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Generalized catalan numbers, sequences and polynomials

Cemal Koç, İsmail Güloğlu, Songül Esin

Abstract

In this paper we present an algebraic interpretation for generalized Catalan numbers. We describe them

as dimensions of certain subspaces of multilinear polynomials. This description is of utmost importance in

the investigation of annihilators in exterior algebras.

1. Introduction

Let V be a vector space over a field F and X ⊆ V. An element μ = ς1 + ς2 + . . . + ςn of the exterior
algebra E(V ) of V is said to be neat with respect to X if ςi = xi1∧xi2∧. . .∧xini

with xij ∈ X , j = 1, 2, . . . , ni

and ς1 ∧ ς2 ∧ . . . ∧ ςr �= 0. The annihilator of μ in E(V ) is described by products of the form

(ςi1 − ςj1) . . . (ςir − ςjr )ςk1 . . . ςkt

when Char(F ) = 0 (see [1]). Dimensions of subspaces of E(V ) spanned by certain elements of this type can

be used to extend results of [1] to remove the restriction Char(F ) = 0.

Motivated by this, we continue the study of certain type of ideals of the polynomial ring, studied in
[2]. To be more precise, let F [z] = F [z1, . . . , zn] be the ring of polynomials in n indeterminates over F . The
symmetric group Sn of degree n acts on this ring canonically as

fσ(z) = f(zσ(1), . . . , zσ(n)).

Letting

p(z) =
{

(z1 − z2) . . . (z2r−1 − z2r) if n = 2r
(z1 − z2) . . . (z2r−1 − z2r)z2r+1 if n = 2r + 1,

we can form the cyclic module

F [Sn]p(z)

over the group ring F [Sn]. In [2] it was proved that

F [Sn]p(z) = F [H ]p(z),
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where H is the subgroup of Sn fixing each z2k , k = 1, . . . , r. Identifying H with Sn−r and setting

z2i−1 = xi for i = 1, . . . , n − r ,

z2j = yj for j = 1, . . . , r,

F [z] = F [x; y] and p(z) = p(x; y)

pσ(z) = pσ(x; y) = p(xσ(1), . . . , xσ(n−r); y1, . . . , yr) for σ ∈ Sn−r

the results given in Theorem 6 and its corollaries in [2] can be summarized in the following form:

The polynomials pσ(x; y), where σ runs over 231-avoiding permutations in Sn−r , form an F -basis

for the cyclic module F [Sn]p(z) = F [Sn−r]p(x; y) and hence its dimension is the Catalan number Cd where

d = n − r is the degree of p(z).

Now we extend the space F [Sn]p(z) = F [Sn−r]p(x; y) so as to contain all multilinear polynomials

(zi1 − zj1) . . . (zil − zjl )zk1 . . . zkt where {i1,...,il;j1,..., jl;k1,...,kt} = {1, ..., n}

and construct a basis for this space by using truncated stack-sortable permutations on more than d letters. To
begin with, we give some remarks on (truncated) stack-sortable permutations and generalized Catalan numbers.

2. Truncated stack-sortable permutations and sequences

The sequence (Cn)n∈N of Catalan numbers where the n-th Catalan number Cn is defined as
1

n + 1

(
2n

n

)
occurs in many different situations. On page 219 of his book “Enumerative Combinatorics, Volume 2” R. P.
Stanley seeks to show that Cn counts the number of elements in 66 different combinatorial configurations.
Among these, the most interesting for the discussion in this paper, are the following:

(a) Cn is the number of lattice paths from (0, 0) to (n, n) with steps one unit to the right and one unit upward

never rising above the line y = x . In the literature these paths are also referred to as Dyck paths (see for

example, [3] or [4]).

(b) The Catalan number Cn is the number of finite sequences s = (s1, s2, . . . , s2n) of 2n terms in which half
of them are 0 and the others are 1 and

t∑
i=1

si ≥
t

2

for any t ≤ 2n. We will denote the set of such sequences by Sqn.

