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Abstract

Loop Gravity provides a microscopic derivation of Black Hole entropy. In this paper, I show

that the microstates counted admit a semiclassical description in terms of shapes of a tessellated

horizon. The counting of microstates and the computation of the entropy can be done via a mapping

to an equivalent statistical mechanical problem: the counting of conformations of a closed polymer

chain. This correspondence suggests a number of intriguing relations between the thermodynamics

of Black Holes and the physics of polymers.

1 Introduction

Black Holes have thermodynamic properties [1] (see [2] for a recent review). As is well known, the
entropy S of a Black Hole at equilibrium depends only on its mass M and angular momentum J , and
is proportional to the area AH of the horizon of the Black Hole1,

S(M,J) =
κ

4G~
AH(M,J) . (1)

This result due to Bekenstein and Hawking leads to a conceptual puzzle: what is the statistical mechan-
ical origin of this entropy? what are the microstates responsible for heat exchanges of the Black Hole
with its surroundings?

Within Loop Quantum Gravity (LQG), there is a large body of work regarding the derivation of the
entropy of a Black Hole [3], starting with the first pioneering works of the late nineties [4]. The presence
of a Black Hole is coded in an isolated-horizon boundary condition for the theory, as first discussed
by Ashtekar, Baez, Corichi and Krasnov in [5]. On the isolated horizon, a Chern-Simons theory with
punctures is induced. The degrees of freedom counted are the states of this topological quantum field
theory. For a large Black Hole, the counting amounts to the computation of the dimension of a certain
SU(2) intertwiner space, as recently discussed by Engle, Noui and Perez [6]. The entropy is given by the
logarithm of the number of accessible states and results to be proportional to the area of the isolated
horizon, thus reproducing the Bekenstein-Hawking formula (1).
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1Throughout the paper, we will assume that the Black Hole is not charged and that there are no long range fields

besides gravity. For a charged Black Hole, the horizon area and the entropy depend also on the charge. In the following,
G is Newton’s constant, ~ is the reduced Planck constant, and κ the Boltzmann constant. The speed of light c is set to
one.
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The success of the LQG calculation raises a number of questions. What is the physical interpretation
of the horizon degrees of freedom counted in LQG? Are they present already at the classical level? are
they purely quantum? In [7], Rovelli first suggested that the degrees of freedom counted in LQG are in
fact “quantum shapes of the horizon”. The idea is discussed in more detail in a recent paper by Rovelli
and Krasnov [8].

In this paper, I further develop this idea. I present a semiclassical description of the microstates
counted in LQG: it is a description in terms of classical shapes of a tessellated horizon. I show that
the problem of counting the number of shapes can be mapped into an equivalent statistical mechani-
cal problem: the counting of conformations of a closed polymer chain. This correspondence suggests
a number of intriguing relations between the thermodynamics of Black Holes and the physics of polymers.

The presentation is largely independent from the full machinery of LQG. It relies on the recent
development of the notions of coherent intertwiners [9] and of the associated classical system [10, 11].
The paper is organized as follows: in sections 2 and 3, I review the idea that the entropy of a Black
Hole is due to quantum fluctuations of its horizon geometry, and discuss the physical cut-off of horizon
fluctuations provided by LQG; in 4, 5 and 6, I formulate the statistical mechanical problem, explain the
mapping to a polymer chain, and present a simple calculation of the entropy. Finally, I mention some
possible further developments in sections 7 and 8.

2 Black Hole entropy and the shape of the horizon

The idea that the microstates responsible for the entropy of a Black Hole correspond to fluctuations
of the shape of its horizon goes back to Sorkin [12] and to York [13]. The idea is the following. Let
us focus on the non-rotating case J = 0 for the moment. At equilibrium, the Black Hole is described
by a Schwarzschild geometry. From a statistical mechanics point of view, this is to be understood as
the macrostate. While the macrostate is spherically symmetric, the microstates don’t have to. For
instance, in presence of a planet orbiting around a Black Hole – because of tidal effects – a small bulge
is produced on the horizon. Similarly, in the presence of a gas at a finite temperature, the horizon will
be thermally fluctuating. Even in absence of a thermal bath, the horizon will be fluctuating because of
quantum effects. The key idea is that these horizon degrees of freedom are accessible from the exterior
of the Black Hole, contribute to heat exchanges of the Black Hole with its surroundings, and provide a
microscopic explanation of its thermodynamic entropy (see [14] for a recent discussion of this idea).

