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Head-on collisions of unequal mass black holes in D = 5 dimensions
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We study head-on collisions of unequal mass black hole binaries in D = 5 spacetime dimensions,
with mass ratios between 1:1 and 1:4. Information about gravitational radiation is extracted by
using the Kodama-Ishibashi gauge-invariant formalism and details of the apparent horizon of the
final black hole. For the first time, we present waveforms, total integrated energy and momentum
for this process. Our results show surprisingly good agreement, within 5 % or less, with those
extrapolated from linearized, point-particle calculations. Our results also show that consistency with
the area theorem bound requires that the same process in a large number of spacetime dimensions
must display new features.

PACS numbers: 04.25.D-, 04.25.dg, 04.50.-h, 04.50.Gh

I. INTRODUCTION

Black holes (BHs) have been at the center stage of fun-
damental physics in the last decades: supermassive, as-
trophysical BHs lurk at the center of most galaxies while
large numbers of stellar-mass BHs are thought to popu-
late each galaxy [1, 2]; highly dynamical BH binaries are
strong sources of gravitational waves and, perhaps, power
jets and other extreme phenomena [3, 4]. In high-energy
physics, BHs are a central piece of the gauge-gravity du-
ality [5], and are the generic outcome of particle collisions
at center-of-mass energies above the Planck scale [6]. In
this regime the particular nature of the particles’ struc-
ture should become irrelevant, as indicated by Thorne’s
“hoop” conjecture [7], and “no-hair theorem”-type of ar-
guments. These can be invoked to argue that, in general,
trans-Planckian collisions of particles are well described
by collisions of highly boosted BHs. In this context, sce-
narios such as TeV-gravity are especially interesting, as
they lower the Planck scale to the level at which BHs
would be produced in cosmic rays and particle acceler-
ators [8–17]. Thus, high-energy BH collisions could be
used to look for signatures of extra dimensions and BH
production in ground-based experiments in the forthcom-
ing years. At the fundamental level, BHs might hold the
key for a theory of quantum gravity, and might help un-
derstand important issues such as cosmic censorship, in-
formation loss and the maximum possible luminosities in
any physical process [18, 19].
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The above arguments illustrate the necessity to un-
derstand accurately dynamical BH spacetimes, and their
potential across a wide variety of fields. Since the full
system of Einstein equations needs to be carefully under-
stood, this is by all means a monumental task, and typi-
cally requires numerical methods. With these fundamen-
tal issues as motivation, long-term efforts to understand
dynamical BHs in generic spacetimes have been initi-
ated [20–25], ranging from the inspiralling of BH binaries
[26, 27], high-energy collisions of BHs in four [18, 19, 28]
and low energy collisions in higher spacetime dimensions
[21, 22], stability studies in higher dimensions [29–31] and
BH evolutions in non asymptotically flat spacetimes [32].

Our group has recently studied head-on collisions of
equal-mass black holes in higher dimensions, in partic-
ular D = 5, for the first time [22]; here, we wish to
extend that study to the case of unequal mass BH bina-
ries. This is an interesting extension for several reasons,
perhaps the most important of which is the non-trivial
comparison with point-particle (PP) calculations in the
linearized regime. We will compare radiated energy, mo-
mentum and multipolar dependence of our full non-linear
results with results from linearized Einstein equations. It
turns out that the agreement is remarkable, providing an
outstanding consistency check on our codes and results.
A thorough analysis of the linearized Einstein equations
is done in an accompanying paper [33].

This paper is organized as follows: In Sec. II we sum-
marize our numerical method and setup and present the
numerical results. We finish by giving some conclusions
and final remarks in Sec. III.

http://arxiv.org/abs/1011.0742v1
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II. NUMERICAL RESULTS

The numerical simulations have been performed with
the Lean code, originally introduced in Refs. [34, 35] and
adapted to higher dimensional space-times by Zilhão et
al [21]. The Lean code is based on the Cactus computa-
tional toolkit [36] and uses the Carpet mesh refinement
package [37, 38] and Thornburg’s apparent horizon finder
AHFinderDirect [39, 40].
By dimensional reduction, the D dimensional vacuum

Einstein equations yield an effectively 3 + 1 dimensional
system of gravity coupled to a scalar field [21]. We
have evolved this system using the BSSN [41, 42] for-
mulation along the lines presented in Ref. [21], together
with the moving puncture approach [43, 44]. The ini-
tial data consists in the time-symmetric Brill-Lindquist
initial data in the form presented in Witek et al. [22]
(Eq. (2.15) therein). Gravitational waves have been
extracted using the Kodama-Ishibashi (KI) formalism
[45, 46]. For details of the wave extraction implemen-
tation we refer the reader to Ref. [22]. We have evolved
BH binaries, colliding head-on from rest with mass ra-
tios q ≡ M1/M2 = rD−3