(c) A permutation [a1, a2, . . . , an] on a set of positive integers for which there exists no i < j < k with
ak < ai < aj is called a stack-sortable permutation or a 231-avoiding permutation. The Catalan number

Cn is the number of such permutations on a set of n integers. In the sequel the set of stack-sortable
permutations on a specified set of n integers will be denoted by Stn.

(d) In [2] it was proved that Cd = dimF (F [Sn]p(z)), where d is the integral part of
n + 1

2
.
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Now, we note some natural generalizations by considering the numbers C(n, m) for m ≤ n defined by

C(n, m) =
(

n + m

m

)
−

(
n + m

m − 1

)
=

n − m + 1
n + 1

(
n + m

m

)
,

with the usual convention
(

k

l

)
= 0 when l > k or l < 0. Since C(n, n) = Cn, they obviously generalize

Catalan numbers, and they are referred as generalized Catalan numbers.

(a ′ ) C(n, m) is the number of lattice paths from (0, 0) to (n, m) with steps one unit to the right and one
unit upward never rising above the line y = x . This can be seen by using D. André’s ingenious “reflection
principal” (see for example [3], pgs 230, 265.).

(b ′) In [2] to each stack-sortable permutation τ ∈ Sn it was assigned a sequence ϕτ = (s1, s2, . . . , sn; s′1,

s′2, . . . , s
′
n) of 1’s and 0’s by the rule

sτ(n) = 1, and s′n = 0

sτ(k) =
{

1 if τ (k) < τ (k + 1)
0 if τ (k) > τ (k + 1) , and s′k = 1 − sτ(k) for k < n.

Further, it was proven for σ, τ ∈ Stn that we have evaluations
pσ(ϕσ) = ±1, and pσ(ϕτ ) = 0 when σ > τ ; that is to say when

∃ k ∈ {1, . . . , n} such that σ(i) = τ (i) for all i > k and σ(k) > τ (k).

This proves in particular that the composite map

τ → ϕτ = (s1 , s2, . . . , sn; s′1, s
′
2, . . . , s

′
n) → sτ = (s1, s

′
1, s2, s

′
2, . . . , sn, s′n)

is one to one. Now, we will prove that sτ = (s1, s
′
1, s2, s

′
2, . . . , sn, s′n) is a sequence in Sqn described in

(b) above. This will establish a canonical bijection between 231-avoiding permutations and Dyck path
through stack-sortable polynomials. Although there are various other constructions of bijections of this
type, our canonical bijection will be efficiently used in the rest of this paper (see for example, [4]).

Lemma 1 We have {sτ | τ ∈ Stn} = Sqn.

Proof. Since sτ(i) = 1 − s′i , the equality of the number 0’ s and 1’ s in sτ is obvious. So we need to show

that
t∑

i=1

sτ [i] ≥ t

2
for τ ∈ Stn . We proceed by induction on n. It is obvious for n ≤ 2. Assume that n ≥ 3 and

the inequality is true for any stack-sortable permutation of degree l < n . Let k = τ−1(n). By stack-sortability

of τ, τ (i) < k for any i < k and for j ≥ k we have k ≤ τ (j) ≤ n .

Also, let ν be the restriction of τ to {1, . . . , k − 1}. Then ν ∈ Stk−1 . Let μ ∈ Sn−k+1 be defined by

μ(j) = τ (k − 1 + j) − (k − 1). Then μ ∈ Stn−k+1 and the sequence (s1, s
′
1, . . . , sn, s′n) corresponding to τ is

obtained by concatenating the sequences corresponding to ν and μ. So if k > 1, our induction hypothesis gives
the result. So we can assume that τ (1) = n.
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Let
μ = [τ (2), τ (3), . . . , τ(n)].

