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Swan conductors and torsion in the logarithmic de Rham complex

Sinan Ünver

Abstract

We prove, for an arithmetic scheme X/S over a discrete valuation ring whose special fiber is a strict

normal crossings divisor in X, that the Swan conductor of X/S is equal to the Euler characteristic of the

torsion in the logarithmic de Rham complex of X/S. This is a precise logarithmic analog of a theorem by

Bloch [1].

1. Introduction

Let A be a discrete valuation ring with maximal ideal m, perfect residue field k, and field of fractions
K, S = SpecA, with closed point s, and X/S an arithmetic surface over S , i.e. an integral, regular scheme
which is proper, flat and of relative dimension one over S . We also assume that the reduced special fiber Xs,red

is a strict normal crossings divisor in X, by this we mean that Xs,red is a normal crossings divisor in X, and

that the irreducible components of Xs,red are regular schemes.

There are two numerical invariants for X/S. One of the invariants is based on etale cohomology: the
Swan conductor of the Galois representation on the cohomology of the generic fiber; and the other one on de
Rham cohomology: the Euler characteristic of the torsion in the logarithmic de Rham complex. Both invariants
measure the bad reduction of the special fiber of the arithmetic surface. Below we will prove that these two
numerical invariants are in fact the same.

We use [5] as a general reference on logarithmic geometry. Let us endow S with the log structure
corresponding to the natural inclusion

OS\{0} → OS .

Similarly, endow X with the log structure corresponding to the natural map

OX ∩ j∗O∗
XK

→ OX ,

where j : XK → X is the inclusion. Then the structure map from X to S becomes a map of fine log schemes.
Let Ω̇X/S,log denote its logarithmic de Rham complex,

OX → Ω1
X/S,log → Ω2

X/S,log.
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ÜNVER

Taking A-torsion in Ω̇X/S,log, we obtain the complex Ω̇X/S,log,tors, which is a complex supported on the special

fiber of X. We will be mainly interested in the Euler characteristic χ(Ω̇X/S,log,tors) of Ω̇X/S,log,tors, which will

be defined as follows. If K˙ is a bounded complex of coherent sheaves on X that is exact on the generic fiber
of X, the hypercohomology groups Ḣ(X, K )̇ are modules of finite length over A, and we put

χ(K )̇ =
∑

i

(−1)ilengthA(Hi(X, K )̇).

On the other hand, XK/K has a Swan conductor Sw(XK/K), defined as follows (cf. [1], [6]). Let K′

be the strict henselization of the completion of K (with respect to its discrete valuation), and � be a prime

different from the characteristic p of k. The action of the wild inertia group of Gal(K
′
/K′) on Hi

ét(XK
′ , Q�)

factors through the wild inertia group of Gal(L/K′), for a finite Galois extension L of K′, being the continuous
action of a pro-p group on a finite dimensional �-adic vector space. Let SWL/K′ be the Swan module over

Z� , which is the projective Z�[Gal(L/K′)] module having as character the Swan character of Gal(L/K′). Then

SwK/K(Hi
ét(XK , Q�)) is defined to be

dimQ�Hom
Z�[Gal(K

′
/K′)](SWL/K′ , Hi

ét(XK
′ , Q�)).

This is independent of the choice of L since for a finite Galois extension L′ of K′ containing L; we have

SWL/K′ = SWL′/K′ ⊗Z�[Gal(L′/K′)] Z�[Gal(L/K′)].

Finally, we define

Sw(XK/K) =
2∑

i=0

(−1)iSwK/K(Hi
ét(XK , Q�)).

Then we have the following theorem.

Theorem 1 With the notation above, we have

χ(Ω̇X/S,log,tors) = −Sw(XK/K ).

This is a logarithmic version of a theorem by Bloch ([1], Theorem 1). In fact we follow the method in [1] closely.
However we are able to reduce some of the steps by explicit computations since our hypotheses on the special
fiber of X/S makes this case easier to handle than the general situation in [1]. In some sense, Bloch’s Theorem

1 in [1] says that χ(Ω̇X/S,tors) counts the total number of vanishing cycles (including the wildly vanishing ones).