The idea of horizon shapes resonates with another development started by Damour in the late
seventies: the membrane paradigm [15]. This is a description of the interaction of a Black Hole with the
outside world in terms of a horizon boundary-condition with an fascinating physical interpretation. The
boundary dynamics turns out to be the one proper of a (fictitious) physical membrane with mechanical
properties and with a finite surface viscosity.

The fact that the entropy of a Black Hole can be accounted for considering the quantum fluctuations
of the horizon was explored by Maggiore in the mid-nineties [16]. A perturbative Quantum-Field-
Theory calculation of the fluctuations of the horizon/membrane leads in fact to an entropy proportional
to the area of the horizon. However, the calculation requires an ultraviolet cut-off that shows up in the
proportionality constant. When the cut-off is removed, the entropy diverges.

The idea explored in this paper is that LQG provides a very specific physical cut-off for the horizon-
shape degrees of freedom. The physical cut-off is due to quantum geometry effects [17] proper of LQG,
and makes the entropy finite.
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Figure 1: On the left: tessellated surface determined by the areas and normals of its facets; typical
configuration belonging to the ensemble with fixed total area discussed in the text (AH ≈ 100L2

P ). On
the right: closed polymer chain corresponding to the tessellated surface.

3 The LQG physical cut-off: a tessellated horizon

Let us consider a set of N positive real numbers Aa (a = 1, . . , N) and N unit-vectors ~na in R
3 that

satisfy the closure condition
∑

a Aa ~na = 0. Thanks to a theorem due to Minkowski [18], we know that
there exists a unique convex polyhedron in R

3 that has N faces of area Aa and normal ~na (see [10]
for a recent discussion). The boundary is a surface with topology S2 and endowed with a locally-flat
geometry: it is a tessellated surface with N facets. Its intrinsic and extrinsic geometry is completely
determined by the data (Aa, ~na). In particular, the area of the facet a is Aa, and the extrinsic curvature
is coded in the angle between the normals ~na and ~nb associated to two adjacent facets a and b. See Fig.
1.

Recently, in a paper with Doná and Speziale [10], we have shown that this tessellated surface arises
as the classical limit of the quantum geometry proper of SU(2) intertwiner space. The relation is briefly
explained below.

Consider a system of N particles of spin ja, (a = 1, . . , N). The Hilbert space of the system is the
tensor product of the single particle Hilbert spaces, H(j1) ⊗ · · · ⊗ H(jN ). An orthonormal basis is given
by simultaneous eigenstates of the third component of the angular momentum operators ~Ja, and of the
Casimir operators ~J2

a . The system can be in a state |s〉 that is invariant under rotations. Rotationally
invariant states satisfy the operator equation

∑

a=1,..,N

~Ja |s〉 = 0 , (2)

and form a subspace of the full Hilbert space. This subspace is called intertwiner space, H(j1,. . ,jN )
0 . In a

recent paper [8], Rovelli and Krasnov identify the quantum geometry of the horizon with states in this

intertwiner space. The Casimir operator ~J2
a measures the area of a facet of the quantum horizon. To
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be precise, each facet has an area that is quantized and given by

Aa = 8π γL2
P

√

ja(ja + 1) . (3)

Here ja = 1
2 , 1,

3
2 , . . . is a SU(2) representation associated to the facet. LP is a Planck length-scale and

γ is a positive dimensionless number, the Immirzi parameter. LP and γ are to be understood as the
two fundamental constants of LQG. The lowest non-vanishing value the area of a facet can have is the

Planck-scale gap a0 =
√
3
2 8πγL2

P . It provides a physical ultraviolet cut-off for the horizon degrees of

freedom. The quantum extrinsic curvature of the horizon is measured by the operators ~Ja · ~Jb (with
a 6= b) and has again a discrete spectrum [19]. Notice that these operators do not commute among
themselves, and this fact leads to Heisenberg uncertainty relations for the quantum geometry of the
horizon.

