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Pseudo simplicial groups and crossed modules

İ. Akça and S. Pak

Abstract

In this paper, we define the notion of pseudo 2-crossed module and give a relation between the pseudo

2-crossed modules and pseudo simplicial groups with Moore complex of length 2.
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1. Introduction

Simplicial groups occupy a place somewhere between homological group theory, homotopy theory, alge-
braic K-theory and algebraic geometry. In each sector they have played a significant part in developments over
quite a lengthy period of time and there is an extensive literature on their homotopy theory.

Crossed modules were introduced by Whitehead in [15] with a view to capturing the relationship between

π1 and π2 of a space. Homotopy systems (which would now be called free crossed complexes [5] or totally free

crossed chain complexes [3], [4]) were introduced, again by Whitehead, to incorporate the action of π1 on the
higher relative homotopy groups of a CW -complex. They consist of a crossed module at the base and a chain
complex of modules over π1 further up.

Conduché [6] defined the notion of 2-crossed module, as a model of connected 3-types and showed how
to obtain a 2-crossed module from a simplicial group.

Inasaridze(c.f. [8],[9]) constructed homotopy groups of pseudosimplicial groups and nonabelian derived
functors with values in the category of groups.

In this paper we analysis the low dimensional parts of the Moore complex of a pseudosimplicial group.
We prove that the category of crossed modules is equivalent to the category of pseudosimplicial groups with
Moore complex of length 1. We extend this result to 2-dimension by defining pseudo 2-crossed modules and
give the relation between the category of pseudo 2-crossed modules and the category of pseudosimplicial groups
with Moore complex of length 2.

The above theorems, in some sense, are well known. We give details of the proofs as analogous proofs
can be found in the literature [1], [2], [6], [10] and [13].

AMS Mathematics Subject Classification: 18D35, 18G30, 18G50, 18G55.
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2. Pseudo simplicial groups

A pseudo simplicial group G consists of {Gn} together with boundary homomorphisms ∂n
i : Gn → Gn−1 ,

0 ≤ i ≤ n , (n �= 0) and pseudo degeneracies sn
i : Gn → Gn+1 , 0 ≤ i ≤ n , satisfying the following

pseudosimplicial identities:

∂n−1
i ∂n

j = ∂n−1
j−1 ∂n

i for i < j

∂n+1
i sn

j = sn−1
j−1 ∂n

i for i < j

∂n+1
j sn

j = 1 = ∂n+1
j+1 sn

j

∂n+1
i sn

j = sn−1
j ∂n

i−1 for i > j + 1,

The groups Gn can be nonabelian. To obtain the definition of simplicial group, we must add the condition

that sn+1
i sn

j = sn+1
j+1 sn

i for i ≤ j (see [11]).

A topological interpretation is, for example, the F -construction of Milnor [12], which gives the simplicial
group of loops of the suspension of a complex. For an arbitrary simplicial set K with pole ψ , the group of
n-simplicies FKn is the free group on a family of generators σ in one-to-one correspondence with the n-
simplicies σ ∈ Kn , with the single relation (sn−1sn−2 . . . s0(ψ)) = en , while the boundary and degeneracy
homomorphisms are induced by the corresponding mappings of the set K .

For any pseudosimplicial group G , put NGn = Gn ∩ Ker ∂n
0 ∩ . . .Ker ∂n

n−1 , n ≥ 0, and let dn be the

restriction of ∂n
n to NGn , n > 0. Then im dn is a normal subgroup of Gn−1 , and im dn+1 ⊂ Ker dn for n > 0.

This determines the Moore complex NG = {NGn, dn} . Clearly NG is independent of the pseudodegeneracies,
depending only on the boundary homomorphisms.

The n-dimensional homology group of the Moore complex NG is called the n-dimensional homotopy
group πn(G) of the pseudosimplicial group G , n ≥ 0.

A mapping f : G −→ G′ induces, in a natural fashion, homomorphisms πn(f ) : πn(G) −→ πn(G′),
n ≥ 0.

Let f and g be two mappings from G to G′ . The following definition is due to Inassaridze [9]. f is

pseudohomotopic to g if there exist homomorphisms hn
i : Gn −→ G′

n+1 , 0 ≤ i ≤ n , such that

∂n+1
0 hn

0 = fn ∂n+1
n+1hn

n = gn,
∂n+1

i hn
j = hn−1

j−1 ∂n
i for i < j,

∂n+1
j+1 hn

j+1 = ∂n+1
j+1 hn

j ,

∂n+1
i hn

j = hn−1
j ∂n

i−1 for i > j + 1.

