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Accretion Disks Around Binary Black Holes: A Quasistationary Model
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Tidal torques acting on a gaseous accretion disk around a binary black hole can create a gap in the
disk near the orbital radius. At late times, when the binary inspiral timescale due to gravitational
wave emission becomes shorter than the viscous timescale in the disk, the binary decouples from the
disk and eventually merges. Prior to decoupling the balance between tidal and viscous torques drives
the disk to a quasistationary equilibrium state, perturbed slightly by small amplitude, spiral density
waves emanating from the edges of the gap. We consider a black hole binary with a companion of
smaller mass and construct a simple Newtonian model for a geometrically thin, Keplerian disk in the
orbital plane of the binary. We solve the disk evolution equations in steady state to determine the
quasistationary, (orbit-averaged) surface density profile prior to decoupling. We use our solution,
which is analytic up to simple quadratures, to compute the electromagnetic flux and approximate
radiation spectrum during this epoch. A single nondimensional parameter g̃, equal to the ratio of
the tidal to viscous torque at the orbital radius, determines the disk structure, including the surface
density profile, the extent of the gap, the existence of an inner disk, and the accretion rate. The
solution reduces to the Shakura-Sunyaev profile for a stationary accretion disk around a single black
hole in the limit of small g̃. Our solution may be useful for choosing physical parameters and setting
up quasistationary disk initial data for detailed numerical simulations that begin prior to decoupling
and track the subsequent evolution of a black hole binary-disk system.

PACS numbers: 98.62.Mw, 98.62.Qz

I. INTRODUCTION

Binary black hole (BHBH) mergers typically occur in
regions immersed in gas, and the capture and accretion
of the gas by the binary may result in appreciable elec-
tromagnetic radiation. Following the detection of grav-
itational waves from a BHBH merger, electromagnetic
“afterglow” radiation could provide confirmation of the
coalescence [1–7]. Such electromagnetic radiation can
also serve as a useful probe of the gas in galaxy cores
or in other regions where mergers take place, as well as
a diagnostic of the physics of black hole accretion. The
timescale during which detectable “afterglow” radiation
achieves its maximum value occurs when the gas is driven
close to the remnant and ranges from several years to tens
of decades in the case of supermassive BHBH systems
with total masses of 105−108M⊙. Together with detect-
ing the gravitational waves, observing this electromag-
netic radiation may even provide a means of witnessing
the birth of a quasar [8].

There is also the possibility of detecting electromag-
netic “precursor” radiation prior to the merger and be-
fore the maximum gravitational wave emission [9, 10].
If the distant gas is nearly homogeneous and either at
rest with respect to the binary (“binary Bondi” accre-
tion) or moving (“binary Bondi-Hoyle-Lyttleton” accre-
tion) and optically thin, the luminosity will peak at the
end of the binary inspiral phase immediately prior to the
final plunge [11]. At this stage shock heating of the gas
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and turbulent magnetic field amplification is strongest.
The peak luminosity lasts for δt ∼ M6 hours prior to
merger and then plummets sharply following the coales-
cence. Here M6 is the binary mass in units of 106M⊙. If,
instead, the accretion takes place via a geometrically-
thin, optically-thick Keplerian disk around the binary
(“binary Shakura-Sunyaev” accretion), there may be a
late-time precursor brightening from tidal and viscous (or
turbulent magnetic) dissipation in the inner disk. This
radiation peaks on a timescale δt ∼ 0.1M6 days prior to
merger and it remains high afterwards [10].

In this paper we focus on geometrically thin disks prior
to disk-binary decoupling and well before any late-time
brightening of the “precursor” electromagnetic radiation.
Our calculations are based on a simplified, Newtonian
prescription for a Keplerian disk in the orbital plane of a
binary BHBH system with a low mass ratio. Similar disk
equations have been integrated previously in time to fol-
low the (secular) evolution of such a BHBH-disk system
for selected cases (see. e.g., [9, 10]). Here we adopt the
equations to solve for steady state. We then apply our so-
lution to determine the orbit-averaged disk structure and
electromagnetic radiation during the inspiral epoch prior
to decoupling, when our quasistationary approximation
is appropriate.

Our simple treatment determines the quasistationary,
orbit-averaged, surface density profile Σ(r) of the cir-
cumbinary disk prior to decoupling, as well as the accre-
tion rate, luminosity and approximate spectrum of the
electromagnetic radiation. Our semi-analytic analysis,
(i.e. analytic up to simple quadratures), serves to iden-
tify some of the key physical parameters that determine
these quantities. Several nondimensional parameters fix
the overall shape of the density profile. Among these pa-
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rameters are the binary mass ratio q, assumed small, the
ratio of the disk scale height to radius, h/r, also small, in
the ring-like gap in the disk at the orbital radius of the
secondary, and the power-law n defining the variation of
the disk viscosity with radius, ν ∝ rn. Other param-
eters, such as the total binary mass M , determine the
physical scale of the disk and, together with the accre-
tion rate Ṁ , the characteristic luminosity and frequency
of the emitted radiation.
We find that many of the properties of the disk, such

as the surface density profile, the extent of the gap at
the orbit of the secondary, the existence of an inner disk
and the accretion rate, are determined by a single nondi-
mensional parameter g̃. This parameter is essentially the
ratio of the tidal to viscous torque at the orbital radius.
A reliable description of the accretion flow and asso-

ciated radiation from a merging BHBH binary really re-
quires a radiation magnetohydrodynamics simulation in
full general relativity in a 3 + 1-dimensional, dynamical
spacetime. Such simulations have yet to be performed
in any detail. However, Newtonian hydrodynamic sim-
ulations incorporating some of the relevant physics have
been performed at various levels of approximation (see,
e.g., [2, 4, 5, 12]) and general relativistic simulations are
underway (e.g., [11, 13–17]). The model discussed here,
although based on a simplified description, can help se-
lect input parameters and identify scaling behavior for
such simulations. In addition, the resulting quasistation-
ary description of the disk provides approximate initial
data for numerical simulations that begin prior to binary-
disk decoupling.
We adopt geometrized units and set G = 1 = c below.