Clearly μ ∈ Stn−1. Let sτ = (a1, a
′
1, . . . , an, a′

n) and sμ = (b1, b
′
1, . . . , bn−1, b

′
n−1). We see that

(b1, b
′
1, . . . , bn−1, b

′
n−1) = (a1, a

′
2, a2, a

′
3, a3, . . . , a

′
n−1, an−1, a

′
n),

i.e. bi = ai and b′i = a′
i+1 for i = 1, 2, ..., n − 1. By induction we assume that for any t the sequence

consisting of the first t terms of the sequence sμ satisfies
∑t

i=1 sμ [i] ≥ t

2
. As we have

t∑
i=1

sτ [i] −
t−2∑
i=1

sμ [i] = a′
1 + au,

where u is the greatest integer in
t + 1

2
, and a′

1 = 1 we see that
t∑

i=1
sτ [i] ≥ t

2
. We have shown that

{sτ | τ ∈ Stn} ⊆ Sqn and equality holds since |Stn| = |Sqn| = Cn. �

Take two positive integers n and p with p ≤ n and consider sequences s of 2n terms s [i] ∈ {0, 1} , such
that,

t∑
i=1

s [i] ≥ t

2
for all t ≤ 2n − p and s [2n − p + 1] = · · · = s [2n] = 0.

2n∑
i=1

s [i] = n

Obviously, labelling steps to the right as 1 and those upward as 0 such sequences are seen to be in one-to-
one correspondence with paths described in (a ′ ) above, with m = n − p . Hence their number is C(n, m) =

C(n, n− p). They will be called p-truncated sequences in Sqn and their set will be denoted by Sq
(p)
n .

(c ′ ) A stack-sortable permutation σ ∈ Stn will be said to be p− truncated if its sequence sσ is p-truncated.

The set of all p-truncated stack-sortable permutations is denoted by St
(p)
n . Obviously, St

(1)
n = Stn and

St
(p)
n ⊂ St

(q)
n when q < p.

Now we characterize truncated stack sortable permutations intrinsically.

Theorem 2 For any 0 ≤ p ≤ m, we have

St(p)
m = {τ ∈ Stm | τ (r + 1) < τ (r + 2) < · · · < τ (m) ≤ d},

where d is the integral part of
2m− p + 1

2
and r = 2m − p − d.
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Proof. Let τ be a stack-sortable permutation which satisfies

τ (r + 1) < τ (r + 2) < · · · < τ (m) ≤ d.

Then, sτ(r+1) = · · · = sτ(m) = 1, therefore

s′r+1 = · · · = s′m = 0

and further
τ−1(k) ≤ r for k = d + 1, d + 2, · · · , m.

On the other hand, it follows from this and the stack-sortability of τ that

τ−1(m) < τ−1(m − 1) < · · · < τ−1(d + 1) ≤ r

and hence
ττ−1(k) > τ (τ−1(k) + 1) for k = d + 1, d + 2, · · · , m,

which in turn yields sττ−1 (d+1) = · · · = sττ−1 (m) = 0 , namely

sd+1 = · · · = sm = 0,

in addition to s′r+1 = · · · = s′m = 0, which is obtained above. Thus sτ ∈ Sq
(p)
m and hence τ ∈ St

(p)
m .

Conversely, if sτ is p-truncated for τ ∈ Stm , then

sd+1 = · · · = sm = 0 = s′r+1 = · · · = s′m

and hence,
sτ(r+1) = · · · = sτ(m) = 1.

Therefore,

τ (r + 1) < τ (r + 2) < · · · < τ (m).