To obtain the definition of homotopy of f to g , we must add the following conditions:

sn+1
i hn

j = hn+1
j+1 sn

i for i ≤ j, and sn+1
i hn

j = hn+1
j sn

i−1 for i > j.

Theorem 2.1 [9]The homotopy groups πn(G) are abelian for n ≥ 1 . If the mapping f : G −→ G′ is

pseudohomotopic to a mapping, then πn(f ) = πn(g) , n ≥ 0 .

A mapping f : G −→ G′ of pseudosimplicial groups is called simplicial if it satisfies the condition

fn+1s
n
i = sn

i fn for n ≥ 0, 0 ≤ i ≤ n . A simplicial map f : G −→ G′ is called a weak equivalence if it induces
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isomorphisms πn(G) ∼= πn(G′) for n ≥ 0. A simplicial map f : G −→ G′ called a fibration if fn : Gn −→ G′
n

is surjective for n ≥ 0.

By a k -truncated pseudosimplicial group we mean a collection of groups {G0, . . . , Gk} and boundary
homomorphisms ∂n

i : Gn −→ Gn−1 for 0 ≤ i ≤ n , 0 ≤ n ≤ k and pseudodegeneracies sn
i : Gn −→ Gn+1 for

0 ≤ i ≤ n , 0 ≤ n ≤ k which satisfy the pseudosimplicial identities. Clearly by forgetting higher dimensions, any

pseudosimplicial group G yields a k -truncated pseudosimplicial group trkG . The functor trk admits a right

adjoint cos kk , called the k -coskeleton functor, and a left adjoint functor skk called the k -skeleton functor. We
recall from [7] a brief description of these functors.

Suppose trk(G) = {G0, . . . , Gk} is a pseudosimplicial group. A family of homomorphisms

(δ0 , . . . , δk+1) : Xk+1

δk+1−→
...

−→
δ0

Gk

is the simplicial kernel of the family of boundary homomorphisms (∂0, . . . , ∂k) if it has the following universal

property: given any family (∂0, . . . , ∂k+1) of k + 2 homomorphisms ∂i : Y −→ Gk satisfying the identities

∂i∂j = ∂j−1∂i (0 ≤ i < j ≤ k + 1) with the last part of the truncated pseudosimplicial group, there exists a

unique homomorphism f : Y −→ Xk+1 such that δi f = ∂i . Given the simplicial kernel Xk+1 the family of

homomorphisms (αn+1j, . . . , α1j, α0j), defined by

αij =

⎧⎨
⎩

sj−1 i < j
id i = j, i = j + 1
sjdi−1 i > j + 1,

satisfies the pseudosimplicial identities with the last part of the truncated pseudosimplicial group; hence there
exists a unique sj : Gk −→ Xk+1 such that δisj = αij. We thus have a (k + 1)-truncated pseudosimplicial

group {G0, . . . , Gk, Xk+1}. By iterating this construction we get a pseudosimplicial group cos kk(trk(G)) =

{G0, . . . , Gk, Xk+1} called the coskeleton of the truncated pseudosimplicial group. If G , G′ are any pseu-

dosimplicial groups, than any truncated simplicial map f : trkG −→trkG′ extends uniquely to a simplicial map

f : G −→ cos kk(trk(G′)).

The k -skeleton functor can be constructed by a dual process involving pseudosimplicial cokernels

(s0 , . . . , sk) : Gk

sk−→
...

−→
s0

Xk+1.

(That is, universal systems of k + 1 arrows which satisfy pseudosimplicial identities.)
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3. Crossed modules and pseudo 2-crossed modules

3.1. Crossed modules

J.H.C. Whitehead (1949) [15] described crossed modules in various contexts, especially in his investigation
into the group structure of relative homotopy groups.

Definition 3.1 Let P be a group. A pre-crossed module of groups is a P -group M , and a group homomorphism

∂ : M −→ P

such that
CM1) ∂(pm) = p∂(m)p−1

for all m ∈ M , p ∈ P . This is a crossed P -module if, in addition,

CM2) ∂(m)m′ = mm′m−1

for all m, m′ ∈ M . The last condition is called the Peiffer identity. We denote such a crossed module by
(M, P, ∂) . A map of crossed modules

(∂ : M −→ P ) −→ (∂′ : M ′ −→ P ′)

is a pair of homomorphisms f0 : P −→ P ′ , f1 : M −→ M ′ such that f0∂ = ∂′f1 and f1 (pm) =(f0p) f1 (m )
for all m ∈ M , p ∈ P .

