symmetries would also be identical i.e. their

corresponding algebras would be same. In this paper we show that this is not true.

Another aim of this paper is to investigate the next and more important question of

“duality” between these two tensors, as regards their collineations. To achieve this,

we construct all possible (inclusion) relationships between RCs and MCs. We find

that cylindrically symmetric static spacetimes provide a very useful framework for

this investigation, as all the components of the Ricci tensor are independent (which

is not the case in spherical symmetry, for example). This fact gives rise to a whole

lot of possibilities for the relationship between RCs and MCs. We investigate all

these possibilities here and demonstrate that there is no inclusion relation between

the two algebras.

The plan of the paper is as follows. In the next section we give the MC equations

and discuss their solution. In Section 3 all the possibilities of relationships between

MCs and RCs are identified and specific examples provided for each of these cases.

The concluding remarks are given in Section 4. Tables 1-5 which summarize the

solutions of the MC equations are provided in the Appendix.

2. Matter collineations of cylindrically symmetric static space-

times

The line element for the general cylindrically symmetric static spacetimes in (t, ρ, θ, z)

coordinates can be written as [1]

ds2 = eν(ρ)dt2 − dρ2 − a2eλ(ρ)dθ2 − eµ(ρ)dz2, (2.1)

where the minimal symmetry is given by the three Killing vectors, ∂t, ∂θ, ∂z. For

this metric the only non-zero components of the Ricci tensor are

R00 =
eν

4

(

2ν ′′ + ν ′2 + ν ′λ′ + ν ′µ′
)

,

R11 = −
(

ν′′

2
+ λ′′

2
+ µ′′

2
+ ν′

2

4
+ λ′2

4
+ µ′2

4

)

,

R22 = −a2eλ

4

(

2λ′′ + ν ′λ′ + λ′2 + λ′µ′
)

,

R33 = −eµ

4

(

2µ′′ + ν ′µ′ + λ′µ′ + µ′2
)

.

(2.2)
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Here ,′, denotes differentiation with respect to ρ. The Ricci scalar is given by

R = ν ′′ + λ′′ + µ′′ +
1

2

(

ν ′2 + λ′2 + µ′2 + ν ′λ′ + ν ′µ′ + λ′µ′
)

. (2.3)

Using the EFEs (Eq. 1.1), the general form of the energy-momentum tensor, T a
b ,

becomes

T 0
0 = −1

4

(

2λ′′ + 2µ′′ + λ′2 + µ′2 + λ′µ′
)

,

T 1
1 = −1

4
(ν ′λ′ + ν ′µ′ + λ′µ′) ,

T 2
2 = −1

4

(

2ν ′′ + 2µ′′ + ν ′2 + µ′2 + ν ′µ′
)

,

T 3
3 = −1

4

(

2ν ′′ + 2λ′′ + ν ′2 + λ′2 + ν ′λ′
)

.

(2.4)

Now, the solution of Eqs. (1.3) for the energy-momentum tensor is similar to

the one given in Ref. [8], and it can be written simply by replacing the components

of the Ricci tensor there by those of the energy-momentum tensor. Therefore, we

will not give the MC vectors for different cases and their corresponding Lie algebras

and Lie groups here again and the reader is referred to Ref. [8] for all these details.

However, we will reproduce the tables of the main results here as we will need to

refer to them frequently in the next section. It may be pointed out here again

that during the course of solution of the MC (or RC) equations one gets different

cases which are characterized by the constraints on the components of the energy-

momentum (or Ricci) tensor. We will be using the same notation and case numbering

here as used in Ref. [8] for easy comparison. In fact, if we solve Eqs. (1.3) for a

general second rank, symmetric and diagonal tensor Aab, we not only get the KVs

[12] and RCs [8] for cylindrically symmetric static spacetimes but also find the MCs

explicitly. This means that these tables can be used to obtain complete information

on these three symmetries. There is one point however that while the Ricci and the

energy-momentum tensors can be degenerate (i.e. the determinant is zero) as well

as non-degenerate (i.e. the determinant is non-zero), the metric tensor cannot be

degenerate. We see that when the Ricci tensor is non-degenerate, the Lie algebra of

the RCs is always finite-dimensional. However, when it is degenerate, it admits a

finite-dimensional Lie algebra only when R11 = 0, Rii 6= 0, i = 0, 2, 3. This holds for