If we had τ (m) = d + t for some t ≥ 1 we would get sτ(m) = sd+t = 0 which contradicts sτ(m) = 1. Thus

τ (r + 1) < τ (r + 2) < · · · < τ (m) ≤ d

that is τ ∈ {τ ∈ Stm | τ (r + 1) < τ (r + 2) < · · · < τ (m) ≤ d}. This completes the proof. �

Now, we are in a position to give our basis construction for certain subspaces of multilinear polynomials.
For this purpose we introduce the algebra A which is the quotient ring of the polynomial ring F [x; y] by

the ideal J generated by {x2
1, . . . , x

2
n−r; y

2
1 , . . . , y

2
r}. Letting ξi = xi + J , and ηj = yj + J we see that

A = F [ξ; η] = F [ξ1, . . . , ξn−r; η1, . . . , ηr] with ξ2
i = 0 and η2

j = 0 for i = 1, 2, . . .n − r and j = 1, 2, . . .r. It is

a graded ring with respect to the ordinary grading induced from degrees of polynomials, say

A=F⊕A1⊕ · · ·⊕An,
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and its ideal I generated by F [Sn−r]p(ξ; η) is a graded ideal:

I = Id⊕Id+1⊕ · · · ⊕ In =
n⊕

m=d

Im where d = n − r = deg(p(x; y)).

Note that d = r =
n

2
or d = r + 1 =

n + 1
2

according to n is even or odd and any homogenous component Im

consists of all linear combinations of products of the form

(ξi1 − ηj1) . . . (ξit − ηjt)ξk1 . . . ξkpηl1 . . . ηlq ,

where {i1, ..., it ; j1, ..., jt ; k1, ..., kp; l1, ..., lq} = {1, ..., n}, t + p + q = m and q = p or p − 1 according as n

is even or odd. We also note that Im = IdAl when m = d + l. Furthermore we notice that the natural algebra
homomorphism π : F [x; y] → F [ξ; η] for which

π(xk) = ξk and π(yk) = ηk

induces a linear isomorphism between Im and Im, the space of multilinear polynomials whose images are
contained in Im. Regarding this isomorphism elements of F [ξ; η] will be referred to as multilinear polynomials.

3. An F-basis for the ideal I

As we pointed out in (d) above it was proved in [2] that Id is of dimension Cd, and it has the canonical

basis {pσ(ξ; η) | σ ∈ Std}. Therefore, Id+l = IdAl is spanned by the products pσ(ξ, η)M where M is a
monomial in Al and σ ∈ Std. Since

(ξσ(1) − η1) . . . (ξσ(i) − ηi) . . . (ξσ(r) − ηr)ηi

= (ξσ(1) − η1) . . . (ξσ(i−1) − ηi−1)(ξσ(i+1) − ηi+1) . . . (ξσ(r) − ηr)ξσ(i)ηi

= −(ξσ(1) − η1) . . . (ξσ(i) − ηi) . . . (ξσ(r) − ηr)ξσ(i),

Ir+l is spanned by the products

pσ(ξ, η)M = (−1)l
∏
j∈L

ξσ(j)ηj

∏
i∈R−L

(ξσ(i) − ηi),

where M =
∏

j∈L

ξσ(j) , L ⊆ R = {1, 2, . . . , d} with |L| = l and σ ∈ Sd.

In order to investigate the homogeneous component Im we introduce the algebra A = F [ξ; η] =

F [ξ1, . . . , ξm; η1, . . . , ηm] subject to the relations ξ
2

i = 0 and η2
i = 0 for i = 1, 2, . . .m as above. For any

positive integer d, we consider the natural projection θ of the algebra A = F [ξ; η] = F [ξ1, . . . , ξm; η1, . . . , ηm]

onto A = F [ξ; η] = F [ξ1, . . . , ξd; η1, . . . , ηn−d] for which

θ(ξi) =
{

ξi for i = 1, . . . , d
0 for i = d + 1, . . . , m

; θ(ηi) =
{

ηi for i = 1, . . . , n − d
0 for i = n − d + 1, . . . , m

Now, we can prove the following theorem.
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Theorem 3 For the integers m and n as before, the set

{θ(pτ (ξ; η)) | τ ∈ St(2m−n)
m }

is a basis for Im.