II. BASIC MODEL

A. Timescales and Overview

There are several characteristic timescales that deter-
mine the structure of a gaseous disk in a BHBH system.
The orbital timescale in a Keplerian disk with orbital
angular frequency ΩK(r) = (M/r3)1/2 is given by

torb(r) = 2π

(

r3

M

)1/2

, (1)

where r is local disk radius. The viscous timescale is
given by

tvis(r) =
Σ

(dΣ/dt)vis
≈ Mdiskr

2ΩK(r)

Tvis
≈ 2

3

r2

ν
, (2)

where ν is the shear viscosity, Tvis is the viscous torque
and Mdisk ∼ r2Σ(r) is the disk mass. The timescale
associated with the gravitational tidal torque on the disk
due to the companion is

tdisktid (r) =
Σ

(dΣ/dt)tid
≈ Mdiskr

2ΩK(r)

Td
, (3)

where Td is the gravitational tidal torque. The inspiral
timescale of the binary due to the emission of gravita-
tional waves is

tGW(a) =
a

(da/dt)GW
=

5

16

a4

M3ζ
, (4)

where a is the binary separation and ζ ≡ 4q/(1 + q)2.
Finally, the binary orbit is also changed by the torque
exerted by the disk on the secondary of mass m = qM .
The timescale is

tmtid =
a

(da/dt)tid
≈ ma2ΩK(a)

Td
≈ m

Mdisk
tdisktid (a). (5)

The inequality torb(r) ≪ tvis(r) is satisfied through-
out the disk at all times. For most of its history, the
disk evolves on a slow, secular, viscous timescale and
not on a rapid dynamical timescale [18]; viscosity main-
tains the gas in nearly Keplerian circular orbits. In a
quasistationary state, where the effects of viscosity and
tidal torques balance each other, we have tdisktid ∼ tvis.
Consider the typical case where the disk mass satisfies
Mdisk ≪ m. It follows from Eq. (5) that tdisktid (a) ≪ tmtid.
Hence, as long as the disk is quasistationary, we have
tvis(a) ≪ tmtid. However, tmtid can be longer or shorter
than tGW during the early inspiral history. Prior to de-
coupling, even as the binary separation shrinks due to
the combined effects of gravitational radiation and tidal
torque back-reaction, the orbital separation always re-
mains momentarily “frozen” while the disk adjusts to
tidal-viscous torque balance to maintain quasiequilib-
rium. Eventually, as the binary inspirals further, the
timescale due to gravitational wave emission becomes
shorter than the viscous timescale and the binary de-
couples from the disk [1, 9, 19]. We note that as long as
Mdisk/m ≪ 1, tvis ≪ tmtid holds. Hence at decoupling and
thereafter, the orbital decay is driven by gravitational ra-
diation, not the torque of the disk. Quasiequilibrium no
longer applies after decoupling.
The orbital radius at which decoupling begins can be

estimated from the relation tGW(a) ∼ βtvis(2λa). Here
λ ≡ r/2a ∼ 1 is the nearly constant ratio between the
disk edge and the orbital separation prior to decoupling
and is determined by a balance between viscous stresses
in the disk and gravitational tidal torques from the bi-
nary [12, 20]. The parameter β ∼ 0.1 roughly accounts
for the shortening of the viscous timescale at the edge
where the surface density Σ is very steep [21]. An α-disk
with a viscosity law ν(r) = (2/3)αPgas/(ρΩK), where ρ
is the gas density and Pgas is the gas pressure, yields a
decoupling radius ad given by [1, 7]

ad
M

≈ 126α
−17/50
−1 S−49/200λ7/10M

2/25
6 (β−1ζ)

17/40θ
−17/200
0.2 ,

(6)

where α = 0.1α−1, β = 0.1β−1, S ≡ 3πΣ(ad)ν(ad)/ṀEdd

and θ = 0.2θ0.2. Here ṀEdd = 4πMmp/(ησT ) is the Ed-
dington accretion rate, σT is the Thomson cross-section
for electron scattering, η is the radiative efficiency and
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θ < 1 is a porosity correction factor applied to the
scattering-dominated optical depth [22]. The radiative

efficiency η ≡ LEdd/ṀEdd may be set to 1/12 for a New-
tonian thin disk disk with an innermost stable circular
orbit (ISCO) at risco = 6M , the value appropriate for a
nonspinning black hole.

Most earlier work has focused on the late binary epoch
following decoupling when a < ad. During this epoch
the outer disk remains almost frozen until after binary
inspiral and coalescence, at which point the disk diffuses
inward and fills up the hollow (in the case of equal-mass
black holes), or gap (in the case of a low-mass compan-
ion), on a (slow) viscous timescale (see, e.g., [6, 7] and
references therein). Eventually the gas reaches the ISCO
of the remnant black hole, where all torques and sur-
face densities vanish in a first approximation. Ultimately
the disk settles into steady-state equilibrium around the
black hole remnant. In this paper we shall be concerned
primarily in the early binary epoch prior to decoupling
when a > ad. As we have described, during this epoch
it is the binary orbit that remains nearly frozen while
the the disk adjusts to the combined tidal and viscous
torques, the effects of which balance each other in steady
state. Thus, up until the BHBH orbit reaches decoupling,
the disk evolves quasistatically as the orbit shrinks.

Because torb(r) ≪ tvis(r) over the entire history of
a quasistationary disk, the disk radial velocity satisfies
vr ≪ rΩK(r) and the full hydrodynamic equations re-
duce to secular (conservation) equations to describe the
orbit-averaged evolution of a Keplerian thin disk [23].
While obtaining the spiral density wave perturbations in-
duced by the tidal torques near the edge of the disk does
require the full set of hydrodynamical equations, deduc-
ing the underlying orbit-averaged disk profile does not.
For the epoch prior to decoupling these secular equations
can be solved in steady state to give the quasisteady disk
structure for each value of the separation a > ad. We per-
form this calculation below in the low-mass limit where
q < 1.

B. Key Equations

1. Disk Evolution

The evolution of a geometrically thin, nearly Keplerian
disk is determined by combining the equation of mass
conservation,

∂Σ

∂t
+

1

r

∂(rΣvr)

∂r
= 0 (7)

with the equation of angular momentum conservation,

∂(Σr2Ω)

∂t
+

1

r

∂(rΣvrr
2Ω)

∂r
=

1

2πr

∂G

∂r
(8)

to obtain an evolution equation for the surface density,
Σ(t, r),

∂Σ

∂t
= − 1

2πr

∂

∂r

[

(

∂(r2Ω)

∂r

)−1
∂G

∂r

]

. (9)

Here G ≡ −Tvis + Td is the total torque, Tvis is the vis-
cous torque, Td is the tidal torque on the disk from the
presence of the secondary, and Ω = ΩK is the orbital
frequency. The viscous torque density is given by the
standard equation [9, 10, 23, 24]

∂Tvis

∂r
= − ∂

∂r

(

2πr3νΣ
∂Ω

∂r

)

. (10)

We approximate the (orbit-averaged) tidal torque den-
sity by using the expression adopted by Armitage and
Natarajan [9]

∂Td

∂r
= 2πΛΣr (11)

where Λ(r, a) is given by

Λ =

{

−
(

fq2M/2r
)

(r/∆p)
4
, r < a

+
(

fq2M/2r
)

(a/∆p)
4 , r > a

. (12)