S,1 /rD−3
S,2 = 1, 1/2, 1/3, 1/4, where

Mi is the mass of the i-th BH. The mass parameter
rD−3
S,1 /rD−3

S of the smaller BH is given in Table I and
we adapt the value of the second BH accordingly. The
initial coordinate separation of the two BHs is set to
d/rS = 6.37 which translates to a proper initial sepa-
ration of L/rS = 6.33. Further details of the setup of the
simulations are summarized in Table I. Unless denoted
otherwise, our discussion will always refer to the highest
resolution runs with hf/rS = 1/84, hf/rS = 1/102.9,
hf/rS = 1/118.8 and hf/rS = 1/132.8 for models HD5a,
HD5b, HD5c and HD5df in Table I, respectively. The en-
ergy flux is computed according to Eq. (2.56) in Ref. [22]
(see Eq. (21) in Ref. [47] for the corresponding expression
in Fourier space). The momentum flux can be obtained
from

dP i

dt
=

∫

S∞

dΩ
d2E

dtdΩ
ni , (1)

with ni a unit radial vector on the sphere at infinity S∞.
This results in an infinite series coupling different mul-
tipoles. Using only the first two terms in the series, we
find, for instance, that in D = 5 the momentum flux in
the collision direction is given by

dP

dt
=

1

4π
Φl=3

,t

(

5Φl=2
,t + 21Φl=4

,t

)

. (2)

Here, Φl
,t is the l−pole component of the KI gauge-

invariant wavefunction [22, 45, 46]. From the momen-
tum radiated, the recoil velocity of the system can be
obtained as

vrecoil =

∣

∣

∣

∣

∫

∞

−∞

dt
dP

dt

∣

∣

∣

∣
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FIG. 1. (Color online) From top to bottom: l = 2, l = 3 and
l = 4 modes of the KI waveform for the different mass ratios;
q = 1 (black solid lines), q = 1/2 (red dashed lines) and q =
1/3 (green dash-dotted lines). The curves have been shifted in
time such that the formation of the common apparent horizon
corresponds to ∆t/rS = 0 and taking into account the time
that it takes the waves to propagate to the extraction radius.

A. Waveforms

In Fig. 1 we show the l = 2, 3, 4 waveforms for dif-
ferent mass ratios, zoomed in around the time of the
merger. The waveforms have been shifted in time such
that ∆t/rS = (t − rex − tCAH)/rS = 0 corresponds to
the time tCAH at which the common apparent horizon
forms and taking into account the propagation time of the
waves to the extraction radius rex/rS = 60, 49, 42.4, 37.9.
The waveform is similar to previous four-dimensional re-
sults (see, e.g. Ref. [48], a more detailed study is in prepa-
ration [49]). Although not shown in Fig. 1 we observe a
small, spurious signal starting around (t − rex)/rS ≈ 0,
which is an artifact of the initial data.
The actual physical part of the waveform is dominated

by the merger signal at ∆t/rS ≈ 0 followed by the quasi-
normal ringdown. We estimate that the different ring-
down modes are given by

ωl=2rS = 0.955± 0.005− i(0.255± 0.005) ,

ωl=3rS = 1.60± 0.01− i(0.31± 0.01) ,

ωl=4rS = 2.25± 0.03− i(0.35± 0.05) .

These results agree well, and within uncertainties, with
estimates from linearized theory [47, 50–52], providing
a strong consistency check on our results. Finally, we
consider numerical convergence of our waveforms. This
study is summarized in Fig. 2 for the l = 2 mode of
the KI wavefunction, and for the most challenging mass
ratio, q = 1/4, model HD5d in Table I. We have
evolved this setup at three different resolutions, namely
hc/rS = 1/113.8, hm/rS = 1/123.3 and hf/rs = 1/132.8,
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Run q rD−3

S,1 /rD−3

S rD−3

S z1/rS z2/rS Grid Setup

HD5a 1 0.5 1 3.185 −3.185 {(256, 128, 64, 32, 16, 8)× (2, 1, 0.5), h = 1/84}

HD5b 1/2 0.33 1.5 4.247 −2.123 {(209, 104.5, 52.3, 26.1, 13.1, 6.5) × (1.6, 0.8, 0.4), h = 1/102.9}

HD5c 1/3 0.25 2 4.777 −1.592 {(181.0, 90.5, 45.3, 22.6, 11.3) × (2.8, 1.4, 0.7, 0.4), h = 1/118.8}

HD5dc 1/4 0.2 2.5 5.096 −1.274 {(161.9, 80.9, 40.5, 20.2, 10.1) × (2.5, 1.3, 0.6, 0.3), h = 1/113.8}