Putting the above log structure on the scheme X/S can be considered as, according to the philosophy of Kato

and Illusie, obtaining some kind of space that contains the generic fiber XK/K but is less than the total space

X/S and, at the same time, remembers some of the information on the special fiber. Then the above formula in

the logarithmic case may be viewed as saying that χ(Ω̇X/S,log,tors) counts the total number of vanishing cycles

of X/S that, in some sense, vanish before they reach the special fiber. From the philosophy of logarithmic
geometry, then the Theorem 1 above is completely as expected.
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Here is a brief outline of the paper. We begin with a lemma on the local structure of maps of the form
X/S, which will be important in explicit computations later on. Then, applying the Riemann-Roch theorem
to the torsion part of the logarithmic de Rham complex, we express the Euler characterstic of this complex in
terms of the localized Chern character of this complex. Next, we show in Lemma 2 that the localized character
of this complex is the same as that of the more manageable complex C ·. Next in Lemmas 3 and 4, we show

that the localized Chern character of this complex is the same as the localized second Chern class of Ω1
X/S,log .

Combining this with the conductor formula of Bloch [1] and a Theorem in [6] that computes the difference

between the difference between the second localized Chern classes of Ω1
X/S and Ω1

X/S,log finishes the proof. In

the last part of the paper we give some applications of the main result.

2. Proof

We need a lemma on the local structure of X/S, c.f. Proposition 4.4.4 and Corollary 4.4.7 of [6].

Lemma 1 For each point x ∈ Xs there is a Zariski open neighborhood U of x in X , a scheme P , etale over

A2
S = SpecA[t, s] , and a closed immersion i : U → P , such that U is defined in P by an equation of the form

π − utasb , where π is a uniformizer of A , u is a unit in P , t and s form a system of parameters in OX,x

when restricted to X , and a, b are nonnegative integers.

Proof. Since Xs,red is a strict normal crossings divisor in X, there are at most two components of Xs,red

passing through x. If there is only one component we choose t to be a local defining function for that com-
ponent, and choose s so that {t, s} is a system of parameters at x. If there are two components we choose t

and s to be the local defining functions for these two components. Now, by considering the multiplicity of Xs

along the components of Xs,red passing through x, we see that Xs is defined by tasb = 0 in a neighborhood of

x in X for some nonnegative integers a and b. Using t and s, we get a map from an open neighborhood U

of x to A2. Since {s, t} is a system of parameters at t, and the residue field k is perfect, by restricting U if
necessary, we may assume that this map is unramified. By restricting U if necessary, we can factor this map as

a closed immersion into a scheme P followed by an etale map from P to A2
S ([4], Corollaire 18.4.7). Now since

π/(tasb) is a unit in U, by restricting U and P if necessary, we can find a unit u in P such that π − utasb

vanishes on U. Since U is a divisor in P, and π − utasb vanishes on U to see that U is defined by π − utasb,

it suffices to note that π − utasb is not in m2
P,x (note that, since P is smooth over S, {π, t, s} is a system of

parameters for OP,x ). �

Continuing with the notation of the lemma and denoting the conormal sheaves with N, we get an exact
sequence:

0 → NU/P → Ω1
P/S |U → Ω1

U/S → 0.

In fact, this sequence is exact for any closed imbedding of U into a scheme P smooth over S. To see the

injectivity of the map NU/P → Ω1
P/S |U we proceed as follows. If we denote the kernel of this map by M, we

see that since UK/K is smooth, the map is injective over UK , and hence M |UK = 0. On the other hand, since
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the imbedding U → P is regular NU/P is locally free. And therefore M, being a subsheaf of a locally free

coherent sheaf on an integral scheme U that is supported on a proper closed subscheme of U, is zero. In the
following we endow P with the log structure associated with the inclusion

O∗
V → OP ,

where V = P − {tasb = 0}. We denote by Ω1
P/S,log the sheaf of log differentials where we endow S with the

trivial log structure. Then for the logarithmic differentials we get the similar exact sequence

0 → NU/P ⊗A m−1 → Ω1
P/S,log|U → Ω1

U/S,log → 0,

where the map

δ : NU/P ⊗A m−1 → Ω1
P/S,log|U

is the map sending

(π − utasb) ⊗ π−1 to u−1du + a · d log(t) + b · d log(s).