The relation between the two structures discussed above,

(a) the tessellated surface

(b) the quantum geometry of intertwiners

can be understood in two complementary ways. The first is to consider coherent states in the intertwiner
space (b). Such states have been developed by Livine, Speziale, Freidel, Conrady and Krasnov in [9],
and are peaked on the geometry of a tessellated surface [10]. The semiclassical limit of the operator
~Ja is simply a classical vector in R

3 with norm ja, and the operator equation (2) becomes the classical
closure condition

∑

a=1,..,N

ja ~na = 0 , (4)

thus reproducing the data that describe the system (a). The second way to understand the relation
between the two systems is to consider the quantization of the classical system (a). This has been done
by Kapovich, Millson2 [20] and Charles [21], and shown to be the Hilbert space of intertwiners (b).

To summarize: the microstates of the horizon considered in LQG admit a semiclassical description.
They consist of tessellated surfaces described by the following data: a set of N vectors ja~na associated
to each facet of the surface. Such data have to satisfy the closure condition (4) and the norms ja of the
vectors have to be half-integers. The area of a facet is determined by the jas and can assume only a
discrete series of values given by formula (3).

4 The statistical-mechanical problem: counting shapes of a tes-
sellated horizon

Now we are ready to formulate our statistical-mechanical problem. Let us focus on an uncharged non-
rotating Black Hole. The macrostate of the system is a Schwarzschild geometry and is completely
described by a single parameter: for instance the area AH of the horizon,

AH = 16π (GM)2 . (5)

The microstates to be counted are shapes of the tessellated horizon described in terms of the data Aa

and ~na. Only the shapes that are accessible have to be counted. The ensemble we consider here is the

2The classical system considered in these papers is mathematically equivalent to (a), but the geometrical interpretation
they describe differs from the one considered in this section.
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one of given average mass or, equivalently, given average horizon area AH ,

〈
∑

a Aa

〉

= AH . (6)

We call W (AH) the number of distinguishable microstates in the ensemble corresponding to horizon
area AH . The horizon entropy is then given by its natural logarithm,

S(AH) = κ logW (AH) . (7)

Notice that, while the macrostate has spherical symmetry, the microstates do not. This is a common
feature in statistical mechanics: the microstates of the gas in this room are not translationally invariant.

5 Mapping to an equivalent statistical-mechanical problem: con-

formations of a polymer chain

What is the total number of configurations W (AH) ? At first sight, this counting problem looks
extremely complicated. I understand that people in statistical mechanics have a standard strategy
to address this kind of problems. The first question to be asked is if there is another system that is
equivalent to the one considered here, and for which the counting has already been done.

It turns out that we are exactly in this situation: the equivalent statistical-mechanical problem here
is the counting of conformations of a polymer. The mapping between the two systems is such that the
length of each monomer is given by the area of a facet of the tessellated horizon.

The physics of polymers is well-studied (we refer the reader to the beautiful book by De Gennes [22]).
A basic result in polymer physics is that the entropy of a polymer is proportional to its length, that is the
sum of the lengths of its monomers. But this is also the sum of the areas of the facets of the tessellated
horizon, that sum up to the area of the horizon of the Black Hole. Thus the Bekenstein-Hawking area
law (1) is easily reproduced starting from the length-law proper of polymer physics. This is the main
idea; in the rest of this section, I give a more precise and detailed description of the correspondence
between shapes of the tessellated horizon and conformations of the polymer chain. In next section, I
present a simple derivation of the entropy.

The construction of the equivalent system is the following3:

• to a surface with N facets, we associate a polymer chain consisting of N monomers;

• to a facet with normal ja~na, we associate a monomer with direction ja~na in R
3; its norm ja is the

length of the monomer;

• the fact that the horizon is a closed tessellated surface corresponds to the requirement that the
monomers belong to a closed polymer chain; their directions satisfy the condition (4).