MCs also. Tables 1-5 are for finite-dimensional Lie algebras only. The numbers in

the last column indicate the dimension of the Lie algebra admitted by ξ and equation

numbers there refer to those in Ref. [8]. Further, as we are dealing with diagonal

tensors, for simplicity we will write Ri and Ti for Rij and Tij(i = j), respectively.
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3. Matter and Ricci Collineations

In what follows we write “finite (or infinite) MCs”, in place of “MCs having finite

(or infinite) dimensional Lie algebra”, for the sake of brevity. Similarly, we write

“non-degenerate (or degenerate) MCs” when we mean “MCs for the non-degenerate

(or degenerate) energy-momentum tensor”. The same holds for RCs also. We find

that depending upon whether the MCs and RCs are degenerate or non-degenerate,

finite or infinite, all possible relationships between them can be written in the form

of the following table, where the last column gives the example number for the

corresponding case.

Possible relationships between MCs and RCs

Non-Degenerate MCs (Finite MCs) Non-Degenerate RCs (Finite RCs) 3.1

Degenerate RCs Finite RCs 3.2

Infinite RCs 3.3

Degenerate MCs Finite MCs Non-Degenerate RCs (Finite RCs) 3.4

Degenerate RCs Finite RCs 3.5∗

Infinite RCs 3.6∗

Infinite MCs Non-Degenerate RCs (Finite RCs) 3.7

Degenerate RCs Finite RCs 3.8

Infinite RCs 3.9
∗Examples for these cases have not been provided

The metrics for all these possibilities have been constructed with the exception

of two cases. The examples of these spacetimes given below also demonstrate the

procedure of finding MCs, RCs and KVs from Tables 1-5 in the Appendix. We shall

call MCs (or RCs) proper if they are not KVs.

3.1 Non-degenerate (finite) MCs; non-degenerate (finite) RCs

In this case both the energy-momentum and the Ricci tensor are non-degenerate

having finite MCs and RCs. Consider the metic

ds2 = cosh2 kρdt2 − dρ2 − a2 (cosh kρ)−1 dθ2 − (cosh kρ)−1 dz2, (3.1)
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For this metric the components of energy-momentum tensor are

T0 = cosh2 kρ
k2

4

(

4− 7 tanh2 kρ
)

,

T1 = −3k2

4
tanh2 kρ,

T2 = a2 (cosh kρ)−1 k
2

4

(

2 + tanh2 kρ
)

,

T3 = (cosh kρ)−1 k
2

4

(

2 + tanh2 kρ
)

.

This is an anisotropic fluid with energy density positive for 0 ≤ ρ < 1
k
tanh−1 2√

7
and

negative for ρ ≥ 1
k
tanh−1 2√

7
. However, with a cosmological constant greater than

3
4
k2, the energy density becomes positive definite. For this metric the components

for Rab are

R0 = k2, R1 = −3k2

2
tanh2 kρ,

R2 =
k2

2
(sec hkρ)3 , R3 =

k2

2
(sec hkρ)3 .

It admits 4 MCs (Case AIIa(2)), 7 RCs (Case BIVb3(ii)γ2) and 4 KVs and, therefore,

is a case of proper RCs.

3.2 Non-degenerate (finite) MCs; degenerate and finite RCs

Here we provide an example of a metric with non-degenerate energy-momentum

tensor and degenerate Ricci tensor with both MCs and RCs finite. Consider

ds2 = (ρ/ρ0)
2a dt2 − dρ2 − (ρ/ρ0)

2b α2dθ2 − (ρ/ρ0)
2c dz2, (3.2)

where, a = (1 ±
√
3)/2, b = c = 1/2, and one gets R1 = 0 and Ri are non-zero

constants for i = 0, 2, 3. For a = (1 +
√
3)/2, we have Tab in component form

T0 =
ρ
√
3−1

4ρ
√
3+1

, T1 = (
3

4
+

√
3

2
)ρ−2,

T2 = −α2(2 +
√
3)

4ρρ0
, T3 = −2 +

√
3

4ρρ0
.

For this metric Rab has the following components

R0 =
(1 +

√
3)2ρ

√
3−1

4ρ
√
3+1

0

, R1 = 0,
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R2 = − α2(1 +
√
3)

4ρ0ρ
, R3 = − (1 +

√
3)

4ρ0ρ
.

It admits 5 MCs (AIIb1(i)β), 5 RCs (Case IIBd4(i)) and 4 KVs (Case AIIa(2)), and

therefore, is a case of proper MCs and RCs.