In Eq. (12) f is a dimensionless normalization fac-
tor and ∆p is given by ∆p = max(|r − a|, h). Cali-
brating the above expression for the tidal field against
high-resolution, hydrodynamical simulations in two-
dimensions for a low-mass, black hole secondary interact-
ing with an outer accretion disk, Armitage and Natara-
jan find that the value f ≈ 0.01 best fits the simulation
results. Equations (11) and (12) furnish a reasonable an-
alytic approximation to the results obtained from sum-
ming over the pointlike contributions from the Lindblad
resonances in the disk [25, 26]. (Similar, but slightly dif-
ferent, forms for the tidal torque also have been used in
the literature; see, e.g., [10, 27–29]. For an analysis in
general relativity, see [30, 31].) Assembling the above
expressions then yields the final evolution equation

∂Σ

∂t
=

1

r

∂

∂r

[

3r1/2
∂

∂r

(

r1/2νΣ
)

− 2ΛΣr3/2

M1/2

]

. (13)

The rate at which the secondary black hole migrates is
determined both by back-reaction to the tidal torquing
of the disk and by gravitational wave emission,

ȧ = ȧtid + ȧGW , (14)

where

ȧtid = −4πa1/2

M3/2q

∫ rout

risco

rΛΣdr , (15)

and where aGW is given by Eq. (4). In Eq. (15) the
integration is over the entire disk, although most of the
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contribution from tidal torques arises close to the gap
boundaries near r ≈ a.
The accretion rate onto the primary may be calculated

from

Ṁ(t, r) = 2πrΣ(−vr),

= −
[

(r2Ω)

∂r

]−1
∂G

∂r
. (16)

Combining Eqs. (9) and (16) yields

∂Σ

∂t
=

1

2πr

∂

∂r
Ṁ . (17)

The coupled evolution Eqs. (13) and (14) have been
integrated in time previously to explore select cases (see
e.g. [9, 10]). Here we want to solve them for quasistation-
ary flow in general. We will thereby obtain initial data
for the construction of disks around low-mass binaries
prior to decoupling that is valid in general cases. Thus
we set a = constant and ∂Σ/∂t = 0 in Eq. (13) to obtain
the density profile. According to Eq. (17) the resulting

quasisteady accretion rate Ṁ is independent of r and can
be obtained by solving Eq. (16) once the density profile
has been determined.
In steady state, Eq. (13) becomes a second-order el-

liptic equation in r, for which we impose the following
boundary conditions:

b.c.’s : νΣ =

{

(νΣ)out, r = rout
0, r = risco

. (18)

In Eq. (18) rout is the outer radius of the disk. We set the
innermost stable circular orbit (ISCO) in the disk equal
to risco = 6M , the value appropriate for a nonspinning
black hole remnant. Typically, rout ≫ risco and in some
cases we shall take rout → ∞.
As mentioned above, the accretion rate Ṁ in steady

state is independent of r. In steady state Eq. (13) admits
a first integral which, when combined with Eq. (16) yields
the first-order ODE

Ṁ = 2π

[

3r1/2
d
(

r1/2νΣ
)

dr
− 2ΛΣr3/2

M1/2

]

= constant

(19)
While we could solve the second-order Eq. (13) in steady
state for the density profile, followed by Eq. (16) for the
accretion rate, it is simpler to integrate the first-order
Eq. (19). We do this in Sec. III A below.

2. Electromagnetic Radiation

The local radiated emission from the disk arises both
from viscous and tidal dissipation. The rate of viscous
dissipation per unit surface area is [23]

Dvis(t, r) =
9

8
νΣ

M

r3
. (20)

The integrated rate of tidal dissipation may be obtained
from the change in the binary binding energy due to tidal
forces,

Ėtid(t) =
M2q

2a

( |ȧ|
a

)

tid

, (21)

where (ȧ/a)tid is given by Eq. (15). We follow [10] and
assume that tidal dissipation results from the local damp-
ing of spiral density waves that mediate the binary-disk
interaction and is thus proportional to the local genera-
tion of these waves,

Dtid(t, r) =
1

4πr
Ėtid

|dTd/dr|
∫ rout
risco

dr|dTd/dr|
. (22)

Approximating the emission as thermal blackbody ra-
diation, the local disk surface temperature Ts(t, r) may
be equated to the effective temperature, which is deter-
mined from the total dissipation rate D = Dvis + Dtid

according to

σT 4
s (t, r) = D(t, r) (23)

where σ is the Stefan-Boltzmann constant [32].
Given the surface temperature, the quasistationary

specific flux Fν(t) measured by an observer at distance d
whose line of sight makes an angle i to the normal to the
disk plane is determined by integrating over the entire
disk surface,

Fν(t) =
2π cos i

d2

∫ ∞

risco

Bν(Ts(t
′, r))rdr, (24)

where Bν(Ts(t
′, r)) is the Planck function, t′ = t − d is

retarded time and ν is the photon frequency [33]. Equa-
tion (24) is best evaluated in terms of a nondimensional
function f∗(t′, x) of nondimensional frequency x accord-
ing to [6]

Fν(t) =
2π cos i

d2
15

π5

σT 4
∗

ν∗
r2iscof

∗(t′, x), (25)

where

f∗(t′, x) ≡
∫ ∞

1

du u
x3

exp (xT∗/Ts)− 1
, (26)

and where we have introduced the parameters

σT 4
∗ ≡ 3MṀrem/8πr

3
isco, hν∗ ≡ kT∗,

x ≡ hν/kT∗ = ν/ν∗, u ≡ r/risco. (27)

Here Ṁrem = 3π(νΣ)out is the stationary accretion rate
of an infinite disk onto the remnant black hole follow-
ing merger [see Eq. (31)]. The quantity T∗ provides a
convenient estimate of the characteristic temperature in
the main radiating region near risco of the final equilib-
rium disk following merger, and hν∗ is the characteristic
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frequency of the emitted thermal radiation from this re-
gion. The specific luminosity Lν(t), summing over both
surfaces of the disk, is related to Fν(t) according to

Lν(t) =
2πd2

cos i
Fν(t). (28)

The total luminosity L(t) integrated over all frequencies
is then given by

L(t) =

∫ ∞

0

dνLν(t) =
60

π3
σT 4

∗ r
2
isco

∫ ∞

0

f∗(t′, x)dx (29)

Given the quasistationary density profile, we wish to
perform these quadratures for the quasistationary elec-
tromagnetic spectrum prior to decoupling. Equation (29)
yields

L = 2

∫ rout

risco

Dvis2πrdr + Ėtid . (30)

We note that the final stationary equilibrium disk fol-
lowing merger yields well-known analytic density and
temperature profiles, as well as analytic integrated fluxes
and luminosities (see, e.g., [6]), and these quantities pro-
vide useful checks on the numerical quadratures. For
example, after the merger, the tidal torque is absent and
the equilibrium density profile is given by the familiar
Shakura-Sunyaev result ([34]; see also [23, 24, 35] and
references therein) for a thin disk around a single black
hole remnant,

νΣ = (νΣ)out

(

1− r
1/2
isco/r

1/2
)