Now some comments about the relation between the two systems, the Black Hole horizon and the closed
polymer chain:

- the entropy of a polymer is finite because of the physical cut-off provided by the monomer chem-
istry; analogously in LQG the entropy of a Black Hole is finite because of the Planck scale cut-off
provided by the quantization of the area;

3The phase space of polygons studied by Kapovich and Millson in [20] is directly related to this construction.
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- the average configuration of a polymer at thermal equilibrium is crumpled (see Fig. 1); these
are the configuration that give the dominant contribution to the entropy. Correspondingly, the
average shape of the tessellated horizon is approximately spherical (see Fig. 1 for a picture of
the shape reconstructed from the data ja~na of a random point in the ensemble); the spherical
symmetry of the Schwarzschild macrostate is not imposed on the microstates, it is a property
recovered in average at equilibrium;

- in the LQG derivation of Black Hole entropy, the area law is reproduced and quantum corrections
to it have been computed [3]; such corrections are logarithmic in the area and feature a coefficient
−3/2. The same −3/2 log corrections have been found in other approaches (in near-horizon con-
formal field theory calculations and in String theory); Carlip has pointed out that such coefficient
may be universal [23].

As already mentioned, the entropy of a polymer is proportional to its length; the proportionality
coefficient c depends on the monomer-chemistry. However, here too there are subleading correc-
tions to the entropy; these corrections are logarithmic in the length L and the proportionality
coefficient here is known to be universal and can be computed. In particular, for a closed polymer
chain the coefficient is −3/2,

S = c L − 3

2
logL . (8)

When translated back to the problem of Black Hole entropy, this relation immediately reproduces
the logarithmic corrections found in LQG.

The LQG derivation of the entropy of a Schwarzschild Black Hole and of its leading-order quantum
corrections is a rather complicated calculation [3]. It is interesting to notice that, using semiclassical
methods and the mapping to a polymer-physics problem, the results described above can be obtained
via a very simple and familiar calculation. Such calculation is presented in next section.

6 Computation of the entropy and of leading-order corrections

The calculation of W (AH), the number of accessible configurations of the tessellated horizon, can be
done in two steps:

• we first compute the number of microstates corresponding to an assignment of spins ja to the N
facets of the tessellated surface; this corresponds exactly to the problem of computing the number
for conformations of a closed polymer chain with given monomer content;

• the second step is to take into account the fact that, within the ensemble of given average total
area, the number of facets and the assignment of spins can vary. This is done computing the
statistical distribution of spins that extremizes the entropy.

The two steps are discussed below, the first in section 6.1 the second in section 6.2.

6.1 Number of microstates for given spins/monomer lengths

Let us call Ω(j1, . . , jN ) the number of microstates of a tessellated surface with N facets with an assign-
ment of spins j1, . . , jN . As explained in section 3, the tessellated surface arises from the semiclassical
limit of a spin system. To each spin Hilbert space H(ja) we can associate a classical phase space with

phase space volume ja+1/2
2π

∫

d~na. The term in front of the integral guaranties that there is an integer
number of Planck cells in phase space. The unconstrained integral over directions ~na gives the solid
angle 4π, and the phase space volume coincides with the dimension of a single spin Hilbert space,
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dimH(ja) = 2ja + 1. Here we are interested in a system on N spins that satisfy the condition (2). At
the semiclassical level, this condition is the constraint (4) on the directions ~na and can be imposed as a
delta-function in the N integrals over the normals. It follows that Ω(j1, . . , jN) is given by

Ω(j1, . . , jN ) =

N
∏

a=1

(ja + 1/2

2π

)

∫

d~n1 · · · d~nN δ
(

N
∑

a=1

ja~na

)

. (9)

This is also the formula for the number of conformations of a closed polymer chain with N monomers
of length j1, . . , jN . It provides a semiclassical Bohr-Sommerfeld approximation4 of the dimension of

intertwiner space, dimH(j1,. . ,jN )
0 .