This resolution of Ω1
U/S,log gives a map

αU : Ω1
U/S,log → detΩ1

U/S,log
∼= Hom(NU/P ⊗A m−1, Λ2Ω1

P/S,log|U),

by the formula

αU(a)(b) = ã ∧ δ(b),

where ã is a section of Ω1
P/S,log that maps to a. Since any two resolutions of Ω1

U/S,log are homotopic and

the maps αU for different resolutions are compatible with the isomorphisms induced by the homotopies on

detΩ1
U/S,log , we get a map

α : Ω1
X/S,log → detΩ1

X/S,log.

Let ZU be the closed subscheme of U defined by the section of the locally free sheaf Ω1
P/S,log corresponding to

δ. As above, this does not depend on the imbedding, and hence defines a closed subscheme Z of X. Note that

Ω1
X/S,log is an invertible sheaf over X − Z, and hence α|X−Z is an isomorphism. Let C˙ denote the complex

α : Ω1
X/S,log → detΩ1

X/S,log,

with Ω1
X/S,log in degree 1.

For any bounded complex K˙ of locally free coherent sheaves on X, which is exact outside a proper closed
subscheme Y, we have the bivariant class

chX
Y (K )̇ in A(Y → X)Q

([3], Chapter 18), which is the same for any other bounded complex of locally free coherent sheaves that is quasi-

isomorphic to K˙ and exact outside Y. Therefore we can define chX
Y (F ) for any coherent sheaf F supported on
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Y. If Y is Xs we will use the notation chs for chX
Xs

. Now by the Riemann-Roch theorem ([3], Chapter 18; [7],

Lemma 2.4), we have

χ(Ω̇X/S,log,tors) = deg(chs(Ω̇X/S,log,tors) ∩Td(X/S)),

where Td(X/S) is the Todd class of X/S. Since C˙ is exact outside Z, after choosing any resolution of Ω1
X/S,log

we can define chs(C )̇. Using the following lemma, we will work with C˙ instead of Ω̇X/S,log,tors.

Lemma 2 With the notation above, we have

chs(C )̇ = chs(Ω̇X/S,log,tors).

Proof. Note that ker(α) = Ω1
X/S,log,tors, since detΩ1

X/S,log is an invertible sheaf and α is an isomorphism

on the generic fiber. Therefore to finish the proof of the lemma we need to show that chs(coker(α)) =

chs(Ω2
X/S,log,tors). First note that

coker(α) ∼= detΩ1
X/S,log ⊗OZ .

To see this we can work locally and choose an imbedding of U as in Lemma 1. Let

u−1du + a · d log(t) + b · d log(s) = (a + t · x)d log(t) + (b + s · y)d log(s),

for some x, y in OU . Then Z is defined in U by the ideal

(a + t · x, b + s · y), if a �= 0 and b �= 0, or by

(a + t · x, y), if a �= 0 and b = 0.

Ω1
X/S,log is generated by dt, ds, d log(t), (if a �= 0), and d log(s) (if b �= 0) subject to the relations

(a + t · x)d log(t) + (b + s · y)d log(s) = 0,

t · d log(t) = dt, and s · d log(s) = ds.

Note that we may view detΩ1
X/S,log as a subsheaf of Ω1

XK /K,log. If a �= 0 and b �= 0 detΩ1
X/S,log is generated by

1
b + s · yd log(t), if b + s · y �= 0, or by

1
a + t · xd log(s), if a + t · x �= 0.