(

1− r
1/2
isco/r

1/2
out

) , [post−merger]

=
Ṁ

3π

(

1− r
1/2
isco/r

1/2
)

. (31)

The corresponding luminosity is given by

L =
ṀM

2risco

(

1− 3
risco
rout

+ 2
r
3/2
isco

r
3/2
out

)

, [post−merger]

=
ṀM

2risco
, rout → ∞. (32)

3. Structure Equation: Nondimensional Units and Scaling

To solve Eq. (13) in steady state for general cases, and
to help identify scaling behavior, it is convenient to in-
troduce the following nondimensional variables:

s = (r/rout)
1/2, s1 = (a/rout)

1/2, s2 = (risco/rout)
1/2,

Σ̄ = Σ/Σout, ν̄ = ν/νout, y = sΣ̄, ȳ = ν̄y,

h̄ = h/r, τ = t/2tvis(rout), ṁ = Ṁ/(3πνoutΣout). (33)

In terms of these variables, equation (13) becomes

∂y

∂τ
=

1

s2
∂2(ν̄y)

∂s2
− 1

s2
∂

∂s

{

g∗(s)y

[

1

max(|s2 − s21|, s2h̄)

]4
}

,

(34)

where

g =
2

3

fq2M1/2r
1/2
out

νout
(35)

and where

g∗(s) =

{

gs81 s > s1
−gs8 s < s1

. (36)

Evaluating Eq. (34) in steady state yields the second-
order ODE

d2

ds2
(ν̄y)− d

ds

{

g∗(s)

[

1

max(|s2 − s21|, s2h̄)

]4

y

}

= 0 ,

(37)
which must be solved for s ∈ [s2, 1] subject the boundary
conditions

b.c.’s : y = ȳ =

{

1, s = 1
0, s = s2

. (38)

Equation (37) admits a first integral, just as in Eq. (16),
so that we need only solve the first-order ODE

dȳ

ds
− f(s)ȳ = ṁ , (39)

where

f(s) =
g∗(s)

ν̄(s)

[

1

max(|s2 − s21|, s2h̄)

]4

. (40)

III. STRUCTURE EQUATION: STEADY-STATE

SOLUTION

A. General Solution

To solve Eq. (39) we introduce the function

F (s) =

∫ 1

s

f(s′)ds′. (41)

The ODE can be rewritten as

d

ds

(

eF ȳ
)

= ṁeF , (42)

and is readily integrated to give

ȳ(s) = e−F (s)

[

b− ṁ

∫ 1

s

eF (s′)ds′
]

. (43)

The boundary condition ȳ(1) = 1 gives b = 1, while the
condition ȳ(s2) = 0 gives

ṁ =

[
∫ 1

s2

eF (s)ds

]−1

. (44)
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Hence the solution is

y(s) =
e−F (s)

ν̄(s)

[

1− ṁ

∫ 1

s

eF (s′)ds′
]

. (45)

To compute ṁ and y(s) numerically, it is convenient
to introduce the function

G(s) =

∫ 1

s

eF (s′)ds′ . (46)

Functions F and G satisfy the coupled ODEs

F ′(s) = −f(s), (47)

G′(s) = −eF (s), (48)

with the initial conditions F (1) = G(1) = 0. Equa-
tions (44) and (45) can be written as

ṁ =
1

G(s2)
, (49)

y(s) =
e−F (s)

ν̄(s)

[

1− G(s)

G(s2)

]

. (50)

In some cases, G(s) may become large when s ap-
proaches s1. To treat this complication we introduce the
function H(s) = ln[G(s)], which satisfies the ODE

H ′(s) =
G′(s)

G(s)
= −eF (s)−H(s) . (51)

In practice, the coupled ODEs (47) and (48) are inte-
grated from s = 1 to s = s∗, where s1 < s∗ < 1. Then
Eqs. (47) and (51) are integrated from s = s∗ to s = s2
with the initial condition H(s∗) = ln[G(s∗)]. Having
computed the functions F and H for s ∈ [s2, 1], ṁ and
y(s) are obtained by

ṁ = e−H(s2) , (52)

y(s) =
e−F (s)

ν̄(s)

[

1− eH(s)−H(s2)
]

. (53)

We shall study the solution by numerically integrating
the above equations for different choices of parameters in
Section III B 4 below.

B. Limiting Cases and Asymptotic Behavior

Before obtaining numerical solutions for general cases
it is instructive to evaluate Eq. (39) analytically for the
disk structure in limiting regimes. We first observe that
the parameter g defined in Eq.(35) may be evaluated as

g = 2πfq2
(

tvis
torb

)

out

(54)

where we have used Eqs. (1) and (2). We also find it
useful to introduce another nondimensional parameter

g̃ =
2πfq2

2h̄3

(

tvis
torb

)

r=a

=
fq2M1/2a1/2

3ν(a)(h/a)3
. (55)

The physical meaning of g̃ can be understood as fol-
lows. Consider a ring of disk material of width h near
r = a. The tidal torque action on the ring is [see
Eq. (11)] Td(a) ≈ 2πΛΣah. The viscous torque is
Tvis(a) = −2πa3ν(a)Σ∂rΩK(a) [see Eq. (10)]. Hence

Td(a)

Tvis(a)
∼ 2h|Λ(a)|

3ν(a)

( a

M

)1/2

= g̃. (56)

The parameter g̃ therefore measure the relative impor-
tance of the tidal to viscous torques at r = a: when g̃ is
small the tidal torque is unimportant, otherwise it plays
a significant role. The variables f , q and h̄ in Eq. (55)
are each always less than unity, while the ratio tvis/torb is
always larger than unity; hence g̃ can vary between zero
and infinity, depending on the model (the same conclu-
sion also applies to the parameter g).

1. Negligible Tidal Torques

In the limiting regime g̃ → 0 tidal torques are negligi-
ble and Eq. (39), may be solved together with boundary
conditions (38) to yield

ȳ = ṁ(s− s2), (g = 0), (57)

and

ṁ =
1

1− s2
. (58)

Restoring units, Eqs. (57) and (58) translate to

νΣ =
Ṁ

3π

[

1− r
1/2
isco/r

1/2
]

(59)

and

Ṁ

3π(νΣ)out
=

1

1− r
1/2
isco/r

1/2
out

= 1, rout → ∞, (60)

respectively. As expected, when tidal torques arising
from the companion are negligible, Eqs. (59) and (60)
reduce to Eq. (31), the quasistationary profile and accre-
tion rate for a disk around a single black hole.

