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Abstract

Abstract: We investigate the probability distribution of the volatility return intervalsτ for
the Chinese stock market. We rescale both the probability distributionPq(τ) and the volatil-
ity return intervalsτ asPq(τ) = 1/τf(τ/τ) to obtain a uniform scaling curve for different
threshold valueq. The scaling curve can be well fitted by the stretched exponential function
f(x) ∼ e−αxγ

, which suggests memory exists inτ . To demonstrate the memory effect, we
investigate the conditional probability distributionPq(τ |τ0), the mean conditional interval
〈τ |τ0〉 and the cumulative probability distribution of the clustersize ofτ . The results show
clear clustering effect. We further investigate the persistence probability distributionP±(t)
and find thatP−(t) decays by a power law with the exponent far different from thevalue
0.5 for the random walk, which further confirms long memory exists inτ . The scaling and
long memory effect ofτ for the Chinese stock market are similar to those obtained from
the United States and the Japanese financial markets.
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1 Introduction

In recent years, physicists have paid much attention on the dynamics of financial
markets. Scaling behavior is discovered in the financial system by analyzing the
indices and the stock pricesy(t′), such as the ’fat tail’ of the probability distribution
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P (Z, t)of the two point price change returnZ(t′) = ln y(t′)−ln y(t′−1)[1, 2]. The
physical origin of the scaling behavior is often related to the long range correlation.
It is interested to find, in spite of the absence of the return correlation, the volatility
|Z(t′)| is long range correlated [3, 4].

Recently, the volatility return intervalsτ , which is defined as the return intervals
that the volatility is above a certain thresholdq, is investigated for the United States
and the Japanese financial markets [5, 6, 7, 8, 9, 10]. Scalingbehavior of the prob-
ability distribution in the volatility return intervalsτ is discovered, and long-range
autocorrelation is demonstrated forτ . The scaling and the long-range autocorrela-
tion are rather robust independent of the stock markets and the foreign exchange
markets for the developed countries. However, it is known that the emerging mar-
kets may behave differently [11, 12, 13]. Especially, the Chinese stock market is
newly set up in 1990 and shares a transiting social and political system. Due to the
special background of the Chinese stock market, it may sharesimilar properties as
the mature financial markets [12], however, it may also exhibits special features
far different from the mature financial markets in some aspects [11, 12, 13], such
as the leverage effect reported in ref. [11, 12]. It is important to investigate the
financial dynamics for the Chinese stock market to achieve more comprehensive
understanding of the financial markets.

In this paper, to broaden the understanding of the scaling and memory effect of the
volatility return intervalsτ for the emerging markets, we investigate the probabil-
ity distribution and the memory effect ofτ for the Chinese stock market. In the
next section, we present the data set we analyzed, In section3, we show the prob-
ability distribution ofτ . In section 4, we investigate the clustering phenomena by
analyzing the conditional probability distributionPq(τ |τ0), the mean conditional
interval 〈τ |τ0〉 and the cumulative distribution of the cluster size ofτ . In section
5, we investigate the persistence probability distribution P±(t). Finally comes the
conclusion.

2 Data Analyzed

The data we analyzed is based on the trade-by-trade data fromthe stocks of the
Shanghai Stock Exchange market(SHSE) and the Shenzhen Stock Exchange mar-
ket(SZSE). The SHSE was established on November 26, 1990 andput into opera-
tion on December 19, 1990. Shortly after, the SZSE was established on December
1, 1990 and put into operation on July 3, 1991. Most A-shares and B-shares are
traded in the SHSE and SZSE.

The Chinese stock market is an order-driven market and is based on the so called
continuous double auction mechanism. In the trading day, there are 3 time periods.
From 9:15 to 9:25 a.m., it is the opening call auction time, when the buy and sell or-
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ders are aggregated to match. From 9:25 to 9:30 a.m., it is thecool period, and then
followed by the continuous double auction time. The time period for the continu-
ous double auction is from 9:30 to 11:30 a.m. and from 13:00 to15:00 p.m.. More
Information about the development process and the current trading mechanism can
be found in ref. [13, 14, 15, 16]. We study the transaction records for 3 whole year
from 2003 to 2006. The number of the 3 whole year transactionsis about 800,000
on average.