There are two standard tricks that allow to compute the quantity (9) in the approximation we
are interested in. The first is to write the delta function in Fourier transform. The second is to
introduce occupation numbers : we call Nj the number of facets that have spin j = 1

2 , 1,
3
2 , . . . Clearly,

the occupation numbers sum up to the total number of facets,
∑

j Nj = N . We call Ω(Nj) the number
of configurations for given occupation numbers. It is simply given by

Ω(Nj) =
∏

j

(j + 1/2

2π

)Nj
∫

d~p

(2π)3

∏

j

(

∫

d~n ei~p·~n j
)Nj

. (11)

We are interested in a large classical Black Hole. Its horizon area is much larger that the Planck scale,
AH ≫ L2

P . In this situation, it is reasonable to assume that the average total number of facets N of the
tessellated horizon is large, and that the occupation numbers Nj are either zero or large,

Nj ≫ 1 . (12)

Under this assumption, to be checked a posteriori, we can easily estimate the number of configurations
Ω(Nj). The integral over d~n is easily performed, the result is 4π sin pj

pj where p is the norm of the dummy
variable ~p. Now we can use the fact that, for large N , the following asymptotic formula holds

(sinx

x

)N

≈ e−
1

6
Nx2

for N ≫ 1 . (13)

Therefore we are left with a 3d Gaussian integral over ~p. This is easily done and the result is

Ω(Nj) ≈
(

∏

j= 1

2
,1, 3

2
,...

(2j + 1)Nj

) 1
(

2π
3

∑

j j
2Nj

)
3

2

. (14)

The first term in parenthesis leads to the length-law for a polymer and to the area law for the Black Hole.
The second term comes from the closure condition (4) imposed as a delta function in (9). Technically,
it comes from the integration of the 3d Gaussian. This is how the exponent −3/2 arises. This is the
−3/2 found in polymer-physics for closed chains, and in the LQG derivation of corrections to Black Hole
entropy.

4There is an exact formula for the dimension of intertwiner space. It is given by a group integral of a product of SU(2)
characters,

dimH
(j1,. . ,jN )
0 =

∫
SU(2)

dg
N∏

a=1

χ(ja)(g) =
1

π

∫ 2π

0
dθ sin2

θ

2

N∏
a=1

sin(2ja + 1)θ/2

sin θ/2
. (10)

This is the formula generally used as starting point for the computation of Black Hole entropy in LQG.
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6.2 Statistical distribution and occupation numbers

Let us call W (Nj) the number of distinguishable microstates with occupation numbers Nj . To identify
which states are distinguishable it is important to understand how the shape of the tessellated surface
depends on the spins ja and the normals ~na. This is discussed in detail in [10]. In particular, for a
given ordered choice of normals, we can ask what happens if we exchange the spins associated to two
faces. Clearly, if the value of the two spins is equal, the reconstructed shape is the same. On the other
hand, exchanging two different spins, we obtain a new shape. Therefore, the number of distinguishable
configurations for given occupation numbers is Ω(Nj) times the same factor that appears in Boltzmann
statistics:

W (Nj) =

(
∑

j Nj

)

!
∏

j Nj !
Ω(Nj) . (15)

We are interested in the distribution of the occupation numbers at equilibrium. The equilibrium dis-
tribution Nj is the one that maximizes the entropy S(Nj) = κ logW (Nj) with the constraint that
characterizes the ensemble. Here the constraint is that the average total area of the tessellated surface
is fixed to be the horizon area AH , Eq. (6). Such constraint can be introduced via a Lagrange multi-
plier µ. It plays the role of chemical potential for the number of facets. The condition the occupation
numbers have to satisfy is that the following variation with respect to Nj vanishes5:

0 =
∂

∂Nj

(

S(Nj) + µ κ
( AH

8π γL2
P

−
∑

j

√

j(j + 1)Nj

)

)

. (16)

We assume that the occupation numbers are large, Nj ≫ 1, and use Stirling’s approximation for the
factorials. In the following we call N∗

j the occupation numbers at equilibrium, i.e. when (16) is satisfied,
and N∗ =

∑

j N
∗
j the average total number of facets. At leading order in large N∗, we have that Eq.

(16) reduces to the following expression for the probability distribution pj

pj ≡
N∗

j

N∗ ≈ (2j + 1) e−µ∗

√
j(j+1) , (17)

where the value µ∗ of the Lagrange multiplier is determined by the requirement that the probability is
normalized to unity,

∑

j pj = 1. This is exactly the same equation

1 =
∑

j (2j + 1) e−µ∗

√
j(j+1) (18)

that appears in the counting done via other methods in LQG. The solution can be found numerically,
µ∗ ≃ 1.722.