3.3 Non-degenerate (finite) MCs; degenerate and infinite RCs

Here we discuss the example of non-degenerate energy-momentum and degenerate

Ricci tensors with finite MCs but infinite dimensional RC algebra.

ds2 = eAρ
(

dt2 − dz2
)

− dρ2 − a2dθ2, (3.3)

A is a non-zero constant. For this metric the components of Tab are

T0 = −eAρA2

4
, T1 =

A2

4
,

T2 =
3a2A2

4
, T3 =

eAρA2

4
.

Rab has the following components

R0 =
eAρA2

2
, R1 = −A2

2
,

R2 = 0, R3 = −eAρA2

2
.

It has 7 MCs (Case AIa1(i)), RCs have infinite dimensional Lie algebra (Case (III))

and 7 KVs (Case AIa1(i)). It is anti-Einstein and anisotropic with negative energy.

3.4 Degenerate and finite MCs; non-degenerate (finite) RCs

One of the examples of metrics with degenerate energy-momentum tensor with finite

MCs and non-degenerate Ricci tensor with finite RCs is provided here.

ds2 = (ρ/ρ0)
−1/2 dt2 − dρ2 − (ρ/ρ0)α

2dθ2 − (ρ/ρ0) dz
2 (3.4)

Taking a = −1/4, b = c = 1/2 in metric (A3) gives the above metric. For this metric

the components of Tab are

T0 =
ρ
1/2
0

4ρ5/2
, T1 = 0,

T2 = − α2

16ρρ0
, T3 = − 1

16ρρ0
.
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and components of Rab are

R0 =
ρ
1/2
0

16ρ5/2
, R1 =

3

16ρ2
,

R2 =
α2

8ρρ0
, R3 =

1

8ρρ0
.

It has 5 MCs (Case II Bd4(i)), 5 RCs (Case AIIb1(i)β) and 4KVs (Case AIIa(2)).

3.5 Degenerate and finite MCs; degenerate and finite RCs

This is the case where an example has eluded our attempts. It would really be

interesting to see if an example of a spacetime exists for which both the RCs and

MCs are finite and degenerate. The necessary conditions for this to happen are

that R11 and T11 are zero and other components non-zero. Alternatively, a proof of

non-existence of such a space would also be very interesting.

3.6 Degenerate and finite MCs; degenerate and infinite RCs

Here also we have not been able to find an example for which both the MCs and RCs

are degenerate but the former is finite and the latter is infinite. But this is where the

question of “duality” between the energy-momentum and the Ricci tensors become

important because we have its “mirror” example in Case 3.8, where although both

are degenerate the MCs are infinite while the RCs are finite. Non-existence of an

example here would imply that there is no “duality” between the two tensors as far

as their collineations is concerned.

3.7 Degenerate and infinite MCs; non-degenerate (finite) RCs

Here we provide a metric with infinite dimensional MC algebra and finite RCs.

ds2 = (ρ/ρ0)
2a dt2 − dρ2 − (ρ/ρ0)

4/3 α2dθ2 − (ρ/ρ0)
4/3 dz2 (3.5)

Choosing a 6= 4/3, 0 , 2/3 , −1/3 , 1 and b = c = 2/3 in metric (A3) gives above

metric. For this metric the components of Tab are

T0 = 0, T1 =
4(a+ 1/3)

3ρ2
,

T2 = −α2(3a− 9a2 + 2)

9ρ2/3ρ
4/3
0

, T3 = −(3a− 9a2 + 2)

9ρ2/3ρ
4/3
0

.
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and Rab has the following components

R0 = ρ−2a
0 a(a+ 1/3)ρ2a−2, R1 = −(9a2 − 9a− 4)

9ρ2
,

R2 = −2α2(3a+ 1)

9ρ
4/3
0 ρ2/3

, R3 = −2(3a+ 1)

9ρ
4/3
0 ρ2/3

.

It admits infinite dimensional MCs (Case (I)), 5 RCs (CaseA IIb1(i)β) and 4 KVs

(Case AIIa(2)).