3 The Probability Distribution

Here we define the volatility return intervalsτ(q) as the time intervals that volatility
|Z(t′)| above a certain thresholdq, where the sampling time interval for the volatil-
ity |Z(t′)| is 1 min. Therefore,τ(q) depends on the thresholdq. Fig. 1 shows the
volatility return intervals forq = 0.50, q = 1.00 andq = 1.50 in May 2003 of
the Datang Telecom Co., Ltd(DTT). The big value ofq corresponds to the large
volatility that rarely occurs in the financial markets. We investigate the probabil-
ity distribution function(PDF)Pq(τ) of the volatility return intervalτ(q) with the
thresholdq = 0.750, 0.875, 1.000, 1.125, 1.375 and 1.500.

0 20 40 60 80 100
0

0.5

1

1.5

2

τ1.5

τ

τ

1.0

0.5

time(min)

V
ol

at
il

it
y

DTT stock

Fig. 1. Volatility return intervalsτ for the DTT stock in May 2003 with the threshold values
q =0.50, 1.00, 1.50 are displayed.

Fig. 2a shows the PDFPq(τ) for the DTT stock and Fig. 2b shows the PDFPq(τ)
for the Chinese Minsheng Banking Co., Ltd(CMB). The seven curves are forq=0.750,
0.875, 1.000, 1.125, 1.375 and 1.500 respectively. The results show that the PDF
Pq(τ) for largeq decays slower than that for smallq. We rescalePq(τ) andτ as
Pq(τ) = 1/τf(τ/τ), which is mentioned in ref. [5, 6, 7, 8, 9, 10], to collapse the
seven curves with different thresholdq onto a single curve, whereτ is the average
interval.

Fig. 3a and Fig. 3b shows the scaled PDFPq(τ)τ as a function of the scaled volatil-
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Fig. 2. (a) Probability distribution functionsPq(τ) for the DTT stock are displayed in
log-log scale. The circles, squares, diamonds, triangle ups, triangle lefts, triangle downs
and triangle rights are for the threshold valuesq from 0.75 to 1.50 (0.750, 0.875, 1.000,
1.125, 1.250, 1.375 and 1.500) respectively. (b) Probability distribution functionsPq(τ) for
the CMB stock are displayed in log-log scale. The circles, squares, diamonds, triangle ups,
triangle lefts, triangle downs and triangle rights are for the threshold valuesq from 0.75 to
1.50 (0.750, 0.875, 1.000, 1.125, 1.250, 1.375 and 1.500 respectively.

ity return intervalsτ/τ for the DTT stock and the CMB stock. Fig. 3c shows the
scaled PDFPq(τ)τ for the DTT stock, the CMB stock, the CITIC Securities Co.,
Ltd. (CITIC) stock and the Bird Telecom Co., Ltd(BDT) stock.

The scaling behavior is observed for the normalizedτ . The scaling functionf(τ/τ )
does not directly depend on the thresholdq but throughτ ≡ τ (q). The scaling be-
havior is similar to that obtained from the United States andthe Japanese stock
markets, i.e., the generality of the scaling is further confirmed for both the mature
financial markets and the Chinese stock market. It helps us toovercome the diffi-
culty to perform statistics for the rare event with big pricefluctuation. If we know
thePq(τ) with a smallq, the behavior ofτ with largeq then can be predicted by the
scaling function. We fit the scaled PDF with a stretched exponential function form
[17],

f(x) ∼ e−αxγ

, (1)