The average total number of facets N∗ can be determined using Eq. (6). Defining the constant
α∗ =

∑

j

√

j(j + 1) pj ≃ 1.460, we have that the average number of facets is approximately the area of
the horizon in Planck scale units,

N∗ ≈ AH

8π γL2
P α∗ . (19)

Therefore it is large for a classical Black Hole, as assumed above. Using Eqs. (17) and (19), we can
determine the occupation numbers N∗

j as a function of the horizon area,

N∗
j ≈ (2j + 1) e−µ∗

√
j(j+1)

8π γL2
P α∗ AH . (20)

5The standard procedure discussed here has been used in the LQG derivation of Black Hole entropy by Khriplovich
[24] and by Ghosh and Mitra [25]. The novel feature here is that it is applied to SU(2) boundary degrees of freedom, not
to U(1) as in the previous calculations.
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The entropy at equilibrium is given by κ logW (N∗
j ), it a function of the horizon area, and it is straight-

forward to evaluate it using Eqs. (15) and (20). It is given by

S =
κ

4L2
P

µ∗

2πγ
AH . (21)

The area law (1) is reproduced. If we identify the Planck scale LP with
√
G~ and require the proportion-

ality constant to reproduce the κ/(4G~) appearing in Bekenstein-Hawking formula, we can determine

the value of the Immirzi parameter to be γ = µ∗

2π ≃ 0.274. This is exactly the same value of γ determined
in LQG (see [3], ENP approach).

Now some comments on the logarithmic corrections to the entropy. They come from the next-
to-leading contributions in the asymptotic expansion in large number of facets N∗. The probability
distribution can be corrected iteratively in this expansion. Because of the log in the definition of the
entropy, the only non-trivial contribution comes from the second terms on the right hand side of Eq.
(14). Discarding constants that do not depend on the horizon area, the leading order correction is

∆S = −3

2
κ log

AH

L2
P

. (22)

This is exactly the same correction found in the LQG literature by other methods, see [26].

To summarize, using semiclassical methods and the mapping to a polymer chain, we have easily
derived the standard results about the entropy of a classical non-rotating Black Hole that are generally
obtained in LQG via more involved methods6.

In next section I explore a more speculative direction. I consider a common phenomenon in polymer
physics, take seriously the correspondence with the Black Hole, and use it to suggest a new way to
describe the horizon of a rotating Black Hole in LQG.

7 Polymer stretching and rotating Black Holes

Suppose we stretch our polymer to an elongation R. Clearly, its entropy will decrease as for larger R
there are fewer microstates. For small elongation, we have that the number of microstates is Gaussianly
distributed,

W (L,R) ≈ W0(L) exp
(

−c
R2

L

)

, (23)

and the entropy depends on the stretching in a quadratic way,

S(L,R) = c
(

L − (2R)2

4L

)

. (24)

This is in fact the origin of the elasticity of rubber [22]. Moreover, for larger R, there is an extremal
value for the stretching: it has to be smaller than half the length of the polymer7. The question I want
to discuss in this section is if there is an analogous phenomenon for Black Holes.

6The standard LQG derivation involves an exact counting of microstates. The approximation of large classical Black
Hole is made only in the last stage of the calculation. This exact counting allows to study the fine-grained structure of
the entropy for small Black-Holes where quantum effects are important. See [3] for a review of these recent developments.

7Recall that we are considering a closed chain.
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When using the mapping described in section 5, the average tessellated surface corresponding to a
stretched polymer chain has an ellipsoidal geometry. It turns out that the horizon of a Kerr Black Hole
has this geometry when written in Kerr-Schild form (see [27]).

Notice that the angular momentum J of a rotating Black Hole is bounded by its extremal value,

GJ ≤ (GM)2 , (25)

similarly to what happens to the elongation R of the polymer. Moreover, for given mass, the larger is
the angular momentum of the Black Hole, the lower is its entropy. In particular, in the slowly rotating
case, Smarr formula applies: the dependence of the entropy on the angular momentum is quadratic and
given by

S(M,J) =
κ

G~
4π

(

(GM)2 − (GJ)2

4(GM)2

)

. (26)

When compared to Eq. (24), this expression of the entropy suggests the identification of the mass
squared of the Black Hole with the length L of the polymer, and the angular momentum J with the
elongation.