Proof. It is obvious that θ(pτ (ξ; η)) ∈ Im and hence θ(F [Sm]p(ξ; η)) = Im. Thus for any θ(f(ξ, η)) ∈ Im

we have

θ(f(ξ, η)) = θ

( ∑
τ∈Stm

aτpτ (ξ; η)

)

=
∑

τ∈Stm

aτθ(pτ (ξ; η)).

For each stack-sortable τ, either τ (r + l) > d for some l ≥ 1 or τ (r + l) ∈ {1, 2, · · · , d} for all l ≥ 1. In the

former case θ(pτ (ξ; η)) = 0 and in the latter case by permuting τ (r + 1), · · · , τ (m) to bring them into the
natural order and leaving others as they stand we obtain a new permutation ρ satisfying

ρ(r + 1) < · · · < ρ(m) ≤ d

which is still stack-sortable contained in St
(2m−n)
m . This yields θ(pτ (ξ; η)) = θ(pρ(ξ; η)). Thus any θ(f(ξ, η)) ∈

Im can be written in the form

θ(f(ξ, η)) =
∑

ρ∈St
(2m−n)
m

bρθ(pρ(ξ; η)),

which shows that {θ(pρ(ξ; η)) | ρ ∈ St
(2m−n)
m } spans Im. As for linear independence, we note first that, for any

σ, τ ∈ St
(2m−n)
m , by writing

ϕσ = (s1, . . . , sd; s′1, . . . , s
′
n−d),

when
ϕσ = (s1, . . . , sm; s′1, . . . , s

′
m) = (s1, . . . , sd, 0, . . . , 0; s′1, . . . , s

′
n−d, 0, . . . , 0)

we have
pτ (ϕσ) = θ(pτ (ξ; η))(ϕσ).

So a relation ∑
τ∈St

(2m−n)
m

aτθ(pτ (ξ; η)) =
s∑

i=1

aτiθ(p
τi (ξ; η)) = 0

with aτs �= 0 and τs > τi for i = 1, . . . , s− 1 would yield

0 =
s∑

i=1

aτiθ(p
τi (ξ; η))(ϕτs

) = aτs ,

which is a contradiction. �

As a consequence of this theorem we easily deduce the following theorem.
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Theorem 4 The dimension of the homogeneous component Im of the ideal I of
F [ξ1, . . . , ξn−r; η1, . . . , ηr] which is generated by F [Sn−r]p(ξ; η) is

dimIm =
2m− n + 1

m + 1

(
n

m

)

and hence

dimI =
(

n

r

)
.

Proof. By the previous theorem, (2m − n)-truncated stack-sortable polynomials form a basis for Im , and
thus its dimension is

dimIm = C(m, m − (2m − n))

= C(m, n − m)

=
(

n

n − m

)
−

(
n

n − m− 1

)

=
2m − n + 1

m + 1

(
n

m

)
.

This yields

dim I =
n∑

m=d

dimIm =
n∑

m=d

(
(

n

n − m

)
−

(
n

n − m− 1

)
)

=
(

n

n − d

)

=
(

n

r

)

as asserted. �

Finally we restate our results for polynomials.

Corollary 5 The space Im spanned by multilinear polynomials

(xi1 − yj1) . . . (xit − yjt)xk1 . . . xkpyl1 . . . ylq

in unknowns xi1 , . . . , xid; yi1 , . . . , yir where

{i1, ..., it; j1, ..., jt; k1, ..., kp; l1, ..., lq} = {1, ..., n}

and t + p + q = m, has a basis consisting of the pσ(x; y) where σ runs over all (2m−n)-truncated polynomials

and hence it is of dimension C(m, n− m) .

448
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Proof. As mentioned at the end of Section 2, the natural algebra homomorphism π : F [z] = F [x; y] → F [ξ; η]
for which

π(xk) = ξk and π(yk) = ηk

induces a linear isomorphism between Im and Im with π(pσ(x; y)) = pσ(ξ; η) and the result follows. �
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