We find that the DTT stock and the CMB stock have similar exponent value with
(γ, α) = (0.20±0.05, 4.0±0.5). The exponent is close to the value(γ, α) = (0.38±
0.05, 3.9 ± 0.5) of the United States stock market [6]. The function form is far
different from the Poission distribution, which indicatesthere may exist correlation
in τ .
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Fig. 3. (a) Scaling of the volatility return intervals for the DTT stock with the threshold
valuesq ranging from 0.75 to 1.50 (0.750, 0.875, 1.000, 1.125, 1.250, 1.375 and 1.500)
are displayed with circles, squares, triangle ups, triangle downs, pluses, crosses and stars
in log-log scale. (b) Scaling of the volatility return intervals for the CMB stock with the
threshold valuesq ranging from 0.75 to 1.50 (0.750, 0.875, 1.000, 1.125, 1.250, 1.375 and
1.500) are displayed with circles, squares, triangle ups, triangle downs, pluses, crosses and
stars in log-log scale. (c) Scaling of the volatility returnintervals for the DTT stock, the
CMB stock, the CITIC stock and the BDT stock with the threshold valueq = 1.0 are
displayed with circles, squares, crosses and stars in log-log scale.

4 Clustering Phenomena of the Volatility Return Intervals

If clustering effect occurs in time serials, it suggests memory exists in those seri-
als. To demonstrate the memory in the volatility return intervalsτ , we investigate
the clustering effect by study the conditional probabilitydistributionPq(τ |τ0), the
mean conditional interval〈τ |τ0〉 and the cumulative probability distribution of the
cluster size ofτ .

4.1 Conditional Probability Distribution

To investigate the memory effect of the volatility return intervalsτ , we analyze
the conditional PDFPq(τ |τ0). ThePq(τ |τ0) is denoted as the probability distribu-
tion function of theτ that immediately follow a given volatility return intervalτ0

[5, 6, 7, 8, 9, 10]. If memory exists inτ , thePq(τ |τ0) should depend on the preced-
ing volatility return intervalτ0. To achieve good statistics with more data points,
we sort the volatility return intervals in increasing direction and divide it into two
subsets. Fig. 4 shows the scaled conditional PDFPq(τ |τ0)/τ for the DTT stock
and the CMB stock withq=0.750, 0.875, 1.000, 1.125, 1.250, 1.375 and 1.500.
ThePq(τ |τ0)/τ for different thresholdq are collapsed onto a single curve. It is ob-
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served that thePq(τ |τ0)/τ for the lower subset is higher for the smallτ0 while the
Pq(τ |τ0)/τ for the larger subset is higher for the largeτ0, i.e., smallτ follows small
τ0 and largeτ follows largeτ0. It implies that the intervals with the similar size form
clusters, i.e., there exists memory inτ . The clustering effect has been investigated
in ref. [5, 6, 7, 8, 9, 10], we obtain the similar result for theChinese stock market. To
guide the eye, we fit the data with the stretched exponential functionf(x) ∼ e−αxγ

.
For the DTT stock, the exponent is measured to be(γ, α) = (0.30, 4.00) for the
Lower 1/2 subset and (0.20,4.00) for the larger 1/2 subset. For the CMB stock,
the exponent is measured to be(γ, α) = (0.30, 4.0) for the Lower 1/2 subset and
(0.20,3.50) for the larger 1/2 subset.
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Fig. 4. (a) The scaled conditional probability distribution Pq(τ |τ0)/τ vs τ/τ for the DTT
stock with the threshold valuesq ranging from 0.75 to 1.50 (0.750, 0.875, 1.000, 1.125,
1.250, 1.375 and 1.500) are displayed with circles, squares, diamonds, triangle ups, tri-
angle lefts, triangle downs and triangle rights. The closedsymbols are for the lower 1/2
subset, and the open symbols are for the larger 1/2 subset. The dashed lines are for guiding
the eyes and with a stretched exponential formf(x) ∼ e−αxγ

, where(γ, α) = (0.30, 4.00)
for the lower 1/2 subset and (0.20,4.00) for the larger 1/2 subset respectively. (b) The scaled
conditional probability distributionPq(τ |τ0)/τ vs τ/τ for the CMB stock with the thresh-
old valuesq ranging from 0.75 to 1.50 (0.750, 0.875, 1.000, 1.125, 1.250, 1.375 and 1.500)
are displayed with circles, squares, diamonds, triangle ups, triangle lefts, triangle downs
and triangle rights. The closed symbols are for the lower 1/2subset, and the open symbols
are for the larger 1/2 subset. The dashed lines are for guiding the eyes and with a stretched
exponential formf(x) ∼ e−αxγ

, where(γ, α) = (0.30, 4.00) for the lower 1/2 subset and
(0.20,3.50) for the larger 1/2 subset respectively.