2. Strong Tidal Torques

In another limiting regime g̃ ≫ 1, tidal torques are
strong and we will see in the following analysis that the
accretion is shut off.
In the thin-disk limit h̄ → 0, the function f(s) changes

from a large negative value to a large positive value at
s = s1. The function F (s) defined in Eq. (41) thus has
a narrow peak near s = s1. Hence we may approximate
ṁ in Eq. (44) by integrating eF over the small region
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around s = s1 where |f(s)| reaches maximum. We first
approximate f(s) near s = s1 by a step function

f(s) ≈
{

2g̃
s1h̄

, s1 < s < s+,

− 2g̃
s1h̄

, s− < s < s1,
, (61)

where s+ = s1/
√

1− h̄ ≈ s1(1 + h̄/2) and s− =

s1/
√

1 + h̄ ≈ s1(1 − h̄/2). Using Eq. (41) we find

F (s) ≈ F1 + g̃

(

1−
∣

∣

∣

∣

2(s− s1)

s1h̄

∣

∣

∣

∣

)

for s− < s < s+,

(62)
where

F1 =

∫ 1

s+
f(s)ds

∼ gs81
ν̄(s1)

∫ 1

s+

ds

(s2 − s21)
4

=
g̃

3
[1 +O(h̄)]. (63)

The accretion rate ṁ can then be approximated by

1

ṁ
∼
∫ s+

s−
eF (s)ds,

∼ eg̃/3
∫ s+

s−
ds exp

[

g̃

(

1− 2

∣

∣

∣

∣

s− s1

s1h̄

∣

∣

∣

∣

)]

,

=
s1h̄

g̃
eg̃/3

(

eg̃ − 1
)

. (64)

For eg̃ ≫ 1, we have

ṁ ∼ g̃

s1h̄
e−4g̃/3. (65)

Hence when the tidal torques are strong, the accretion
is shut off. Our numerical calculation confirms that
Eq. (65) is accurate when eg̃ ≫ 1 and h̄ ≪ 1.
In Sec. III B 1, we see that ṁ ≈ 1 for weak tidal torques

(g̃ ≪ 1). The above analysis shows that ṁ ≈ 0 for
strong tidal torques (eg̃ ≫ 1). The critical transition
between these two regimes occurs at g̃ = g̃c, which can
be estimated by the condition

g̃c

s1h̄
e−4g̃c/3 ∼ 1. (66)

For a = 100M , rout = 105M (s1 = 10−3/2) and h̄ = 0.1,
Eq. (66) gives gc ∼ 6. We find in Sec. III B 4 below that g̃c
lies between 5 and 10 for a power law viscosity ν(r) ∝ rn,
which is consistent with this simple analysis.
The density profile in the strong tidal torque regime is

very different from that in the weak tidal torque regime.
We will see in Sec. III B 3 below that in the asymptotic
region in which r ≫ a, the density profile is given by

Σ(r) ≈ Σout
νout
ν(r)

(

r

rout

)−1/2

= Σout

(

r

rout

)−(n+1/2)

(67)

for a power law viscosity. To estimate Σ near r = a, we
first note from Eq. (48) that G(s) < G(s2) for s > s2
(r > rISCO). Hence y(s) < e−F (s)/ν̄(s). For s− < s <
s+, Eqs. (62) and (63) give

Σ(r)

Σout
<

1

sν̄(s)
exp

{

−g̃

[

4

3
−
∣

∣

∣

∣

2(s− s1)

s1h̄

∣

∣

∣

∣

]}

≪ 1 (68)

for large g̃. For s < s−, we combine Eqs. (46), (49) and
(50) to write

y(s) =
ṁ

ν̄(s)

∫ s

s2

eF (s′)−F (s)ds′. (69)

It follows from Eqs. (47), (40) and (36) that F (s′) −
F (s) < 0 for s′ < s < s1. Hence

Σ(r)

Σout
< ṁ

(

r

rout

)−n(

1−
√

r

risco

)

≪ 1 (r < a) (70)

for small ṁ (large g̃).
We therefore see that the density plummets for r <∼ a

when the tidal torques are strong. This behavior can
be understood as follows. The tidal torque Td pushes
the disk matter radially outwards for r > a and inwards
for r < a; whereas the viscous torque Tvis always drags
the matter inwards. The tidal torques are strongest near
r = a, which tend to suppress the inflow and create a
gap there. When Td is sufficiently strong, the inflow is
strongly suppressed near r = a. Inside the binary’s orbit
(r < a), both Td and Tvis push matter inwards, so that
when Td is strong matter cannot accumulate in the inner
region. Hence in steady state, there is practically no
inner disk and the density of the outer disk near r = a is
also very small.

3. Asymptotic Behavior

As shown above, when tidal torques are present, the
accretion rate may be much lower than the value quoted
in Eqs. (58) and (60) for accretion onto a single black
hole. The rate ṁ depends sensitively on g̃ and requires
the full numerical solution to determine accurately. But
in the asymptotic region r ≫ a it is always possible to
express the disk structure in terms of ṁ even when tidal
torques are present, as we now show.
Whenever 1 ≥ s ≫ s1, Eqs. (39) and (40) reduce to

dȳ

ds
− g

ν̄

(s1
s

)8

ȳ = ṁ . (71)

Consider the asymptotic regime where

gs

ν̄

(s1
s

)8

≪ 1, (72)

in which case the second term in Eq. (71) is typically
much less than the first term and therefore can be
dropped. The solution to the resulting equation is

ȳ ≈ ṁs+ 1− ṁ, (73)
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or

νΣ ≈ (νΣ)out

[

ṁ+ (1− ṁ)

(

r

rout

)−1/2
]

, (74)

where we have used the boundary condition ȳ(1) = 1
(Eq. 38). As we have argued in Sec. III B 2, whenever the
tidal torque parameter satisfies g̃ <∼ g̃c we have ṁ ≈ 1,
while whenever g̃ >∼ g̃c we have ṁ ≪ 1. Not surprisingly,
whenever tidal torques are unimportant, the asymptotic
density profile reflected by Eqs. (73) and (74) is the
same as the asymptotic profile given by Eqs. (57) and

(59) (i.e., νΣ ≈ constant ≈ (νΣ)out ≈ Ṁ/3π), but has a
very different fall-off otherwise.
As an application, take the disk viscosity to be a power-

law profile,

ν(r) ∝ rn, n 6= −7/2, (75)

or ν̄(s) = s2n with n 6= −7/2. Then Eq. (71) becomes

d

ds
[q(s)ȳ] = q(s)ṁ , (76)

where

q(s) = exp

[

g

(2n+ 7)s2n−1

(s1
s

)8
]

. (77)

Consider the asymptotic region where

g

(2n+ 7)s2n−1

(s1
s

)8

≪ 1, (78)

or

s ≫
(

gs2n−1
1

2n+ 7

)1/(2n+7)

s1 . (79)

For example, if n = 1/2, our fiducial case below, Eq. (79)
reduces to

s ≫
(g

8

)1/8

s1 . (80)

In the asymptotic region defined by Eq. (79), q(s) ≈ 1
and Eq. (76) again can be integrated to give Eq. (73),
which now yields

Σ

Σout
=

ȳ(s)

s2n+1
≈ ṁ

(

r

rout

)−n

+ (1−ṁ)

(

r

rout

)−(n+1/2)

.