3.8 Degenerate and infinite MCs; degenerate and finite RCs

Here both the energy-momentum and the Ricci tensors are degenerate with finite

RCs and infinite MCs.

ds2 = (ρ/ρ0)
8/3 dt2 − dρ2 − (ρ/ρ0)

4/3 α2dθ2 − (ρ/ρ0)
4/3 dz2 . (3.6)

Taking a = 4/3, b = c = 2/3 in metric (A3) gives the above metric. The components

of Tab are

T0 = 0, T1 =
20

9
ρ−2,

T2 =
10α2

9ρ2/3ρ
4/3
0

, T3 =
10

9ρ2/3ρ
4/3
0

.

for this metric Rab has the following components

R0 =
20ρ2/3

9ρ
8/3
0

, R1 = 0,

R2 = − 10α2

9ρ2/3ρ
4/3
0

, R3 = − 10

9ρ2/3ρ
4/3
0

.

It admits MCs having infinite dimensional Lie algebra (CaseI), 5 RCs (Case IIBd4(i))

and 4 KVs (AIIa(2)).

3.9 Degenerate and infinite MCs; degenerate and infinite RCs

The case of infinite dimensional algebras for both the MCs and RCs when the two

tensors are degenerate is discussed here.

ds2 = cosh2(A +Bρ)dt2 − dρ2 − a2dθ2 − dz2, (3.7)

– 9 –



A and α are constants. It is a Bertotti-Robinson-like metric. Components of Tab are

as follows

T0 = 0, T1 = 0,

T2 = a2B2, T3 = B2.

and Rab has the following components

R0 = B2 cosh2(A+Bρ), R1 = B2,

R2 = 0, R3 = 0.

It has infinite dimensional Lie algebras both for MCs (case (IX)) and RCs (Case (X))

6 KVs (Case AIIb2(ii)α2).

4. Conclusion

We have studied the relationship between the Lie symmetries or collineations of

the two second rank tensors, the energy-momentum and the Ricci tensors, which

are mathematically very similar. In particular, we investigate whether or not this

similarity and their duality in the EFEs is preserved by their collineations also. For

this purpose we have used the framework of cylindrically symmetric static manifolds.

The KVs and RCs of these spaces have been classified earlier [12, 8]. While KVs have

a finite dimensional Lie algebra always, RCs and MCs can admit infinite dimensional

Lie algebra as well. Similarly, RCs and MCs can be degenerate or non-degenerate.

In this way we see that, in all, there are a total of nine types of relationships between

RCs and MCs which are formulated in a table in Section 3. To show that they are not

just symmetries, to which no solutions of EFEs exist, we have explicitly constructed

examples for all of these cases, except for the two cases 3.5 and 3.6. For these two

cases we have not been able to provide any example, nor have we managed to prove

that they do not exist. Unless and until the examples for these two cases are provided

the question of “duality” of the Lie symmetries of the energy-momentum and the

Ricci tensors will remain open.

It is worth while explaining the problem in finding the examples. Despite the

apparent duality of the tensors in the EFEs, there is an enormous difference in the

differential equations defining the tensors. At the very least, this complicates the

equations to the point that while we can construct the solutions for the cases for the

Ricci tensor, we are unable to do so for the energy-momentum tensor. It appears

to be a distinct possibility that there is no duality between the two tensors because
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of the difference in the differential equations yielding the cases. It may be that the

answer to our question will come by investigating the structure of the two differential

equations.

Appendix

The tables in the appendix summarize the solutions of Eq.(1.3). These are, in fact,

obtained by changing the components of the Ricci tensor in Ref. [8] by those of the

energy-momentum tensor. Thus the equation numbers in the last columns of these

tables refer to the equations in Ref. [8].
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Tables for the Matter Collineations of Cylindrically Symmetric Static Spacetimes

The Non-Degenerate Energy-Momentum Tensor The Degenerate Energy-Momentum Tensor

CaseA: T ′

0
6= 0 CaseB: T ′

0
= 0 Case II: T1 = 0 , T0 6= 0 , T2 6= 0 , T3 6= 0

CaseA(I):
(

T2

T3

)

′

6= 0 CaseA(II):
(

T2

T3

)

′

= 0

(a) T ′

2
= 0 , T ′

3
6= 0 (c) T ′

2
6= 0 , T ′

3
6= 0

(b) T ′

2
6= 0 , T ′

3
= 0

Table 1 Table 2 Table 3 Table 4 Table 5

–
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–



Table 1: The Non-Degenerate CaseA(I) T ′
0 6= 0

(I)
(

T2
T3

)′
6= 0 (a) T ′

2 = 0 , (1) α = 0, β = 0 (i)
(

T0
T3

)′

= 0 7 MCs (Eqs. 16)