The Moore complex
· · · −→ Mn −→ · · · −→ M1 −→ M0

of a pseudosimplicial group is of length k, if Mn = 0 for all n ≥ k + 1 (so a Moore complex of length k is also

of length r for r ≥ k ).

The following lemma is a straightforward modification of Theorem 1.3 in [6].

Lemma 3.2 Let G be a pseudosimplicial group. The Moore complex of its k -coskeleton cos kk(trkG) is of
length k + 1 , and is identical to the Moore complex of G in dimensions ≤ k . Moreover, in dimensions k − 1

to k + 2 the Moore complex of cos kk(trkG) is an exact sequence

1 −→ N(cos kk(trkG))k+1
∂k+1−→ NGk

∂k−→ NGk−1.

where Nk is the k th term of the Moore complex of G.

Proof. The (k + 1)-dimensional part of cos kk
(
trkG

)
can be identified with the subgroup of the (k + 2)-

fold direct sum Gk+2
k consisting of those elements (x0, ..., xk+1) such that djxk = dk−1xj for j < k ; the face

maps are given by dj (x0, ..., xk+1) = xj Thus N(cos kk(trkG))k+1consists of elements (1, ..., 1, xk+1) such that

djxk+1 = 1 for all j . In other words N(cos kk(trkG))k+1 is the kernel of ∂k : NGk −→ NGk−1 , and hence

we have the exact sequence of the lemma.
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The injectivity of ∂k+1 and the isomorphism

cos kn−1
(
trn−1

(
cos kk

(
trkG

)))

 cos kk

(
trkG

)

for n ≥ k + 2 shows that the Moore complex of cos kk
(
trkG

)
is of length k + 1. �

The following theorem is well known. In [6] and [10] this theorem was proved.

Theorem 3.3 ([6], [10]) The category of crossed modules is equivalent to the category of simplicial groups with
Moore complex of length 1.

Now, we shall give the pseudo version of this theorem.

Theorem 3.4 The category of crossed modules is equivalent to the category of pseudosimplicial groups with
Moore complex of length 1.

Proof. Let G be a pseudosimplicial group with Moore complex of length 1. Put P = NG0 = G0 ,
M = NG1 = ker (d0 : G1 −→ G0) and ∂ = d1 (restricted to M ). Then p ∈ P acts on m ∈ M by pm =

s0 (p)ms0 (p)−1 , and ∂ (pm) = d1

(
s0 (p)ms0 (p)−1

)
. Since the Moore complex · · · −→ 1 −→ M

∂−→ P −→ 1

is of length 1, we have ∂2NG2 = 1. It then follows that for all m, m′ ∈ M and p ∈ P ,

(i) ∂1 (pm) = d1 (pm)
= d1

(
s0 (p)ms0 (p)−1

)

= d1s0 (p) d1 (m) d1s0 (p)−1

= p∂1 (m) p−1

(ii) (∂1m)m′ = s0∂1 (m) m′s0∂1 (m)−1

= s0d1 (m)m′s0d1 (m)−1

= s0d1 (m)m′s0d1 (m)−1 [
(
m (m′)−1

m−1
) (

mm′m−1
)
]

= d2s0 (m) d2s1(m′)d2s0 (m)−1
d2s1(m)d2s1 (m′)−1

d2s1(m−1)
(
mm′m−1

)

= d2

(
s0 (m) s1 (m′) s0 (m)−1

s1 (m) s1 (m′)−1
s1 (m)−1

)
(
mm′m−1

)
= mm′m−1

for m, m′ ∈ M , because s0 (m) s1 (m′) s0 (m)−1
s1 (m) s1 (m′)−1

s1 (m)−1 lies in ∂2NG2 . Thus ∂ : M −→ P is
a crossed module.

