
ar
X

iv
:1

01
1.

56
20

v1
  [

gr
-q

c]
  2

5 
N

ov
 2

01
0

On the signature of pressure in gravity

A.I.Nikishov ∗

I.E.Tamm Department of Theoretical Physics,

P.N.Lebedev Physical Institute, Moscow, Russia

November 29, 2010

Abstract

When pressure is not negligible in comparison with energy density, the

external gravitational field and the motion of particles in it are modified. For

spherically symmetric body two effective mass parameters determine the ex-

ternal gravitational field and the motion of particles in it. For distances much

larger then the gravitational radius we use the linearized Einstein equations

to consider the effects of pressure on test particle motion.

1 Introduction

For strongly compressed star the pressure may noticeably influence the gravitational
field not only inside the star but also outside if it [1] In the region rg

r
<< 1 it is

sufficient to use the linearized Einstein equation to consider the influence of pressure
on gravitational field. This is done in Section 2. In Section 3 we approach the
problem using Schwinger’s Theory of Sources to make sure that it gives the same
results as we obtain in this paper. In section 4 we consider the influence of pressure
on the motion of test particle.

2 Pressure in gravity.

We assume that the energy-momentum tesor of the gravitating body is

T µν = diag(ǫ, p, p, p), (1)

The linearized Einstein equation may be written in the form (gµν = ηµν + hµν)

∆hµν = −
16πG

c4
T̄µν , T̄µν = Tµν −

1

2
ηµνTl

l, ηµν = diag(−1, 1, 1, 1.), (2)

Here

T̄00 =
1

2
(ǫ+ 3p), T̄11 = T̄22 = T̄33 =

1

2
(ǫ− p). (3)
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The solution of (2) is well known,

hµν(~x) = 4
G

c4

∫

T̄µν(~x
′)

|~x− ~x′|
d3x′. (4)

For spherically symmetric body it follows from (4) that outside the body

h00 =
2Gmt

rc2
, hs ≡ h11 =

2Gms

rc2
. (5)

Here mt is the effective mass (with the pressure taken into account) defining h00 and
similarly for space part of metric hs ≡ h11:

mt = c−2

∫

[ǫ+ 3p]d3x, ms = c−2

∫

[ǫ− p]d3x. (6)

The subscripts t and s remind us about time- and space parts of the metric. We
also define

rgt =
2Gmt

c2
, rgs =

2Gms

c2
. (7)

In spherical coordinate system we get

−ds2 = g00(dx
0)2 + gs(dr

2 + r2dθ2 + r2 sin2 θdϕ2),

g00 = −(1 − h00) = −(1 +
2ϕ

c2
), gs ≡ g11 = 1 + hs = 1 +

2Gms

rc2
, (8)

see (5). The equation of motion for radial coordinate is

d2r

ds2
= −Γr

µν

dxµ

ds

dxν

ds
, x0 = ct. (9)

For particle at rest
d2r

ds2
= −Γr

00
=

1

2
grr

∂g00
∂r

=
1

2

∂h00

∂r
. (10)

With the help of (5) we find

d2r

dt2
= −

∂ϕ

∂r
, ϕ = −

Gmt

r
. (11)

In contrast to Schwarzschid solution the parameter mt depends on pressure. In view
of this it is instructive to make a short excursion to Schwiger’s Theory of Sources
[2].

3 Pressure in Schwinger’s Theory of Sources

We denote Schwinger’s total energy-momentum tensor T µν in eq. (4.34) Ch.2 in [2]
as θµνand write it in the form

E(x0) = −
G

c4

∫

d3xd3x′

|~x− ~x′|
[θµν(~x, x0)θµν(~x

′, x0)−
1

2
θ(~x, x0)θ(~x′, x0)], θ = θνν . (12)



Using θµν = T µν + tµν we get from (12) the interaction energy

Eint(x
0) = −

G

c4

∫

d3xd3x′

|~x− ~x′|
{[T µν(~x, x0)tµν(~x

′, x0) + (~x ↔ ~x′)]

−
1

2
[T (~x, x0)t(~x′, x0) + (~x ↔ ~x′)]}. (13)

Here (~x ↔ ~x′) means terms obtained from the preceding ones by substitution(~x ↔
~x′).

I. We first assume that

tµν(~x.x0) = m′c2δµ0δν0δ(~x− ~R), (14)

i.e. the test particle is at rest. Then , from (13) and (14) we find

Eint = −
Gm′

c2

∫

d3x

|~x− ~R|
{T 00(~x)−

1

2
[T 00 − Tkk] + (~x ↔ ~x′)} =

−
Gm′

c2

∫

d3x

|~x− ~R|

1

2
{[ǫ(~x) + 3p(~x)] + (~x ↔ ~x′)} = −

Gm′

c2

∫

d3x

|~x− ~R|
{[ǫ(~x) + 3p(~x)].