Assume without loss of generality that b+s·y is nonzero. Then the image of Ω1
X/S,log in detΩ1

X/S,log is generated

by

d log(t) = (b + s · y)
1

b + s · yd log(t), and d log(s) = (a + t · x)
1

b + s · yd log(t).

Therefore the cokernel of α is detΩ1
X/S,log ⊗OZ . If a �= 0 and b = 0 then detΩ1

X/S,log is generated by

1
y
d log(t), if y �= 0, or by

1
a + t · xd log(s), if a + t · x �= 0,
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in Ω1
XK/K,log, and we similarly arrive at the conclusion.

Next, if a �= 0 and b �= 0, Ω2
X/S,log is generated by d log(t) ∧ d log(s) with the relations

(a + t · x)d log(t) ∧ d log(s) = 0, and (b + s · y)d log(t) ∧ d log(s) = 0.

And if a �= 0 and b = 0, Ω2
X/S,log is generated by d log(t) ∧ ds with the relations

(a + t · x)d log(t) ∧ ds = 0, and yd log(t) ∧ ds = 0.

This shows that Ω2
X/S,log is an invertible sheaf on Z. And using again the local desription we see that Ω1

X/S,log|Z
is locally free of rank 2, and we have

Ω2
X/S,log,tors = Ω2

X/S,log = Λ2Ω1
X/S,log|Z.

Restricting the resolution of Ω1
X/S,log over U to ZU , we obtain

0 → L1i∗Ω1
X/S,log|ZU → NU/P |ZU ⊗A m−1 → Ω1

P/S,log|ZU → Ω1
U/S,log|ZU → 0,

where i : Z → X is the inclusion. Here, the second and the fourth arrows are isomorphisms. In particular, we
have

L1i∗Ω1
X/S,log|ZU

∼= NU/P |ZU ⊗A m−1.

The exact sequence also shows that

Λ2Ω1
X/S,log|Z ∼= detΩ1

X/S,log|Z ⊗ L1i∗Ω1
X/S,log.

Using a filtration of OZ with graded pieces supported on integral subschemes of Z, we see that to prove the

lemma it is enough to show that L1i∗Ω1
X/S,log|T ∼= OT , for any integral curve T in Z. For the rest of the proof

we use the method of the proof of Proposition 3.1 in [7], in this very explicit (and easier) case. First note that
if k : U → Q is a closed immersion with Q smooth over S, then k is a regular immersion. Since the inclusion
TU → U is also a regular immersion, we have an exact sequence of locally free sheaves on TU :

0 → NU/Q|TU → NTU/Q → NTU /U → 0.

And similarly, we have an exact sequence

0 → NQs/Q|TU → NTU /Q → NTU /Qs
→ 0;

in particular, NQs/Q|TU → NTU /Q is injective. Furthermore, for an immersion U → P as in Lemma 1, we claim

that

0 → NPs/P |TU → NTU /P → NTU /U → 0

is exact. To see this we only need to check that

NPs/P |TU = ker(NTU /P → NTU /U ).
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Since this is a local question on X, by restricting U and P we will assume that TU is defined by t on U .

Denoting π − utasb by g, we need to show that

π/(π2, πt) = ker((t, g)/(t, g)2 → (t, g)/(t2, g)).

Since by assumption T is contained in Z, X/S is not smooth along T , and so a ≥ 2. Therefore utasb ∈ (t2),

and π ∈ (t2, g). This shows that π/(π2, πt) is in the kernel. To see the converse we only need to note that

g − π = utasb = 0 in (t, g)/(t, g)2,

since utasb ∈ (t2). This proves the claim. Tensoring the exact sequence with m−1 and observing that

NPs/P |TU ⊗A m−1 ∼= OTU ,

we obtain the exact sequence

0 → OTU → NTU /P ⊗A m−1 → NTU /U ⊗A m−1 → 0.