Conversely, let ∂ : M −→ P be a crossed module. By using the action of P on M we can form the
semi-direct product M � P = {(m, p) : m ∈ M , p ∈ P }, in which multiplication

(m, p) · (m′, p′) = (m pm′, pp′)

for m, m′ ∈ M , p, p′ ∈ P . There are homomorphisms

d0 : M � P −→ P , (m, p) �−→ p,
d1 : M � P −→ P , (m, p) �−→ (∂m) p,
s0 : P −→ M � P , p �−→ (1, p) .
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Let G0 = P , G1 = M � P . We have a 1-truncated pseudosimplicial group {G0, G1} whose 1-coskeleton we

denote by G1 . The group M � P acts on M via the action of P on M and the homomorphism d1 . We can
thus form the semi-direct product M � (M � P ) and construct homomorphisms

d0 : M � (M � P ) −→ M � P , (m, m′, p) �−→ (m′, p) ,
d1 : M � (M � P ) −→ M � P , (m, m′, p) �−→ (mm′, p) ,
d2 : M � (M � P ) −→ M � P , (m, m′, p) �−→ (m, (∂m′) p) ,
s0 : M � P −→ M � (M � P ) , (m, p) �−→ (1, m, p) ,
s1 : M � P −→ M � (M � P ) , (m, p) �−→ (m, 1, p) .

Conditions (i) and (ii) of a crossed module ensure that these are homomorphisms (Condition (ii) is needed

for d2 ). Let G2 = M � (M � P ). We then have a 2-truncated pseudosimplicial group {G0, G1, G2} whose

2-coskeleton we denote by G2 . There is a unique simplicial map G2 −→ G1 which in dimensions 0 and 1 is

the identity. We let G
2

denote the image of G2 in G1 . It is readily checked that the Moore complex of G2 is

trivial in dimension 2; it follows from Lemma 3.2 that G
2

is a pseudosimplicial group whose Moore complex is
of length 1. �

3.2. Pseudo 2-crossed modules

Conduché [6] in 1984 described the notion of 2-crossed module as a model for (homotopy connected)
3-types.

Definition 3.5 A pseudo 2-crossed module of groups consists of a complex of P -groups

L
∂2−→ M

∂1−→ P

and ∂2 , ∂1 morphisms of P -groups, where the group P acts on itself by conjugation, such that

L
∂2−→ M

is a crossed module. Thus M acts on L and we require that for all l ∈ L, m ∈ M and p ∈ P that
pm (pl) =p (ml) . Further, there is a P -equivariant function,

{, } : M � M −→ L

called a Peiffer lifting, which satisfies the following axioms:

P− 2CM1) ∂2{m, m′} =
(
∂1mm′) mm′−1m−1

P− 2CM2) {∂2l, ∂2l
′} = [l′, l]

P− 2CM3) (i) {mm′, m′′} = ∂1m{m′, m′′}{m, m′m′′m′−1}
(ii) {m, m′m′′} = {m, m′}mm′m−1{m, m′′}

P− 2CM4) (a) {∂2l, m} = ml(l)−1,
(b) {m, ∂2l} = (∂1ml)(m(l)−1).

P− 2CM5) {m, ∂2l}{∂2l, m} = ∂1ml(l)−1
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for all l, l′ ∈ L, m, m′, m′′ ∈ M and p ∈ P . We denote such a pseudo 2-crossed module of groups by
{L, M, P, ∂2, ∂1} . To obtain the definition of 2-crossed modules, we must add the condition that:

2CM6) p {m, m′} = {pm,p m′} .

A morphism of pseudo 2-crossed modules of groups may be pictured by diagram

L
∂ ∂

f2

∂∂
ʹʹʹ

2
M

f1

1
P

f0

L
2

M
1

P

of groups and homomorphisms such that f0∂1 = ∂′
1f1 , f1∂2 = ∂′

2f2 and such that

f1 (pm) =(f0(p)) f1 (m) , f2 (pl) =(f0(p)) f2 (l)

and
{, } = f1 × f1 = f2 {, } ,

for all l ∈ L, m ∈ M , p ∈ P . We thus define the category of pseudo 2-crossed modules, denoting it by pX2Mod .

Morphisms f1 and f2 are called equivariant if P = P ′ with f0 = identity of P .

The category of simplicial groups with Moore complex of length 2 is equivalant to that of 2-crossed
modules. This equivalence was proved by Conduché in [6]. Now, we shall give the pseudo version of this
equivalance in the following theorem.

Theorem 3.6 The category of pseudo 2-crossed modules is equivalent to that of category of pseudosimplicial
groups with Moore complex of length 2.