(15)
For spherically symmetric gravitating body we get the Newtonian law with m →

mt:

Eint = −
Gm′mt

R
= m′ϕ (16)

in agreement with (11).
II. Next, we consider the interaction of a photon beam:

tµν = σpµpν , p2 = −(p0)2 + ~p2 = 0, (17)

see eq. (4.38) in Ch.2 in [2]. Using (17) and (13) we obtain

Eint = −
G

c4

∫

d3xd3x′

|~x− ~x′|
σp0{[ǫ(~x)+p(~x)]+(~x ↔ ~x′)} = −

G

c4

∫

d3xd3x′

|~x− ~x′|
σ2p0{[ǫ(~x)+p(~x)],

(18)
i.e. the interaction energy of the photon with the gravitating body is twice the
Newtonian value (which is obtained by substituting m′c2 → p0, m → meff), cf. [2];

meff =
mt +ms

2
. (19)

It follows from here that the deflexion angle for the photon flying through the grav-
itational field of a spherically symmetric body is

θ =
4Gmeff

ρc2
=

2reff
ρ

, (20)

see eq. (4.41) in Ch2 in [2]. Here ρ is the impact parameter. The important thing
for us is that meff 6= mt.



4 Test particle in metric (8)

We use the Hamilton-Jacobi equation, see §101 in [3]

gµν
∂S

∂xµ

∂S

∂xν
= −m′2c2. (21)

With
g00 = −(1−

rgt
r
)−1, gs

−1 = (1 +
rgt
r
)−1

we have

(1−
rgt
r
)−1(∂S/∂t)2 − (1 +

rgs
r
)−1[(∂S/∂r)2 + r−2(∂S/∂θ)2] = m′2c2. (22)

S has the form
S = −E0t +Mθ + Sr, (23)

where M is the angular momentum. Using this in (22), we find

Sr =

∫

√

F (r)dr, F (r) =
E2

0

c2
1 + rgs

r

1− rgt
r

−
M2

r2
−m′2c2(1 +

rgs
r
). (24)

The function r = r(t) is given by the condition ∂S
∂E0

= const and the trajectory is

obtained from ∂S
∂M

= const, see §101 in [3]:

t =
E0
c2

∫

1 + rgs
r

1− rgt
r

F−
1

2dr, (25)

θ =

∫

M

r2
F−

1

2dr, (26)

In the nonrelativistic limit c → ∞ we have

E2

0
−m′2c4

c2
≈ Enonrel2m

′, .

F (r) ≈
E2

0

c2
(1 +

rgs + rgt
r

)−
M2

r2
−m′2c2(1 +

rgs
r
) ≈ (27)

2m′(Enonrel −Eint)−
M2

r2
, Eint = −

Gm′mt

r
. (28)

Using (27), (28) in eqs. (25) and (26) we get the equations for the nonrelativistic
particle. This agrees with (11) and (16).

For m′ → 0 we see from (25), (26) that in the first approximation the role of m
plays meff = (ms +mt)/2 in agreement with (19)

Starting from (26) with m′ = 0 it is not difficult to obtain corrections to the
leading term (20) in the form of powers of 1/ρ.

In terms of
δ =

rgt
ρ
, rgs = ζrgt, (29)



where ρ is the impact parameter, we have instead (26)

θ =

∫

√

1− uδ

f(u)
du, f(u) = 1− u2+ (uζ + u3)δ = (u− u1)(u− u2)(u− u3)δ. (30)

For photon M = ρE0/c. and θ at half of the trajectory is, cf. [4]

θ 1

2

= (u3δ)
−

1

2

∫ u2

0

√

1− uδ

1− uu−1

3

R(u)−1/2du, R(u) = (u2 − u)(u− u1). (31)

This equation coinsides with eq. (42) in [4] and f(u) is the same as that in eq.(2)
in [4]. So, using the results obtained there, it is easy to get the deflexion angle for
photon

θ = 2
(

θ 1

2

−
π

2

)

= (1 + ζ)δ + π
1 + ζ

2
δ2 + · · · . (32)

The leading term

(1 + ζ)δ =
rgt + rgs

ρ
=

4Gmeff

ρc2

agrees with (20). Here eqs. (7), (19) and (29) were used.

5 Conclusion

When pressure becomes noticeable, two mass parameters mt and ms differ from one
another. In this case the Birkhoff theorem can be valid only with accuracy of order
mt−ms

mt
because at the beginning of contraction mt = ms = m. In the considered

approximation the presence of pressure increases the pull towards the gravitating
body more for nonrelativistic particle then for ultrarelativistic one.
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