(81)

4. Numerical Integrations

Here we adopt the numerical recipe outlined in Sec-
tion III A to evaluate the quasistationary density pro-
file for different disk parameters. We adopt a power law
viscosity ν(r) ∝ rn. We note that in their vertically-
integrated hydrodynamical simulations ref. [12] adopts

FIG. 1: Accretion rate ṁ as a function of the tidal torque
parameter g̃ for various values of the viscosity power-law index
−1 ≤ n ≤ 2. Results are shown for binary orbital radius
a = 100M , disk thickness h/r = 0.1 in the vicinity of the disk
edge at r ≈ a (see Eq. 12), disk outer radius rout = 105M
and disk ISCO at risco = 6M . Solid (black) line represents
the case for n = −1, dotted (red) line for n = 0, dashed (blue)
line for n = 1/2, long-dashed (magenta) line for n = 1, dot-
dashed (green) line for n = 3/2 and dot-long-dashed (cyan)
line for n = 2.

n = 1/2 for the value of the viscosity power-law index,
while in their integrations of the radial secular evolution
equations ref. [9] adopts n = 3/2, while ref. [7] considers
n = 0.4 and n = 0.065. In principle, the viscosity depen-
dence, as well as the disk thickness, can be determined
self-consistently once a viscosity law is adopted (e.g. an
α-disk prescription). But due to the uncertainty in this
law, we treat these as free parameters and postpone a
self-consistent calculation for a future investigation.

In Fig. 1 we show the dependence of the accretion rate
ṁ = Ṁ/(3πνoutΣout) on the strength of the tidal torque
parameter g̃ defined in Eq. (55) for fixed binary radius
a = 100M , disk thickness h/r = 0.1 and disk outer-
radius rout = 105M . In Fig. 2, we show the g̃ dependence
of ṁ for n = 1/2 and n = 3/2 and for various values of
disk thickness h/r between 0.01 and 0.15, keeping other
parameters fixed.

The key result emerging from these two figures is that
for small tidal torques g̃ <∼ g̃c the accretion rate is very
close to the rate onto an isolated black hole for the same
asymptotic disk parameters, while for strong torques
g̃ >∼ g̃c, it is sharply reduced. This behavior is predicted
from the simple analysis in Secs. III B 1 and III B 2. Since
the parameter g̃ varies as q2, the accretion rate thus de-
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FIG. 2: Accretion rate ṁ as a function of the tidal torque
parameter g̃ for various values of disk thickness h/r. Results
are shown for the viscosity power-law index n = 1/2 (top)
and n = 3/2 (bottom), with binary orbital radius a = 100M ,
disk outer radius rout = 105M and disk ISCO at risco = 6M .
Solid (black) line represents the case for h/r = 0.01, dotted
(red) line for h/r = 0.05, dashed (blue) line for h/r = 0.1,
and long-dashed (magenta) line for h/r = 0.15.

creases as the binary mass ratio increases. If we define
g̃c to be the value of g̃ so that ṁ = 0.5, we find g̃c lies
between 5 and 10 for all the cases considered here, which
is consistent with the value 6 estimated in Sec. III B 2.

In Fig. 3 we show the surface density profile for dif-
ferent tidal torque strengths g̃, fixing the viscosity index
to n = 1/2, disk thickness h/r = 0.1, binary separation
a = 100M and rout = 105M . It is evident from the figure
that when the tidal torque is large and g̃ >∼ 5, an appre-
ciable gap develops in the density profile at the orbital
radius of the secondary near r = a. Moreover, the gap
widens and the density inside the gap falls off sharply
as g̃ >∼ 15. By contrast, when the tidal torque is small
and g̃ <∼ 5, the gap shrinks and the density profile ap-
proaches the stationary profile around a single black hole
of the same mass as the binary (Eq. 59). We thus find
explicitly that the stationary solution yields an inner as
well as an outer disk for sufficiently weak tidal torques
(e.g., binaries with small q) and hardly any inner disk for
strong tidal torques (e.g., binaries with large q), as pre-
dicted in Sec. III B 2. Correlating the values of ṁ with
the density profiles for Σ for each value of g̃ shows that
the asymptotic profiles plotted in Fig. 3 agree with those
derived in Eq. (81).

FIG. 3: The surface density profile Σ plotted for different
values of the tidal torque parameter g̃. All results assume
h/r = 0.1, n = 1/2, a = 100M , rout = 105M and risco = 6M .
Top: g̃ = 5000 (black solid line), g̃ = 500 (red dotted line),
g̃ = 50 (blue short-dash line) and g̃ = 15 (magenta long-dash
line). Middle: g̃ = 5000 (black solid), g̃ = 15 (magenta long-
dash line), g̃ = 5 (green dot-short-dash line), g̃ = 2.5 (cyan
dot-long-dash line), and g̃ = 0 (orange long-dash-short-dash
line). Bottom: Same as the middle figure but plotted in linear
scale in r/M .
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IV. ELECTROMAGNETIC SPECTRUM

Here we compute the (approximate) electromagnetic
spectra from stationary disks for some representative, as-
trophysically plausible systems. We are particularly in-
terested in probing disks at the time of decoupling and
immersed in gaseous regions that will yield stationary
post-merger accretion rates onto the remnant black hole
near the Eddington limit. After decoupling, our station-
ary disk solution is no longer valid. To specify a model
we first choose the parameters M, q, a/M, rout/M ≫ 1
and n. We determine the decoupling separation ad by
the condition tGW(ad) = βtvis(2ad) (setting β = 0.1),
which yields

( ad
M

)2

=
128Mβζ

15ν(2ad)
=

128Mβζ

15νout

(

rout
2ad

)n

(82)

or

ad
M

=

[

128Mβζ

15νout

(rout
2M

)n
]1/(n+2)

. (83)

We next set h̄ = h/r = 0.1 for the disk thickness near r =
a. To establish the scale for the density and disk size in
physical units we fix Σout and rout, which determines the
disk massMdisk. Finally, we determine νout by specifying
the accretion rate onto the black hole remnant, Ṁrem =
3πνoutΣout (see Eq. 60 in the limit risco/rout ≪ 1) to be
a fraction γ of the Eddington value, whereby

γ ≡ Ṁrem

ṀEdd

=
3πνoutΣout

ṀEdd

, (84)

which gives

νout =
16γMmp

σTΣout
. (85)

The above choices determine the torque parameters g
and g̃ according to Eqs. (35) and (55), setting f =
0.01. These choices specify a unique, albeit approximate,
model for a stationary Newtonian disk about a binary
black hole system and determine the disk surface den-
sity and the gas accretion rate. Given such a model, the
electromagnetic spectrum can be computed following the
prescription outlined in Section II B 2 above.