On the other hand, using the isomorphism

L1i∗Ω1
X/S,log|TU

∼= NU/P |TU ⊗A m−1

and the exact sequence

0 → NU/P |TU ⊗A m−1 → NTU /P ⊗A m−1 → NTU /U ⊗A m−1 → 0,

we get an exact sequence

0 → L1i∗Ω1
X/S,log|TU → NTU /P ⊗A m−1 → NTU /U ⊗A m−1 → 0.

Therefore we see that
L1i∗Ω1

X/S,log|TU
∼= OTU

by viewing them both as the kernel of

NTU /P ⊗A m−1 → NTU /U ⊗A m−1.

If we take imbeddings of U into P and P ′ as above, taking Q = P × P ′, we get the inclusions

L1i∗Ω1
X/S,log|TU → NU/Q|TU ⊗A m−1 → NTU/Q ⊗A m−1,

and OTU
∼= NQs/Q|TU ⊗A m−1 → NTU /Q ⊗A m−1.

Using this we see that the isomorphism L1i∗Ω1
X/S,log|TU

∼= OTU does not depend on the choice of the local

imbedding satisfying Lemma 1. Therefore we obtain

L1i∗Ω1
X/S,log|T ∼= OT .
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This finishes the proof of the lemma. �

Using Lemma 2 we see that

χ(Ω̇X/S,log,tors) = deg(chs(Ω̇X/S,log,tors) ∩ Td(X/S)) = deg(chs(C )̇ ∩ Td(X/S)).

Let
F˙ : 0 → Fm → · · · → F0 → 0

be a complex of locally free coherent sheaves on X, which is exact outside a proper closed set Y. This exact
sequence on X − Y gives a canonical trivialization over X − Y, of the line bundle

detF˙= ⊗0≤i≤m(detFi)⊗(−1)i

.

This gives a rational section s of detF .̇ Denote the image of the divisor of s in the Chow group A∗Y of Y, by
γ. We will need the following lemma.

Lemma 3 We have the equality

chX
Y,1(F )̇ ∩ [X] = γ, in A∗Y.

Proof. Let fi = rankFi, F−1 = 0, and

Gi = Grassfi(Fi ⊕ Fi−1), the Grasmannian of fi planes in Fi ⊕ Fi−1,

for 0 ≤ i ≤ m. Let ξi be the tautological subbundle, of rank fi, of Fi ⊕ Fi−1 on Gi. Let

G = Gm × · · · × G0, with the projections pi : G → Gi, and π : G → X.

Let

ξ =
m∑

i=0

(−1)ip∗i ξi, and det ξ = ⊗0≤i≤m(det p∗i ξi)⊗(−1)i

.

Furthermore, we denote the kernel of di : Fi → Fi−1 by Ki, of rank ki, and Hi = Grasski(Fi). Finally, let W

be the closure of ϕ(X × A1) in G × P1, where ϕ : X × A1 → G× A1 is the map sending (x, λ) to

(Graph(λ · dm(x)), · · · , Graph(λ · d0(x)), λ).

Over ϕ((X − Y ) × A1), detξ has a natural trivialization since

det p∗i ξi
∼= detπ∗Ki ⊗ det π∗Ki−1 over ϕ((X − Y ) × A1).

This trivialization gives a divisor, say D, on ϕ(X × A1). D is supported on GY × A1.

π∗([D0]) = γ in A∗Y

Let t ∈ P1 − {0,∞}. As

π∗([D0]) = π∗([Dt]),
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we will be done if we can show that π∗([Dt]) is equal to chX
Y,1(F )̇∩ [X]. For this, by definition, we need to show

that
π∗([Dt]) = π∗(ch1(ξ) ∩ [T ]),

where [T ] = [W∞]− [X̃ ], and X̃ is the irreducible component of W∞ which projects birationally onto X. Note
that over X − Y, ϕ can be extended to a function

ϕ : (X − Y ) × P1 → G × P1

as follows. For (x, [λ0, λ1]) ∈ (X − Y ) × P1, and 0 ≤ i ≤ m, let ϕ′
i(x, [λ0, λ1]) denote the point of Gi over x

that corresponds to

{(vi, vi−1) ∈ Fi(x) ⊕ Ki−1(x) : λ0vi−1 = λ1divi} ⊆ Fi(x) ⊕ Fi−1(x).