T ′
3 6= 0

(ii)
(

T0
T3

)′

6= 0 4 MCs (Eqs. 17)

(2) α 6= 0, β = 0 (i) α > 0 3 MCs

(ii) α < 0 (α)
(

T0
T3

)′
6= 0 3 MCs

(β)
(

T0
T3

)′
= 0 4 MCs (Eqs. 18)

(3) α = 0, β 6= 0 Similar to (2)

(4) α 6= 0, β 6= 0 (i) α > 0, β > 0 (α) β
∫

√
T1

T0
dρ− T

′
3

2T0
√
T1

6= 0 (α1)
(

T0
T3

)′

= 0 4 MCs (Eqs. 19)

(α2)
(

T0
T3

)′

6= 0 3 MCs

(β) β
∫

√
T1

T0
dρ− T

′
3

2T0
√
T1

= 0 3 MCs

(ii) α > 0, β < 0 Similar to (i)

(iii) α > 0, β > 0 Similar to (i)

(iv) α < 0, β < 0 Similar to (i)

(b) T ′
2 6= 0 , Similar to (a)

T ′
3 = 0

Definitions α = T0√
T1

(

T ′
0

2T0
√
T1

)′
k1 = − T ′

0

2T0
√
T1

β = T3√
T1

(

T ′
3

2T3
√
T1

)′
k2 = − T ′

3

2T3
√
T1

–
14
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Table 2: The Non-Degenerate CaseA(I) T ′
0 6= 0 (continued)

(I)
(

T2
T3

)′
6= 0 (c) T ′

2 6= 0 , (1)
(

T ′
2

2T2
√
T1

)′
6= 0 , (i)

(

T2
T0

)′

= 0, 4 MCs (Eqs. 16)

T ′
3 6= 0

(

T ′
3

2T3
√
T1

)′
6= 0

(

T3
T0

)′

6= 0

(ii)
(

T2
T0

)′

6= 0, Similar to (i)
(

T3
T0

)′

= 0

(iii)
(

T2
T0

)′

6= 0, 3 MCs
(

T3
T0

)′

6= 0

(2)
(

T ′
2

2T2
√
T1

)′
= 0 , (i)

(

T2
T0

)′

= 0, 5 MCs (Eqs. 22)
(

T ′
3

2T3
√
T1

)′
= 0

(

T3
T0

)′

6= 0

(ii)
(

T2
T0

)′

6= 0, Similar to (i)
(

T3
T0

)′

= 0

(iii)
(

T2
T0

)′

6= 0, (α)
(

T ′
0

2T0
√
T1

)′
= 0 4 MCs (Eqs. 23)

(

T3
T0

)′

6= 0

(β)
(

T ′
0

2T0
√
T1

)′
6= 0 3 MCs
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Table 3: The Non-Degenerate CaseA(II) T ′

0
6= 0

(II)
(

T2

T3

)

′

= 0 (a)

(

T
′

2

2T2

√
T1

)

′

6= 0 (1)

(√

T0

T2

)

′

= 0 6 MCs (Eqs. 24)

(2)

(√

T0

T2

)

′

6= 0 4 MCs (Eqs. 25)

(b)

(

T
′

2

2T2

√
T1

)

′

= 0 (1) α 6= 0 (i)
(

T2

T0

)′

6= 0 (α)

(

T
′

0

2T0

√
T1

)

′

6= 0 4 MCs (Eqs. 26)

(β)

(

T
′

0

2T0

√
T1

)

′

= 0 5 MCs (Eqs. 27)

(ii)
(

T2

T0

)′

= 0 10 MCs (Eqs. 28)

(2) α = 0 , (i)

(

(
√

T0)
′

√
T1

)

′

= 0 10 MCs (Eqs. 29)

(ii)

(

(
√

T0)
′

√
T1

)

′

6= 0 (α)

[

T0

2
√

T1

(

T
′

0

T0

√
T1

)

′
]

′

= 0 (α1) η = 0 6 MCs (Eqs. 30)

(α2) η 6= 0 6 MCs (Eqs. 31)

(β)

[

T0

2
√

T1

(

T
′

0

T0

√
T1

)

′
]

′

6= 0 4 MCs (Eqs. 32)

Definitions α =
T

′

2

T2

√
T1

η =
T0

2
√

T1

(

T
′

0

T0

√
T1

)