Now, let us go back to LQG and intertwiners. It turns out that we are led to a semiclassical
description of a Kerr horizon that is related to an old idea proposed by Krasnov [28] (see also [29]).
A stretched closed polymer corresponds to an intertwiner with “fixed intermediate recoupling spin”.
The intermediate spin J corresponds to the angular momentum of the Black Hole. The counting of
microstates can be done as in section 6: we divide the facets in two groups, associate occupation
numbers Nj and N ′

j to each group, and require that the normals ja~na sum up to J~ez for the first group,
and to its opposite for the second. The calculation of the entropy at equilibrium is straightforward and
the result is a quadratic dependence on the angular momentum J as in Smarr formula (26).

This direction looks promising, it would be interesting to explore it in more detail. In particular,
developing it involves identifying a notion of mass associated to the horizon of the Black Hole, a notion
that appears to be still missing in LQG.

8 Conclusions

In this paper, I have discussed a semiclassical description of the horizon microstates counted in Loop
Gravity. The description is in terms of shapes of a tessellated horizon. The problem of counting shapes
is solved mapping it to an equivalent statistical mechanical problem: the counting of conformations of
a closed polymer chain. Using familiar statistical mechanics methods, the Bekenstein-Hawking area law
and the logarithmic corrections to it are easily derived. This provides a simpler semiclassical derivation
of the LQG results on Black Hole entropy. The Immirzi parameter is found to have the same value
γ = 0.274 obtained by other methods. Moreover, the construction suggests a new way to describe in
LQG the horizon of a rotating Black Hole and to determine its entropy.

It is interesting to compare the description presented here to other possibly related approaches.
Long ago, in a pioneering work [30], Bekenstein proposed that the horizon surface is tessellated, with N
patches of area L2

P providing a Planck-scale cut-off. A definite degeneracy k is assumed for each patch.
From these assumptions, the area law can be straightforwardly derived: the number of microstates is
kN and the entropy is S = log k

L2

P

AH . The picture that arises from this construction is close to the one

described here: Loop Gravity provides a cut-off that is rather similar to this one; the difference is that,
besides knowing about the area of the quantum patches, it contains information about the possible
shapes of the horizon via its extrinsic curvature.

Another possibly interesting relation is the one with the notion of quasinormal modes and their
relevance in the derivation of Black Hole entropy [13]. Here the microstates are associated to the

10



oscillation modes of the horizon shape. The description in terms of a tessellated horizon contains such
modes. However, what is missing at the present stage is their dynamics. Ideas proper to the membrane
paradigm [15] may be useful in this respect.

To conclude, some more speculative remarks. Recently Dreyer [31] has suggested that the Hod
conjecture [32] about quasinormal modes and the area spectrum may be realized in Loop Gravity. For
this to happen, the log 3 appearing in the spectrum of quasinormal modes should arise from a spin j = 1
dominance. It is interesting to notice that the method we have used in section 6 gives as by-product
a derivation of the distribution of the occupation numbers at equilibrium. Therefore one can ask what
is the dominating spin: from Eq. (20), we find that in average 45% of the facets have spins j = 1

2 ,
26% have spin j = 1 , 14% have spin j = 3

2 , and 15% have a larger spin j > 3
2 . The average spin is

approximately one, 〈j〉 ≃ 1.05 . There may be a relation here to be further explored.
Finally, a rather natural question to ask is if there is a relation with the recent work of Verlinde on

the origin of gravity [33]. There, the analogy with the polymer plays a central role. In particular one
can ask if, in the setting discussed in this paper, there is an entropic force associated to the stretching
of the polymer. Taking seriously the correspondence outlined in section 7, one is lead to argue that
the work needed to raise the angular momentum of a Black Hole (without changing its mass) has an
entropic origin: it corresponds to a decrease in the number of accessible microstates.
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