Then
ϕ(x, [λ0, λ1]) = (ϕ′

m(x, [λ0, λ1]), · · · , ϕ′
0(x, [λ0, λ1]), [λ0, λ1]).

And X̃ is the closure of ϕ((X − Y ) × {∞}) in G × {∞}. Now as

det p∗i ξi
∼= detπ∗Ki ⊗ det π∗Ki−1 over ϕ((X − Y ) × (P1 − {0})),

det ξ has a natural trivialization over ϕ((X − Y ) × (P1 − {0})), which gives a divisor, say D′, on W − W0,

supported on GY × (P1 − {0}). If t ∈ P1 − {0,∞} then [Dt] = [D′
t] in A∗Wt being divisors associated to the

same line bundle detξ|Wt . Noting that [D′
t] = [D′

∞], we only need to show that

π∗(D′
∞) = π∗(D′.T ) in A∗Y,

or that

π∗(D′
∞.X̃) = 0 in A∗Y.

If
Ψ : X − Y → H is the map that sends x to (Km(x), · · · , K0(x)), and

ι : H → G is the map that sends (Vm, · · · , V0) to (Vm ⊕ Vm−1, · · · , V0),

then
X̃ = ι(Ψ(X − Y )).

However, as ι∗(D′
∞) is the divisor corresponding to a section of

⊗0≤i≤mdet ι∗ξ⊗(−1)i

i
∼= ⊗0≤i≤m(det q∗i ζi ⊗ det q∗i−1ζi−1)⊗(−1)i ∼= OH ,

that is nonzero on HX−Y , where ζi is the tautological subbundle of Hi, and

qi : H → Hi

is the projection, we see that

π∗(D′
∞.X̃) = 0.
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This finishes the proof of the lemma. �

Let 0 → Em → · · · → E1 → Ω1
X/S,log → 0 be a resolution of Ω1

X/S,log by locally free sheaves of finite

rank. Now consider the complex

E˙ : 0 → Em → · · · → E1 → detΩ1
X/S,log → 0,

where the map E1 → detΩ1
X/S,log is the composition of the differential

d1 : E1 → Ω1
X/S,log,

and the canonical map

α : Ω1
X/S,log → detΩ1

X/S,log.

Applying Lemma 3 to E˙ we obtain

χ(Ω̇X/S,log,tors) = deg(chs(C )̇ ∩ Td(X/S))

= deg(chs(E)̇ ∩ Td(X/S)) = deg(chs,2(E)̇ ∩ [X]).

We will need the following lemma.

Lemma 4 We have chs,2(E)̇ ∩ [X] = cs,2(Ω1
X/S,log) ∩ [X] in (A∗Xs)Q.

Proof. First of all, note that we have chs,1(E)̇ ∩ [X] = 0, hence

chs,2(E)̇ ∩ [X] =
c2
s,1(E)̇ ∩ [X]

2
− cs,2(E)̇ ∩ [X] = −cs,2(E)̇ ∩ [X].

Let E′ denote the complex 0 → Em → · · · → E1 → 0, where we put E1 in degree 0. We use the notation in
Lemma 3, where the objects with ′ refer to those corresponding to E′.