4.2 Mean Conditional Interval

To further demonstrate the memory effect of the volatility return intervals, we in-
vestigate the mean conditional return interval〈τ |τ0〉, which is defined as the mean
of the volatility return intervalsτ that immediately follow a givenτ0 subset. Fig. 5
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shows the scaled mean conditional return interval〈τ |τ0〉/τ for the DTT stock and
the CMB stock withq=0.75, 1.00, 1.25. The closed symbols are for the volatility
return intervals and the open symbols are for the shuffled data respectively. It is
found that the shuffled data〈τ |τ0〉/τ almost keeps a constant, i.e., there is no corre-
lation in the shuffled data. However, the clustering phenomena that smallτ follows
smallτ0 while largeτ follows largeτ0 are observed for the volatility return intervals
τ . It further demonstrates the clustering effect of the intervals for the Chinese stock
market. Therefore, it implies autocorrelation inτ . The result is similar to that of the
United States and the Japanese stock markets [5, 6, 7, 8].

0.1 1 10
0.5

1

2

4

q=0.75
q=1.00
q=1.25

0.1 1 10
τ  /τ τ  /τ

shuffled

0

<τ
|τ

 >
/τ

0

_

_ _
0

DTT stock CMB stock

(a) (b)

Fig. 5. (a) The scaled mean conditional return interval〈τ |τ0〉/τ vs τ0/τ for the DTT stock
with the threshold valuesq=0.75, 1.00, 1.25 are displayed with circles, squares and tri-
angles. The closed symbols are for the volatility return intervalsτ and the open symbols
are for the shuffled data. (b) The scaled mean conditional return interval〈τ |τ0〉/τ vs τ0/τ
for the CMB stock with the threshold valuesq=0.75, 1.00, 1.25 are displayed with circles,
squares and triangles. The closed symbols are for the volatility return intervalsτ and the
open symbols are for the shuffled data.

4.3 Cluster Size Distribution of the Volatility Return Intervals

To investigate the clustering phenomena in a more direct way, we study the cumu-
lative probability distribution of the cluster size ofτ . The cluster size is obtained
by calculating the successive intervals with similar size [6, 7, 8, 9]. We separate the
data into two sets by the median data ofτ . The data which are above (below) the
median data is signed by′+′ (′−′). Accordingly,n consecutive′+′ or ′−′ intervals
form a cluster and the corresponding cumulative probability distribution is denoted
aspn+(τ) (pn−(τ)). Fig. 6 shows the cumulative probability distributionpn±(τ)
for the DTT stock and the CMB stock withq=0.75, 1.00 and 1.25. The open sym-
bols are for thepn+(τ) and the closed symbols are for thepn−(τ). We find that the
pn−(τ) presents longer tail persisting up to aboutn = 25 than thepn+(τ) does,
i.e., the relative small value ofτ may form big clusters. Similar clusters have been
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found in the United States and the Japanese stock markets [6,7, 8, 9]. It also indi-
cates long memory exists inτ .
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Fig. 6. (a) Cumulative distribution of the cluster size ofτ for the DTT stock with the
threshold valuesq=0.75, 1.00, 1.25 are displayed with circles, squares and triangles. The
open (closed) symbols are for the consecutive volatility return intervals that are all above
(below) the median interval records. (b) Cumulative distribution of the cluster size ofτ
for the CMB stock with the threshold valuesq=0.75, 1.00, 1.25 are displayed with circles,
squares and triangles. The open (closed) symbols are for theconsecutive volatility return
intervals that are all above (below) the median interval records.