HD5dm 1/4 0.2 2.5 5.096 −1.274 {(161.9, 80.9, 40.5, 20.2, 10.1) × (2.5, 1.3, 0.6, 0.3), h = 1/123.3}

HD5df 1/4 0.2 2.5 5.096 −1.274 {(161.9, 80.9, 40.5, 20.2, 10.1) × (2.5, 1.3, 0.6, 0.3), h = 1/132.8}

TABLE I. Grid structure and initial parameters of the head-on collisions from rest in D = 5. The grid setup is given in terms
of the “radii” of the individual refinement levels, as well as the resolution near the punctures h, in units of rS (see Sec. II E in
[34] for details). We give the Schwarzschild radius rD−3

S = rD−3

S,1 +rD−3

S,2 of the final BH, the mass of the smaller BH rD−3

S,1 /rD−3

S

and the quantity q ≡ M1/M2 = rD−3

S,1 /rD−3

S,2 denotes the mass ratio. zi/rS is the initial position of i-th BH.
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FIG. 2. (Color online) Convergence analysis of the l = 2
mode for model HD5d in Table I. We show the differences
between the coarse and medium resolution waveform (black
solid line) and the medium and high resolution waveform (red
dashed line). The latter has been amplified by the factor Q =
1.47, indicating fourth order convergence. The curves have
been shifted in time such that the formation of the common
apparent horizon corresponds to ∆t/rS = 0 and taking into
account the time that it takes the waves to propagate to the
extraction radius.

which we will refer to as “coarse”, “medium” and “high”
resolution in the following. We show the difference be-
tween the coarse and medium as well as between the
medium and high resolution waveforms. The latter has
been amplified by the factor Q = 1.47, which indicates
fourth order convergence. We obtain the same order of
accuracy for the higher modes. The discretization error
in the waveforms is estimated to be ≈ 1.5%.

B. Radiated energy

Table II lists some of the most important physical
quantities which characterize the head-on collision of BHs

q Erad/M(%) Erad

l=2(%) Erad

l=3(%) Erad

l=4(%) vrecoil(km/s)

1/1 0.089(0.090) 99.9 0.0 0.1 0.00

1/2 0.073(0.067) 97.7 2.2 0.1 11.37

1/3 0.054(0.051) 94.8 4.8 0.4 12.64

1/4 0.040(0.035) 92.4 7.0 0.6 11.38

TABLE II. Summary of our results concerning unequal mass
head-on collisions of BHs in D = 5. We show the total radi-
ated energy E/M as measured from the energy flux at rex,
the quantity in parenthesis refers to the estimate obtained
using properties of the apparent horizon (see Ref. [22] for de-
tails). The next three columns show the fraction of energy
El excited in the l-th mode as compared to the total radiated
energy. The last column refers to the recoil velocity vrecoil in
km/s.

in D = 5. In particular, we show the radiated energy in
units of total mass M , and the recoil velocity of the final
BH in km/s. The maximum amount of energy is emit-
ted in the equal mass case (Erad/M = 0.089% as found
previously in Ref. [22]), and it decreases for smaller mass
ratios. We estimate the error in the radiated energy to
be about 5 %. These results were obtained by integrat-
ing the energy flux as given by the KI master wavefunc-
tion. We have also estimated the radiated energy us-
ing properties of the apparent horizon [22]. We estimate
the discretization error to be about ≈ 10 % when using
this method. The apparent horizon estimate for the to-
tal radiated energy is shown in parenthesis in Table II,
and is consistent with the flux computation within nu-
merical uncertainties. Table II also shows the fraction
of energy emitted in different multipoles. Higher multi-
poles are clearly enhanced as the mass ratio decreases, in
agreement with what we expect in the extreme case of
a PP falling into a BH. In fact, we can make this state-
ment more precise. Post-Newtonian arguments, which
extend to generic D-dimensions, allow one to expect the
functional dependence for the total radiated energy [53],
Erad/M ∝ η2, where η = q/(1 + q)2 is the dimensionless
reduced mass. For clarity, we show the ratio Erad/(Mη2)
in the top panel of Fig. 3, which can be seen to depend
very weakly on η2. We can refine this argument by fit-
ting our numerical results to an improved expression of
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FIG. 3. (Color online) Top: Total integrated energy for dif-
ferent mass ratios, as function of η2 = [q/(1+q)2]2. The black
diamonds denote the numerical data and the black dashed-
dotted line is the corresponding fitting function, Eq. (4). Bot-
tom: Recoil velocity vrecoil in km/s as function of the mass
ratio q. The red circles denote the numerical data and the
red dashed line is the corresponding fitting function, Eq. (8).