A. Numerical Integrations

We illustrate the calculation by considering a binary
black hole with a 108M⊙ primary. We take the viscosity
power-law index to be n = 0.5, and set rout = 103M ,
γ = 0.1, and Σout = 1.5 × 104g cm−2. The decoupling
separation ad is calculated from Eq. (83). Our choice
of parameters gives Mdisk ∼ 103M⊙ for 0 ≤ q ≤ 0.1
(see Table I), which is much smaller than the mass of
the secondary BH for q > 10−3. These values for the

FIG. 4: Surface density of disks around a binary black hole
just before decoupling. Shown here are cases for the binary
mass ratios (a) q = 0 (black solid line), (b) q = 10−3 (red
dotted line), (c) q = 2 × 10−3 (blue short-dash line), (d)
q = 3 × 10−3 (magenta long-dashed line), (e) q = 5 × 10−3

(green dot-short-dash line), (f) q = 10−2 (cyan dot-long-dash
line), and (g) q = 10−1 (orange long-dash-short-dash line).

disk density and mass are comparable to those considered
in [9, 10]. We evaluate the disk profiles and electromag-
netic structure for different choices of mass ratio q ≤ 0.1.
Table I summarizes our results. Scaling behavior for dif-
ferent choices of binary and disk parameters is presented
in Appendix A. We see that the decoupling separation
ad ∝ ζ0.4 [see Eq. (83)] increases from 9.6M for q = 10−3

to 56M for q = 0.1. The accretion rate drops rapidly to-
wards 0 when q > 2×10−3, which corresponds to g̃ > 6.5,
and is consistent with Fig. 1.

Figure 4 shows the surface density of the disk for dif-
ferent values of q. As in Fig. 3, for small q, there is a
dip near r = a in the density profile, but an inner disk of
substantial density is present. When q > 2 × 10−3, the
accretion rate drops to a small value and Σ falls sharply
near r = a, leaving essentially no inner disk. We also
see that the density in the asymptotic region changes
from r−1 for small ṁ (large q) to r−1/2 for substantial ṁ
(small q), as predicted by Eq. (81). For a fixed Σout, the
steeper decrease of density in the small accretion cases
(q > 2 × 10−3) give larger Σ in the asymptotic region,
which results in a larger disk mass as shown in Table I.
However, as q increases further, the decoupling radius ad
moves to a larger radius so that the inner radius of the
disk moves out as well. This behavior leads to the small
decrease in disk mass for q > 10−2 as shown in Table I.
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TABLE I: Properties of disks around a binary black hole at the decoupling separation. The mass of the primary black hole
is set to M = 108M⊙, outer disk radius rout = 103M , surface density Σout = 1.5 × 104g cm−2 and the Eddington parameter
γ = 0.1.

Case q g̃ torb(days) tGW (yrs) ad/M Mdisk(M⊙) ṁ Ṁ(M⊙ yr−1) L(erg s−1)

a 0 0 – – – 660 1.08 0.29 1.3× 1045

b 10−3 1.6 1.1 10 9.6 670 1.07 0.29 1.8× 1045

c 2× 10−3 6.5 1.6 16 12.6 880 0.41 0.11 1.4× 1046

d 3× 10−3 14 2.0 20 14.8 1000 3.2× 10−4 8.6× 10−5 1.5× 1046

e 5× 10−3 39 2.8 27 18.2 1000 1.8× 10−15 4.9× 10−16 1.1× 1046

f 10−2 160 4.2 40 23.9 1000 0 0 6.6× 1045

g 10−1 16000 15 145 56.0 880 0 0 1.4× 1045

FIG. 5: Ratio of tidal heating to viscous heating Dtid/Dvis as
a function of radius for disks around a binary black hole just
before decoupling for binary ratios (b) q = 10−3 (red dotted
line), (c) q = 2×10−3 (blue short-dash line), (d) q = 3×10−3

(magenta long-dashed line), (e) q = 5 × 10−3 (green dot-
short-dash line), (f) q = 10−2 (cyan dot-long-dash line), and
(g) q = 10−1 (orange long-dash-short-dash line).

Figure 5 shows the ratio of tidal heating to viscous
heating Dtid/Dvis as a function of radius for each case.
In all cases with q 6= 0, the effect of tidal heating dom-
inates over the viscous heating at radius r ∼ a, but de-
creases rapidly both at larger and smaller radii. This
result is expected since the tidal torque is created by the
gravitational force of the secondary black hole, which de-
creases with the distance from the secondary. It can
be proven easily from Eqs. (20), (22), (11) and (12)
that Dtid/Dvis ∼ r3|Λ|/ν. Hence Dtid/Dvis has a peak
near r = a, Dtid/Dvis ∼ r3/2/(r − a)4 for r >∼ a and

Dtid/Dvis ∼ r11/2/(r − a)4 for r <∼ a.

FIG. 6: Electromagnetic spectrum of disks around a binary
black hole at redshift z just before decoupling. Shown here
are cases for the binary mass ratios (a) q = 0 (black solid
line), (b) q = 10−3 (red dotted line), (c) q = 2 × 10−3 (blue
short-dash line), (d) q = 3×10−3 (magenta long-dashed line),
(e) q = 5 × 10−3 (green dot-short-dash line), (f) q = 10−2

(cyan dot-long-dash line), and (g) q = 10−1 (orange long-
dash-short-dash line). Note that lines (c) and (d) are barely
distinguishable.

Figure 6 shows the electromagnetic spectrum of the
disk for each value of q. We see that the luminosity in-
creases substantially at first as q increases above zero and
the accretion rate ṁ drops. This is due to the large in-
crease in Σ as shown in Fig. 4. The peak frequency also
shifts to a higher value because the enhanced viscous and
tidal dissipation give rise to higher temperatures in the
disk. For q >∼ 3 × 10−3, however, the tidal torque of the
binary becomes large enough to expel the disk material
inside its orbit and shut off the accretion. As a result, the
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edge of the disk moves to a larger radius where the tem-
perature is lower. This effect shifts the peak frequency
back to a lower value. Since a large fraction of the electro-
magnetic radiation comes from the innermost part of the
disk where the temperature is high, the disk luminosity
drops when q >∼ 3× 10−3 (see Table I), as the inner edge
of the disk moves to a larger radius. We see from Table I
that the total luminosity of the disk for q = 0.1 drops to
about the same value as the standard Shakura-Sunyaev
disk.
Most noteworthy is the fact that even as the gas accre-

tion rate is shut off by the companion, tidal heating serves
to maintain a high luminosity from the disk, comparable
in magnitude to the luminosity from a single black hole.
For high q cases in which there is no inner disk, the lumi-
nosity plummets after decoupling over a timescale tGW,
as the inspiral accelerates and tidal heating drops. Later
on the luminosity from the disk about the remnant then
increases on a slow viscous timescale, as the outer disk
diffuses inward [1, 6, 7]. This luminosity achieves values
comparable to those prior to decoupling, but at higher
frequency, since the main radiation region outside the in-
ner edge of the disk moves inward from ad to risco, where
temperatures become hotter. For low q cases in which
there is a substantial inner disk the change in luminosity
and the frequency spectrum following decoupling is much
less pronounced.
Periodicities in the luminosity are expected on an or-

bital timescale during the inspiral. This timescale is on
the order of days at decoupling for the cases considered
here (see Table I).
Figure 6 indicates that most of the radiation emitted

by the disk at decoupling is in visible and near infrared
wavelengths. For a source at redshift z = 1, the appar-
ent magnitude is about 19 and radiated in infrared wave-
length. Assuming the disk is not obscured by interstellar
dust, it could be observable by the James Webb Space
Telescope (JWST) and Large Synoptic Survey Telescope
(LSST).