Proof. Let G be a pseudosimplicial group with Moore complex of length 2. We construct a pseudo 2-crossed
module as follows: P = G0 , M = ker (d0 : G1 −→ G0), and L = ker (d0 : G2 −→ G1) ∩ ker (d1 : G2 −→ G1)

. Then p ∈ P acts on m ∈ M by pm = s0(p)ms0 (p)−1 , and on l ∈ L by ∂1(m)l = s0(m)ls0 (m)−1 and m ∈ M

acts on l ∈ L by ml = s1(m)ls1 (m)−1 . For m, m′ ∈ M, set {m, m′} = s0(m)s1 (m′) s0 (m)−1
s1 (m) s1 (m′)−1

s1

(m)−1 . Let ∂1 = d1 (restricted to M ) and ∂2 = d2 (restricted to L).

P− 2CM1) ∂2 {m, m′} = ∂2

(
s0 (m) s1 (m′) s0 (m)−1

s1 (m) s1 (m′)−1
s1 (m)−1

)

= d2s0 (m) d2s1 (m′) d2s0 (m)−1
d2s1 (m) d2s1 (m′)−1

d2s1 (m)−1

= d2s0 (m) m′d2s0 (m)−1
m(m′)−1 (m)−1

= s0d1 (m) m′s0d1 (m)−1
m(m′)−1 (m)−1

=
(
∂1mm′) mm′−1m−1.

P− 2CM2) {∂2l, ∂2l
′} = {d2l, d2l

′}
= s0d2 (l) s1d2 (l′) s0d2 (l)−1

s1d2 (l) s1d2 (l′)−1
s1d2 (l)−1

= d3s0 (l) d3s1 (l′) d3s0 (l)−1
d3s1 (l) d3s1 (l′)−1

d3s1 (l)−1

= d3s0 (l) d3s1 (l′) d3s0 (l)−1
d3s1 (l) d3s1 (l′)−1

d3s1 (l)−1
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[l, l′][l′, l]
= d3s0 (l) d3s1 (l′) d3s0 (l)−1 d3s1 (l) d3s1 (l′)−1 d3s1 (l)−1(

ll′ (l)−1 (l)−1
)

[l′, l]

= d3s0 (l) d3s1 (l′) d3s0 (l)−1
d3s1 (l) d3s1 (l′)−1

d3s1 (l)−1

d3s2 (l) d3s2 (l′) d3s
′
2 (l)−1 d3s2 (l)−1 [l′, l]

= d3(s0 (l) s1 (l′) s0 (l)−1
s1 (l) s1 (l′)−1

s1 (l)−1
s2 (l) s2 (l′)

s2 (l)−1
s2 (l)−1)[l′, l]

= [l′, l],

where s0 (l) s1 (l′) s0 (l)−1
s1 (l) s1 (l′)−1

s1 (l)−1
s2 (l) s2 (l′) s2 (l)−1

s2 (l)−1 lies in ∂3NG3.

P − 2CM3) (i) {mm′, m′′} = s0 (mm′) s1 (m′′) s0 (mm′)−1
s1 (mm′) s1 (m′′)−1

s1 (mm′)−1

= s0 (m) s0 (m′) s1 (m′′) s0 (m′)−1
s0 (m)−1 s1 (m)

s1 (m′) s1 (m′′)−1
s1 (m′)−1

s1 (m)−1

= s0 (m) s0 (m′) s1 (m′′) s0 (m′)−1 (s1 (m) s1 (m′′)−1

s1 (m′)−1
s0 (m)−1)

(
s0 (m) s1 (m′) s1 (m′′) s1 (m)−1

)

s0 (m)−1
s1 (m) s1 (m′) s1 (m′′)−1

s1 (m′)−1
s1 (m)−1

= (s0 (m) s0 (m′) s1 (m′′) s0 (m′)−1
s1 (m) s1 (m′′)−1

s1 (m′)−1
s0 (m)−1)(s0 (m) s1 (m′) s1 (m′′) s1 (m)−1

s0 (m)−1
s1 (m) s1 (m′) s1 (m′′)−1

s1 (m′)−1
s1 (m)−1)

= ∂1m{m′, m′′}(s0 (m) s1

(
m′m′′ (m′)−1

)
s0 (m)−1 s1 (m)

s1

(
m′m′′ (m′)−1

)−1

s1 (m)−1)

= ∂1m{m′, m′′}{m, m′m′′ (m′)−1}.