the form Erad/Mη2 = A0 +A1η
2. We find

Erad

Mη2
= 0.0164− 0.0336η2 . (4)

Moreover, the following expressions for the multipolar
content provide a good fit to our numerical data,

Erad
l=2

Erad
= 0.79 + 0.83η ,

Erad
l=3

Erad
= 0.19− 0.77η . (5)

Linearized, PP calculations presented in an accompany-
ing paper [33] show that in the limit of zero mass ratio
one obtains

Erad
PP

Mη2
= 0.0165 , (6)

which agrees with the extrapolation of our numerical re-
sults within less than 1%. The multipole content in the
PP limit are

Erad
l=2

Erad
PP

= 0.784 ,
Erad

l=3

Erad
PP

= 0.167 , (7)

still in very good agreement with the extrapolation of
our full numerical results to the zero mass ratio limit. In
fact, bearing in mind that we are extrapolating frommass
ratios of 1/4 down to the zero mass ratio limit, the agree-
ment is impressive. Finally, all these results are consis-
tent with the fact that higher multipoles contribute more
to the radiation than in D = 4, where for instance the
l = 3 mode contributed roughly 10% of the total energy
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-1e-05

0
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 (
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 / 
dt

 )
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r S
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q = 1:2
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FIG. 4. (Color online) Momentum flux for different mass
ratios. The curves have been shifted in time such that the
formation of the common apparent horizon corresponds to
∆t/rS = 0 and taking into account the time that it takes the
waves to propagate to the extraction radius.

in the PP limit [54]. Linearized, point-particle calcula-
tions show that the trend is consistent and continues in
higher-D, which might mean that accurate wave extrac-
tion will become extremely difficult, as higher resolution
is necessary to resolve higher-l modes [33].

C. Radiated momentum

For unequal-mass collisions, the asymmetric emission
of radiation along the collision axis causes a net momen-
tum to be carried by gravitational waves. As such, the
final BH will “recoil”, according to Eq. (3). Momen-
tum fluxes and recoil velocity for different mass-ratios
are shown in Fig. 4 and the bottom panel of Fig. 3, re-
spectively. We estimate the errors in the recoil velocity
to be ≈ 5 %. The general functional form for the de-
pendence of momentum on the mass parameters of the
individual holes has been worked out by M. Lemos in
generic spacetime dimensions [53] and is the same as in
four dimensions

vrecoil = C
q2(1 − q)

(1 + q)5
. (8)

By fitting this function to our numerical data, we obtain
C = 716 km/s. Observe that vrecoil reaches a maximum
value at q = 2 − ϕ ≃ 0.38, where ϕ is the golden ratio.
The quality of the fit can be seen in the bottom panel of
Fig. 3, where we overplot the numerical data points with
the fitting function, Eq. (8). This exercise is interesting
because we can again extrapolate our results to the PP
limit. In an accompanying paper, Berti et al. [33] find

vrecoil = 779q2km/s , (9)
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in reasonably good agreement (better than 10%) with our
extrapolation. We note that momentum emission is given
by a non-trivial interference between different multipoles,
so this is a non-trivial agreement.

III. CONCLUSIONS

For the first time, we have evolved unequal-mass BH
binaries in higher dimensions, by solving Einstein equa-
tions in the full nonlinear regime. We have focused on
head-on collisions in D = 5 spacetime dimensions.
The gravitational waveforms are similar to the D = 4

counterparts [48, 49], and we were able to estimate the
ringdown frequencies of the lowest multipoles. We find
good agreement with published values for the quasi-
normal frequencies, extracted in a linearized formalism.
When extrapolated to the zero-mass-ratio limit, our re-
sults agree with linearized calculations [33] at the % level
or better for the energy and momentum radiated, as
well as for the multipolar dependence. This outstand-
ing agreement is one of the main results of this work.
Our findings, supported by linearized analysis, indi-

cate that the higher multipoles become more important
for larger D. This will certainly make wave extraction at
sufficiently large D a more demanding task, since higher
resolutions are necessary to resolve these modes. The
momentum structure is similar to the four-dimensional
case, it would be interesting to understand if other as-
pects, such as the anti-kick, can still be interpreted in
like-manner [55]. Finally, it would be very interesting to
perform an exhaustive set of simulations in higherD: our
results, together with linearized analysis [33], suggest a
qualitative change in radiation emission for D ≤ 12− 13.

In fact, this change is required by the fact that Hawking’s
area theorem forces the total amount of gravitational ra-
diation to decrease withD, at sufficiently largeD [22, 33].
Understanding the mechanism at play requires extension
of our results to arbitrary spacetime dimensions.
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