V. SUMMARY

We have studied the effects of tidal torque on a qua-
sistationary disk around a binary black hole with small
binary mass ratio before decoupling. We find that the
density profile and accretion rate is sensitive to the mass
ratio q through the tidal torque parameter g̃ defined by
Eq. (55). For small g̃, the density profile and accretion
rate are slightly modified from the standard Shakura-
Sunyaev disk. Specifically, the density inside the binary
orbit (r < a) is smaller than the standard Shakura-
Sunyaev disk but is about the same in the outer region.
A substantial drop in density is seen near r = a due to
the strong tidal torque in that region. As g̃ increases,
the tidal torque becomes stronger and the density in the
inner disk, as well as the accretion rate, decrease fur-
ther. On the other hand, the density in the outer disk

increases and a gap (inside of which the density is much
smaller) develops between the inner and outer disk. The
gap widens with increasing g̃. When g̃ exceeds a critical
value g̃c, the tidal torque is strong enough to effectively
expel the material inside and near the binary orbit and
practically shuts off accretion. The asymptotic density
profile also changes [see Eq. (81)]. For a power law vis-
cosity ν ∝ rn, the critical value is g̃c ∼ 7 and depends
weakly on the index n and disk thickness h/r (see Figs. 1
and 2).

We compute the luminosity and electromagnetic spec-
trum emitted by the disk due to viscous heating and tidal
dissipation at the time of decoupling. The results are
summarized in Table I and Fig. 6 for disks surrounding
a primary black hole of mass M = 108M⊙, outer disk ra-
dius r = 103M , surface density Σout = 1.5× 104g cm−2,
and the Eddington parameter γ = 0.1. The disk lumi-
nosity at first increases with q. This is caused by the
increase in density of the outer disk. The radiation also
shifts to higher frequencies, as the enhanced viscous and
tidal heating give rise to higher disk temperatures. The
disk luminosity reaches a maximum near q = 3 × 10−3,
when the accretion is shut off by the strong tidal torques.
When q > 3× 10−3, the decoupling binary separation ad
moves to a larger radius. The strong tidal torque expels
disk material inside and near the binary orbit, causing
the radiation region to move to larger radii, where the
temperatures are lower. The disk luminosity drops and
the radiation shifts to a lower frequency. We note that
even as the gas accretion rate is shut off by the compan-
ion, tidal heating serves to maintain a high luminosity
from the disk, comparable in magnitude to the luminos-
ity from a single black hole. Most of the radiation is
emitted in the near infrared and visible wavelength and
may exhibit periodicities on the binary orbital timescale.
For a source at redshift z = 1, the apparent magnitude
is about 19 (provided the disk is not obscured by the
interstellar dust) and could be detected by JWST and
LSST.
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Appendix A: Scaling in disk radiation

In this appendix, we rewrite the equations in Sec. II B 2
in terms of the nondimensional variables introduced in
Sec. II B 3 and then establish scaling relations in terms of
the mass of the primary black hole M and the Eddington
parameter γ.

We first rewrite Eq. (20) as

Dvis(t, r) =
9

8

νoutΣoutM

r3out

( ȳ

s7

)

. (A1)
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The torque function Λ can be written as

Λ =
3νout

√
M

4r
3/2
outs

2
f(s)ν̄(s). (A2)

Hence the rate of change in binary binding energy is [see
Eq. (21)]

Ėtid =
3πM

√
routνoutΣout

a3/2

∫ 1

s2

f(s)ȳ(s)ds

=
3πM

√
routνoutΣout

a3/2
[1− ṁ(1− s2)] . (A3)

The tidal torque density Eq. (11) becomes

∂Td

∂r
=

3πΣoutνout
2

√

M

rout

f(s)ȳ(s)

s
, (A4)

Consider the expression

∫ rout

risco

dr|dTd/dr| = 2rout

∫ 1

s2

s|dTd/dr|ds

= 3πΣoutνout
√

Mrout

[

−
∫ s1

s2

f(s)ȳ(s)ds

+

∫ 1

s1

f(s)ȳ(s)ds

]

= 3πΣoutνout
√

Mrout×
[1− 2ȳ(s1) + ṁ(2s1 − s2 − 1)]. (A5)

Hence Eq. (22) becomes

Dtid =
3MνoutΣout[1− ṁ(1− s2)]

8(routa)3/2[1− 2ȳ(s1) + ṁ(2s1 − s2 − 1)]

|f(s)|ȳ(s)
s3

.

(A6)
The total dissipation rate is

D = Dtid +Dvis

=
3MνoutΣout

8r3out
D̄(s), (A7)

where

D̄(s) =

[

3ȳ

s7
+

1− ṁ(1− s2)

1− 2ȳ(s1) + ṁ(2s1 − s2 − 1)

|f(s)|ȳ(s)
s3s31

]

.

(A8)
The temperature ratio is given by

(

T∗

Ts

)4

=
D

3MṀrem/8πr3isco
=

3

s62
D̄(s). (A9)

Gathering all the relevant formulae, the accretion rate,
luminosity, and disk mass can be expressed in cgs units
as follows:

Ṁ = 0.27M⊙ yr−1
( γ

0.1

)

(

M

108M⊙

)

ṁ, (A10)

Lν = 1.99× 1030erg
( γ

0.1

)3/4
(

M

108M⊙

)5/4

f∗(ν/ν∗),

(A11)

ν∗ = 2.91× 1014
( γ

0.1

)1/4
(

M

108M⊙

)−1/4

Hz, (A12)

L = 1.26× 1045L̄
( γ

0.1

)

(

M

108M⊙

)

erg s−1,(A13)

L̄ ≡ 2s22

∫ 1

s2

D̄(s)ds, (A14)

and

Mdisk = 2.06× 103M⊙

(

Σ

1.5× 104g cm−2

)

( rout
103M

)2

×
(

M

108M⊙

)2 ∫ 1

s2

s2−2nȳds. (A15)
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