We have

chs,2(E)̇ ∩ [X] = −cs,2(E)̇ ∩ [X] = π∗(−c2(
m∑

i=0

(−1)i[p∗i ξi]) ∩ [T ]), and

= π∗((−c2(
m∑

i=1

(−1)i[p∗i ξi]) − c1(
m∑

i=1

(−1)i[p∗i ξi]) · c1(p∗0ξ0)

−c2(p∗0ξ0)) ∩ [T ]).
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Since ξ0 is a line bundle this is equal to

π∗((−c2(
m∑

i=1

(−1)i[p∗i ξi]) − c1(
m∑

i=1

(−1)i[p∗i ξi]) · c1(p∗0ξ0)) ∩ [T ])

= π∗((−c2(
m∑

i=1

(−1)i[p∗i ξi]) + c2
1(p

∗
0ξ0)) ∩ [T ])

−π∗((c1(
m∑

i=0

(−1)i[p∗i ξi]) · c1(p∗0ξ0)) ∩ [T ])

= π∗((−c2(
m∑

i=1

(−1)i[p∗i ξi]) + c2
1(p

∗
0ξ0)) ∩ [T ])

−(cs,1(E)̇ ∩ [X]) · c1(ξ0) (since p0 = π).

Lemma 3 shows that this is equal to

π∗((−c2(
m∑

i=1

(−1)i[p∗i ξi]) + c2
1(p

∗
0ξ0)) ∩ [T ])

= π∗((−c2
1(

m∑
i=1

(−1)i+1[p∗i ξi]) + c2(
m∑

i=1

(−1)i+1[p∗i ξi])

+c2
1(p

∗
0ξ0)) ∩ [T ]).

If f : G → G′ is the projection, note that we have f∗p
′∗
i ξ′i ∼= p∗i ξi, for 2 ≤ i ≤ m. Therefore the last expression

is equal to

π∗((−c2
1(

m∑
i=1

(−1)i+1[p∗i ξi]) + c2(
m∑

i=1

(−1)i+1[f∗p
′∗
i ξ′i])

+ c1(
m∑

i=1

(−1)i+1[f∗p
′∗
i ξ′i]) · c1([p∗1ξ1] − [f∗p

′∗
1 ξ′1])

+c2([p∗1ξ1] − [f∗p
′∗
1 ξ′1]) + c2

1(p
∗
0ξ0)) ∩ [T ]).

This is equal to

π∗(−c2
1(p

∗
0ξ0) + c1([p∗0ξ0] − [p∗1ξ1] + [f∗p

′∗
1 ξ′1]) · c1([p∗1ξ1] − [f∗p

′∗
1 ξ′1])

+ c2([p∗1ξ1] − [f∗p
′∗
1 ξ′1]) + c2

1(p
∗
0ξ0)) ∩ [T ]) + cs,2(Ω1

X/S,log) ∩ [X]

= π∗((c1([π∗detΩ1
X/S,log]− [p∗1ξ1] + [π∗E1]) · c1([p∗1ξ1]− [π∗E1])

+c2([p∗1ξ1] − [π∗E1])) ∩ [T ]) + cs,2(Ω1
X/S,log) ∩ [X].

(cf. the proof of Lemma 3)
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Now, since p∗1ξ1 is the tautological subbundle of π∗E1 ⊕π∗detΩ1
X/S,log on G, we have an exact sequence

0 → p∗1ξ1 → π∗E1 ⊕ π∗detΩ1
X/S,log → Q → 0, with Q a line bundle. Therefore we obtain

c2([p∗1ξ1] − [π∗E1]) = c2([π∗detΩ1
X/S,log]− [Q])

= c2(π∗detΩ1
X/S,log) − c1([π∗detΩ1

X/S,log] − [Q]) · c1(Q) − c2(Q).

Since ξ0 and Q are line bundles

c1(Q) = c1([π∗E1] + [π∗detΩ1
X/S,log] − [p∗1ξ1]), and

c2([p∗1ξ1]− [π∗E1]) = −c1([p∗1ξ1]− [π∗E1]) · c1([π∗E1] + [π∗detΩ1
X/S,log] − [p∗1ξ1]).

Combining this with the expression for chs,2(E)̇ ∩ [X] above, we obtain

chs,2(E)̇ ∩ [X] = cs,2(Ω1
X/S,log) ∩ [X].

�

Using Lemma 4 we obtain

χ(Ω̇X/S,log,tors) = deg(chs,2(E)̇ ∩ [X]) = deg(cs,2(Ω1
X/S,log) ∩ [X]).