5 Persistence Probability

To achieve deeper understanding of the memory effect of the volatility return in-
tervals, we investigate the persistence probability, which has been systematically
studied in nonequilibrium dynamics such as phase ordering dynamics and critical
dynamics [18, 19, 20, 21, 22]. The idea of persistence is closely related to the first
passage time which has been widely studied in physics, biology and engineering
[23, 24, 25, 26, 27]. In general, the persistence probability provides additional in-
formation to the autocorrelation.

The persistence probabilityP+(t) (P−(t)) is defined as the probability thatτ(t′ + t̃)
has always been above (below)τ(t′) in time t, i.e.,τ(t′ + t̃) > τ(t′) (τ(t′ + t̃) <
τ(t′)) for all t̃ < t. The average is taken overt′. In Fig. 7, the persistence probability
distribution ofτ is plotted in log-log scale withq=0.75, 1.00 and 1.25. It is found
thatP+(t) decays much faster thanP−(τ) does. TheP−(t) is observed to decay by a
power-lawP−(t) ∼ t−β . The high-low asymmetry of the persistence probability is
similar to that of the volatility [19, 20, 21, 22]. The persistence exponents measured
from the slopes ofP−(t) with q=0.75, 1.00 and 1.25 are close and estimated to be
β = 0.25 ± 0.05 for the DTT stock, andβ = 0.86 ± 0.05 for the CMB stock. The
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exponents are far different from those of the random walk, where bothP+(t) and
P−(t) show a power law behavior with a persistence exponentβ = 0.50. It further
supports that long-range correlation exists inτ .
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Fig. 7. (a) Persistence probability of the volatility return intervalsτ for the DTT stock with
the threshold valuesq=0.75, 1.00, 1.25 are displayed with circles, squares and triangles in
log-log scale. The open (closed) symbols are forp−(t) (p+(t)). The solid line(the dotted
line) is thep−(t) (p+(t)) for the random walk. (b) Persistence probability of the volatility
return intervalτ for the CMB stock with the threshold valuesq=0.75, 1.00, 1.25 are dis-
played with circles, squares and triangles in log-log scale. The open (closed) symbols are
for p−(t) (p+(t)).

6 Conclusion

In summary, we have investigated the probability distribution functionPq(τ) of the
volatility return intervalsτ for the Chinese stock market. Scaling behavior is ob-
served afterPq(τ) andτ are rescaled asPq(τ) = 1/τf(τ/τ ). The scaling curve
can be fitted by a stretched exponential functionf(x) ∼ e−αxγ

with α = 0.39
and γ = 4.00, which is far different from the Poission distribution. It suggests
there exists memory inτ . We then study the conditional probability distribution
Pq(τ |τ0) and the mean conditional return interval〈τ |τ0〉. The results show that both
the Pq(τ |τ0) and the〈τ |τ0〉 depend on the previous volatility return intervalsτ0.
To obtain the clustering phenomena in a more direct way, we investigate the cu-
mulative probability distribution of the cluster size ofτ . Clear clustering effect is
observed, especially for the relative small value ofτ . We further investigate the
persistence probability distribution ofτ . It is found thatP−(t) decays by a power
law, with the exponentβ = 0.25 ± 0.05 for the DTT stock andβ = 0.86 ± 0.05
for the CMB stock, which is far different from the value 0.5 for the random walk.
ThePq(τ |τ0), the〈τ |τ0〉 and the cumulative probability distribution of the cluster
size ofτ for the Chinese stock market are similar to those obtained from the United
States and the Japanese stock markets. The persistence probability further confirms
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the long memory ofτ for the Chinese stock market. Compared with the mature fi-
nancial markets, we find that, as a emerging market, the Chinese stock market may
have some unique features, however, it shares the similar scaling and long memory
properties for the volatility return intervals as the United States and the Japanese
stock markets.

Acknowledgments:

This work was supported by the National Natural Science Foundation of China
(Grant Nos. 10747138 and 10774080).

References

[1] R.N. Mantegna and H.E. Stanley, Nature 376 (1995) 46.
[2] P. Gopikrishnan et al., Phys. Rev. E 60 (1999) 5305.
[3] I. Giardina, J.P. Bouchaud and M. Mézard, Physica A 299 (2001) 28.
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