(ii) {m, m′m′′} = s0 (m) s1 (m′m′′) s0 (m)−1
s1 (m) s1 (m′m′′)−1

s1 (m)−1

= s0 (m) s1 (m′) s1 (m′′) s0 (m)−1
s1 (m) s1 (m′′)−1

s1 (m′)−1
s1 (m)−1

= s0 (m) s1 (m′)
(
s0 (m)−1

s1 (m) s1 (m′)−1
s1 (m)−1

)
(
s1 (m) s1 (m′) s1 (m)−1

s0 (m)
)

s1 (m′′) s0 (m)−1
s1 (m)

s1 (m′′)−1
s1 (m′)−1

s1 (m)−1

=
(
s0 (m) s1 (m′) s0 (m)−1

s1 (m) s1 (m′)−1
s1 (m)−1

)

(s1 (m) s1 (m′) s1 (m)−1
s0 (m) s1 (m′′) s0 (m)−1

s1 (m)
s1 (m′′)−1 s1 (m′)−1 s1 (m)−1)

= {m, m′}(s1 (m) s1 (m′) s1 (m)−1
s0 (m) s1 (m′′) s0 (m)−1

s1 (m)
s1 (m′′)−1

(
s1 (m)−1

s1 (m)
)

s1 (m′)−1
s1 (m)−1)

= {m, m′}(s1 (m) s1 (m′) s1 (m)−1
s0 (m) s1 (m′′) s0 (m)−1

s1 (m)
s1 (m′′)−1

s1 (m)−1
s1 (m) s1 (m′)−1

s1 (m)−1)
= {m, m′}(s1

(
mm′ (m)−1

)
s0 (m) s1 (m′′) s0 (m)−1

s1 (m)

s1 (m′′)−1
s1 (m)−1

s1

(
mm′ (m)−1

)−1

)

= {m, m′}mm′m−1{m, m′′}.
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P − 2CM4) (a) {∂2l, m} = s0 (∂2 (l)) s1 (m) s0

(
∂2 (l)−1

)
s1 (∂2 (l)) s1 (m)−1

s1

(
∂2 (l)−1

)

= s0d2 (l) s1 (m) s0d2 (l)−1
s1d2 (l) s1 (m)−1

s1d2 (l)−1

= d3s0 (l) s1 (m) d3s0 (l)−1
d3s1 (l) s1 (m)−1

d3s1 (l)−1(
ls0 (m) l−1s0 (m)−1

)(
s0 (m) ls0 (m)−1

l−1
)

= (d3s0 (l) d3s2s1 (m) d3s0 (l)−1
d3s1 (l) d3s2s1 (m)−1

d3s1 (l)−1

d3s2 (l) d3s2s0 (m) d3s2(l−1)d3s2s0 (m)−1)
(
s0 (m) ls0 (m)−1

l−1
)

= d3(s0 (l) s2s1 (m) s0 (l)−1 s1 (l) s2s1 (m)−1 s1 (l)−1

s2 (l) s2s0 (m) s2(l−1)s2s0 (m)−1)
(
s0 (m) ls0 (m)−1

l−1
)

= ml(l)−1 ,

where s0 (l) s2s1 (m) s0 (l)−1
s1 (l) s2s1 (m)−1

s1 (l)−1
s2 (l) s2s0 (m) s2(l−1)s2s0 (m)−1 lies in ∂3NG3 .

(b) {m, ∂2l} = s0 (m) s1∂2 (l) s0 (m)−1
s1 (m) s1∂2 (l)−1

s1 (m)−1

= s0 (m) s1d2 (l) s0 (m)−1
s1 (m) s1d2 (l)−1

s1 (m)−1

=
(
s0 (m) ls0 (m)−1

) (
s1 (m) (l)−1

s1 (m)−1
)

= (∂1ml)(m(l)−1).

P− 2CM5) {m, ∂2l}{∂2l, m} =
(
s0 (m) s1d2 (l) s0 (m)−1

s1 (m) s1d2 (l)−1
s1 (m)−1

)
(
s0d2 (l) s1 (m) s0d2 (l)−1 s1d2 (l) s1 (m)−1 s1d2 (l)

)

=
(
s0 (m) d3s1 (l) s0 (m)−1

s1 (m) d3s1 (l)−1
s1 (m)−1

)
(
d3s0 (l) s1 (m) d3s0 (l)−1

d3s1 (l) s1 (m)−1
d3s1 (l)

)
(
ls0 (m) (l)−1

s0 (m)−1
) (

s0 (m) ls0 (m)−1 (l)−1
)