Bloch’s conductor formula ([2], Theorem.1) gives

deg(cs,2(Ω1
X/S) ∩ [X]) = −Art(XK/K).

The proof of Theorem 6.2.5 in [6] gives

deg(cs,2(Ω1
X/S) ∩ [X]) − deg(cs,2(Ω1

X/S,log) ∩ [X]) = Sw(XK/K) − Art(XK/K)

Note that the proof of Theorem 6.2.5 is independent of the rest of [6]. These imply

deg(cs,2(Ω1
X/S,log) ∩ [X]) = −Sw(XK/K).

Combining this with the above we obtain

χ(Ω̇X/S,log,tors) = −Sw(XK/K).

�

We now give a consequence of the proof of Theorem 1. In the following, if C is a 0-dimensional subscheme
of X, and [G] and [H ] are curves in X, we denote by deg[C] the degree of C with respect to k, and by [G] · [H ]
the intersection number of the curves G and H. Let D ⊆ X be a curve supported on the special fiber Xs, L a

line bundle on X, and K and E divisors on X such that O(K) ∼= detΩ1
X/S, the dualizing sheaf of X/S, and

O(E) ∼= L. Then we have the following lemma.
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Lemma 5 We have the equality

χ(i∗(L|D)) = [E] · [D] − 1
2
χ(ωD/k),

where i : D → X is the inclusion.
Proof. By the Riemann-Roch theorem we have

χ(i∗(L|D)) = deg(chX
D(L|D) ∩Td(X/S)).

By applying the Riemann-Roch theorem to the closed immersion i : D → X we obtain

chX
D(i∗(L|D)) = i∗(chD

D(L|D) ·Td(ND/X̌)−1)

= (1 + c1(L|D)) · (1 +
1
2
c1(O(−D)|D)).

Combining this with the above we obtain

χ(i∗(L|D)) = [E] · [D] − ([K] + [D]) · [D]
2

.

Finally using the adjunction formula for D → X we obtain the expression in the statement of the lemma. �

Let Z1 and Z2 denote the closed subschemes of Z consisting of the components of Z which have
codimension 1 and codimension 2 in X respectively. With this notation, we have the following corollary.

Corollary 1 We have the following equality

Sw(XK/K) = χ(Ω1
X/S,log,tors) + (2[Z1] − [Z1,red]) · [Z1] −

1
2
χ(ωZ1/k) − deg[Z2].

Proof. Using Theorem 1 we see that we only need to prove the equality

χ(Ω2
X/S,log) = ([Z1,red] − 2[Z1]) · [Z1] +

1
2
χ(ωZ1/k) + deg[Z2].

The proof of Lemma 2 shows that

χ(Ω2
X/S,log) = χ(detΩ1

X/S,log|Z).

Then we have

χ(Ω2
X/S,log) = χ(detΩ1

X/S,log|Z1) + deg[Z2].

Using the lemma above we obtain that

χ(Ω2
X/S,log) = [Klog] · [Z1] −

1
2
χ(ωZ1/k) + deg[Z2],
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where Klog is a divisor on X such that O(Klog) ∼= detΩ1
X/S,log. Now we also have

[Klog] = [K]− [Z1] + [Z1,red].

To see this we only need to look at the multiplicities at codimension 1 points. Using the notation in the proof

of Lemma 2, viewing detΩ1
X/S as a subsheaf of

Ω1
XK/K

∼= Ω1
XK/K,log,

it is generated by

1
ta−1y

d log(t), if y �= 0, or by

1
ta−1(a + t · x)

ds, if a + t · x �= 0,

in a Zariski neighborhood of a point with a �= 0 and b = 0. Using the similar description of detΩ1
X/S,log in the

proof of Lemma 2, we arrive at the formula as claimed above. Using this and the adjunction formula we obtain
that

χ(Ω2
X/S,log) = ([Z1,red] − 2[Z1]) · [Z1] +

1
2
χ(ωZ1/k) + deg[Z2].

�
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