′

–
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Table 4: The Non-Degenerate Case B T ′

0
= 0

(I) T ′

2
= 0 , T ′

3
= 0 10 MCs (Eqs. 33)

(II) T ′

2
= 0 , T ′

3
6= 0 (a)

[

T3√
T1

(

T
′

3

2T3

√
T1

)

′
]

′

6= 0 4 MCs (Eqs. 34)

(b)

[

T3√
T1

(

T
′

3

2T3

√
T1

)

′
]

′

= 0 (1) k1 > 0 6 MCs (Eqs. 35)

(2) k1 < 0 Similar to (1)

(3) k1 = 0 6 MCs (Eqs. 36)

(III) T ′

2
6= 0 , T ′

3
= 0 Similar to (II)

(IV) T ′

2
6= 0 , T ′

3
6= 0 (a)

[

T2√
T1

(

T
′

2

2T2

√
T1

)

′
]

′

6= 0 (1)
(

T2

T3

)′

6= 0 3 MCs

(2)
(

T2

T3

)′

= 0 4 MCs (Eqs. 37)

(b)

[

T2√
T1

(

T
′

2

2T2

√
T1

)

′
]

′

= 0 (1) k3 > 0 (i)

[

T3√
T1

(

T
′

3

2T3

√
T1

)

′
]

′

6= 0 4 MCs (Eqs. 38)

(ii)

[

T3√
T1

(

T
′

3

2T3

√
T1

)

′
]

′

= 0 4 MCs (Eqs. 38)

(2) k3 < 0 Similar to (1)

(3) k3 = 0 (i)

[

T3√
T1

(

T
′

3

2T3

√
T1

)

′
]

′

6= 0 4 MCs (Eqs. 38)

(ii)

[

T3√
T1

(

T
′

3

2T3

√
T1

)

′
]

′

= 0 (α) k1 > 0 4 MCs (Eqs. 38)

(β) k1 < 0 Similar to (2)

(γ) k1 = 0 (γ1)
(

T3

T2

)′

6= 0 4 MCs (Eqs. 39)

(γ2)
(

T3

T2

)′

= 0 7 MCs (Eqs. 40)

Definitions k1 =
T3√
T1

(

T
′

3

2T3

√
T1

)

′

k3 =
T2√
T1

(

T
′

2

2T2

√
T1

)

′

–
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Table 5: The Degenerate Case II T1 = 0 , T0 6= 0 , T2 6= 0 , T3 6= 0

(A) T ′
0 = 0 T ′

2 6= 0 , T ′
3 6= 0 (1)

(

T ′
2T3

T2T ′
3

)′
= 0 4 MCs (Eqs. 41)

(2)
(

T ′
2T3

T2T ′
3

)′
6= 0 3 MCs

Otherwise Infinitely many MCs

(B) T ′
0 6= 0 (a)

(

T0
T2

)′
= 0,

(

T0
T3

)′
= 0 10 MCs (Eqs. 42)

(b)
(

T0
T2

)′
= 0,

(

T0
T3

)′
6= 0 (1)

(

T ′
3T0

T3T ′
0

)′
= 0 5 MCs (Eqs. 43)

(2)
(

T ′
3T0

T3T ′
0

)′
6= 0 4 MCs (Eqs. 44)

(c)
(

T0
T2

)′
6= 0,

(

T0
T3

)′
= 0 Similar to (b)

(d)
(

T0
T2

)′
6= 0,

(

T0
T3

)′
6= 0 (1)

(

T ′
0T2

T0T ′
2

)′
6= 0,

(

T ′
0T3

T0T ′
3

)′
6= 0 (i)

(

T2
T3

)′
= 0 4 MCs (Eqs. 45)

(ii)
(

T2
T3

)′
6= 0 3 MCs

(2)
(

T ′
0T2

T0T ′
2

)′
6= 0 ,

(

T ′
0T3

T0T ′
3

)′
= 0 4 MCs (Eqs. 45)

(3)
(

T ′
0T2

T0T ′
2

)′
= 0 ,

(

T ′
0T3

T0T ′
3

)′
6= 0 Similar to (2)

(4)
(

T ′
0T2

T0T ′
2

)′
= 0 ,

(

T ′
0T3

T0T ′
3

)′
= 0 (i)

(

T2
T3

)′
= 0 5 MCs (Eqs. 46)

(ii)
(

T2
T3

)′
6= 0 4 MCs
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