= (d3s2s0 (m) d3s1 (l) d3s2s0 (m)−1
d3s2s1 (m)

d3s1 (l)−1
d3s2s1 (m)−1)(d3s0 (l) d3s2s1 (m) d3s0 (l)−1

d3s1 (l) d3s2s1 (m)−1
d3s1 (l))(d3s2 (l) d3s2s0 (m)

d3s2 (l)−1
d3s2s0 (m)−1

(
s0 (m) ls0 (m)−1 (l)−1

)

= d3(s2s0 (m) s1 (l) s2s0 (m)−1
s2s1 (m) s1 (l)−1

s2s1 (m)−1

s0 (l) s2s1 (m) s0 (l)−1
s1 (l) s2s1 (m)−1

s1 (l) s2 (l)
s2s0 (m) s2 (l)−1

s2s0 (m)−1)
(
s0 (m) ls0 (m)−1 (l)−1

)

= ∂1ml(l)−1,

where

s2s0 (m) s1 (l) s2s0 (m)−1
s2s1 (m) s1 (l)−1

s2s1 (m)−1
s0 (l) s2s1 (m) s0 (l)−1

s1 (l) s2s1 (m)−1
s1 (l) s2 (l) s2s0 (m) s2 (l)−1

s2s0 (m)−1

lies in ∂3NG3.

Conversely we start with a pseudo 2-crossed module L
∂2−→ M

∂1−→ P . Set G0 = P . Using the action of
P on M, we can form the semi-direct product G1 = M � P . There are homomorphisms

d0 : M � P −→ P , (m, p) �−→ p ,
d1 : M � P −→ P , (m, p) �−→ (∂m) p ,
s0 : P −→ M � P , p �−→ (1, p) .
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There is an action of m ∈ M on l ∈ L given by

m.l = {m, ∂2l}∂1m l.

Using this action we can form the semi-direct product L � M . There is an action of (m, p) ∈ M � P on

(l, m′) ∈ L � M given by

(m, p) · (l, m′) = (ml pl, mm′ pm) .

Using this action, we form the semi-direct product G2 = (L � M) � (M � P ). There are homomorphisms

d0 : (L � M) � (M � P ) −→ (M � P ) , (l, m′, m, p) �−→ (m′, p) ,
d1 : (L � M) � (M � P ) −→ (M � P ) , (l, m′, m, p) �−→ (mm′, p) ,

d2 : (L � M) � (M � P ) −→ (M � P ) , (l, m′, m, p) �−→
(
m,∂1m′

p
)

,

s0 : (M � P ) −→ (L � M) � (M � P ) , (m, p) �−→ (1, 1, m′, p) ,
s1 : (M � P ) −→ (L � M) � (M � P ) , (m, p) �−→ (1, m′, 1, p) .

There is an action of (l, m) ∈ L � M on l′ ∈ L given by

(l,m)l′ = (ll′l)m
l′

and we can construct the semi-direct product L � (L � M) . There is an action of (m, p) ∈ M � P on

(l, l′, m′) ∈ L � (L � M) given by

m · l = {m, ∂l}m l.

There is also an action of (l′, m) ∈ L � M on (l, l′, m′) ∈ L � (L � M) given by

(m, p) · (l, m′) = (ml pl,m m′ pm) .

These last two actions combine to give an action of (L � M) � (M � P ) on L � (L � M) , from which we

construct the semi-direct product G3 = (L � (L � M)) � (L � M) � (M � P ). There are homomorphisms

d0 : (L � (L � M)) � (L � M) � (M � P ) −→ ((L � M) � (M � P ))
(l, l′, m, l′′, m′, m′′, p) �−→ (l′, m′, m′′, p) ,

d1 : (L � (L � M)) � (L � M) � (M � P ) −→ ((L � M) � (M � P ))
(l, l′, m, l′′, m′, m′′, p) �−→ (l′l′′, mm′, m′′, p) ,

d2 : (L � (L � M)) � (L � M) � (M � P ) −→ ((L � M) � (M � P ))
(l, l′, m, l′′, m′, m′′, p) �−→ (ll′, m, m′m′′, p) ,

d3 : (L � (L � M)) � (L � M) � (M � P ) −→ ((L � M) � (M � P ))
(l, l′, m, l′′, m′, m′′, p) �−→ (l, m, (∂2l

′′)m′, (∂m′) p) ,
s1 : (L � M) � (M � P ) −→ (L � (L � M)) � (L � M) � (M � P )

(l, m, m′, p) �−→ (1, 1, 1, 1, m′, m, p) ,
s2 : (L � M) � (M � P ) −→ (L � (L � M)) � (L � M) � (M � P )

(l, m, m′, p) �−→ (1, 1, m′, 1, 1, m, p) ,
s3 : (L � M) � (M � P ) −→ (L � (L � M)) � (L � M) � (M � P )

(l, m, m′, p) �−→ (1, 1, m′, 1, m, 1, p) .

Axioms (1)− (5) ensure that these are indeed homomorphisms. Let G2 be the 2-coskeleton of the 2-truncated

pseudosimplicial groups {G0, G1, G2} ; let G3 be the 3-coskeleton of the 3-truncated pseudosimplicial groups
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{G0, G1, G2, G3} . There is a unique simplicial map G3 −→ G2 which in dimensions 0, 1 and 2 is the identity.

We let G
3

denote the image of G3 in G2 . It is readily checked that the Moore complex of G3 is trivial in

dimension 3; it follows from Lemma 3.2 that G
3
is a pseudosimplicial group whose Moore complex is of length

2.
The above constructions yield the required equivalence.

We now associate to the each pseudosimplicial groups G a simplicial inclusion UkG −→ G and quotient

G −→ V kG such that the following Proposition 4 holds. The inclusion and quotient are described carefully in
the proof of Proposition 4, but in essence can be described in terms of Moore complexes as follows. Suppose

that (Mn, ∂n) is the Moore complex of G . Then UkG will have the Moore complex

· · · −→ Mk+3 −→ Mk+2 −→ ker (∂k+1) −→ 1 −→ 1 · · · ,

and V kG will have the Moore complex

1 −→ 1 −→ im (∂k+1) −→ Mk −→ Mk−1 −→ · · · .

�

Proposition 3.7 For any pseudosimplicial group G and integer k ≥ 0, there is a functorial short exact sequence
of pseudosimplicial groups

1 −→ UkG
I−→ G

φ−→ V kG −→ 1

such that:

(i) the Moore complex of UkG is trivial in dimensions 0, 1, . . . , k , and identical with the Moore complex
of G in dimensions ≥ k + 2;

(ii) the map ı induces isomorphisms on homotopy groups πn

(
UkG

) ∼= πn (G) for n ≥ k + 1;

(iii) the Moore complex of V kG is trivial in dimensions ≥ k + 2 , and in dimensions ≤ k is identical
with the Moore complex of G .

Proof. First construct the k-coskeleton cos kk
(
trkG

)
of G . By lemma the Moore complex of cos kk

(
trkG

)

is

1 −→ 1 −→ K
∂k+1� Mk

∂k−→ Mk−1 −→ · · · ∂1−→ M0 .

Here ∂k+1 is an inclusion, K is the kernel of ∂k , and in dimensions ≤ k this complex coincides with the

Moore complex of G . Since K is a normal subgroup of Gk, we can quotient trkG by K to obtain a k -truncated

pseudosimplicial groups trkG = {G0, . . . , Gk−1, Gk/K} . We now construct the k -coskeleton cos kk
(
trkG/K

)
.

There is a unique simplicial map G −→ cos kk
(
trkG/K

)
which in dimensions less than k is the identity, and

in dimension k is the quotient Gk � Gk/K ; we let UkG denote the kernel of this map, and V kG denote the

image of G in cos kk
(
trkG/K

)
. We thus have a short exact sequence of pseudosimplicial groups

1 −→ UkG −→ G −→ V kG −→ 1
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which induces a long exact sequence of homotopy groups

· · · −→ πn

(
UkG

)
−→ πn (G) −→ πn

(
V kG

)
→ πn−1

(
UkG

)
→ · · · .

The assertions of the proposition are easily checked. �

Proposition 3.8 Let G be a pseudosimplicial groups such that πnG = 1, for n = 0, . . . , k . Then there exists
a weak homotopy equivalence F 
 G with F a free pseudosimplicial groups such that Fn = 1 for n = 0, . . . , k .

Proposition 3.9 It follows from Proposition 2.7(i) and the simplicial identities that the pseudosimplicial

groups UkG is trivial in dimensions ≤ k . From axiom (M2) of a model category (see [14]) there is a

weak equivalence F 
 UkG with F a free pseudosimplicial groups. We can construct F so that it meets
the requirements of the propositions.
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