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Abstract

This paper discusses the observed flat rotation curves of galaxies in the context

of noncommutative geometry. The energy density of such a geometry is diffused

throughout a region due to the uncertainty encoded in the coordinate commutator.

This intrinsic property appears to be sufficient for producing stable circular orbits,

as well as attractive gravity, without the need for dark matter.

1 Introduction

The inability to account for stellar motions in the outer regions of galaxies has led to
the hypothesis that galaxies and even clusters of galaxies are pervaded by dark matter
[1, 2, 3, 4, 5]. This hypothesis has been confirmed by observing the flatness of galactic
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rotation curves [6, 7, 8, 9, 10, 11]. The composition of such matter, if it exists, has
remained unknown.

The dark-matter problem originated in the measurement of the tangential velocity vφ

of stable circular orbits of hydrogen clouds in the outer regions of the halo. To explain
the observed constant velocity, it is assumed that the decrease in the energy density is
proportional to r−2, where r is the distance from the center of the galaxy.

A number of candidates for dark matter have been proposed. The most favored is the
standard cold dark matter (SCDM) paradigm [12, 13]. Another strong possibility is the
Λ-CDM model that is related to the accelerated expansion of the Universe [14, 15]. For a
summary of some alternative theories, such as scalar-tensor and brane-world models, see
Rahaman, et al. [16, 17, 18].

In this paper we study the dark-matter problem from a completely different per-
spective: an important outcome of string theory is the realization that coordinates may
become noncommuting operators on a D-brane [19, 20]. The result is a discretization
of spacetime due to the commutator [xµ,xν ]= i θµν , where θµν is an antisymmetric ma-
trix. Noncommutativity replaces point-like structures by smeared objects [21], suggesting
the possibility of eliminating the divergences that normally appear in general relativity.
The smearing effect is accomplished by using a Gaussian distribution of minimal length√
α instead of the Dirac-delta function. More precisely, the energy density of the static

and spherically symmetric smeared and particle-like gravitational source has the following
form [22]:

ρ∗ =
M

(4πα)
3

2

exp

(

− r2

4α

)

, (1)

where the mass M is diffused throughout a region of linear dimension
√
α due to the

uncertainty. The noncommutativity is an intrinsic geometric property of the manifold,
and not of its matter content, and can be taken into account by keeping the standard form
of the Einstein tensor on the left-hand side of the field equations. The right-hand side
is modified, however, by introducing a new energy-momentum tensor as a gravitational
source.

Taking the flat rotation curves as input, this model predicts both stable circular orbits
and attractive gravity in a typical galaxy.

2 The model

In this paper the metric for a static spherically symmetric spacetime is taken as

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2θ dφ2), (2)

where the functions of the radial coordinate r, ν(r) and λ(r), are the metric potentials.
Now we consider the model with a maximally localized source of energy. Here the

Einstein equations can be written as

Gµν = 8πGTµν . (3)
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(We assume that c = 1.) The most general energy momentum tensor compatible with
static spherical symmetry is

T µ
ν = diag (−ρ, pr, pt, pt). (4)

For the metric (2), the Einstein field equations are

e−λ

[

λ′

r
− 1

r2

]

+
1

r2
= 8πGρ, (5)

e−λ

[

1

r2
+

ν ′

r

]

− 1

r2
= 8πGpr, (6)

1

2
e−λ

[

1

2
(ν ′)2 + ν ′′ − 1

2
λ′ν ′ +

1

r
(ν ′ − λ′)

]

= 8πGpt. (7)

3 The solutions

Using the observed flat rotation curves as a starting point, it is well known [17, 23] that
this condition gives the solution

eν = B0r
l, (8)

where l is given by l = 2v2φ and B0 is an integration constant. (For a derivation, see
Ref. [18].) According to Matos, Guzman, and Lopez [24], the observed rotation curve
profile in the presumed dark matter dominated region is such that the rotational velocity
vφ becomes approximately constant with vφ ∼ 300 km/s (∼ 10−3) for a typical galaxy.
So l = 0.000001, as shown by Nandi et al. [25], and we likewise assume large distances
measured in kpc from the galactic center.

Using equation (1), equation (5) yields

e−λ = 1− 2m∗(r)

r
, (9)

where

m∗(r) =
2M√
π

γ

(

3

2
,
r2

4α

)

=
2M√
π

∫ r2/4α

0

√
t e−tdt (10)

and

γ

(

3

2
,
r2

4α

)

=

∫ r2/4α

0

√
t e−tdt (11)

is the lower incomplete gamma function [22]. The classical Schwarzschild mass is recovered
in the limit as r/

√
α → ∞. Furthermore, new physics can only be expected if r ≈ √

α.
The mass M could be a diffused centralized object such as a wormhole [26] or a

gravastar [27]. Since we are interested in rotation curves at some fixed distance r = R0

from the center, we need to consider instead a spherical shell of radius r = R0. So
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Figure 1: The graphs of m∗(r) (left) and m(r).

instead of a smeared particle-like object, we get a smeared shell. We will therefore need
to translate the above curves as follows:

ρ =
M

(4πα)
3

2

exp

(

−(r − R0)
2

4α

)

(12)

and

m(r) =
2M√
π

γ

(

3

2
,
(r − R0)

2

4α

)

. (13)

These replace ρ∗ and m∗(r). As before,

γ

(

3

2
,
(r −R0)

2

4α

)

=

∫ (r−R0)2/4α

0

√
t e−tdt (14)

is the lower incomplete gamma function. It is important to note that Eq. (14) consists of
a pure translation of Eq. (11) and therefore remains an appropriate model (see Fig. 1).
Here M denotes the mass of a spherical shell of radius r = R0. Once again, the classical
Schwarzschild limit is recovered as (r − R0)/

√
α → ∞, while new physics can only be

expected if r −R0 ≈
√
α.

Using solutions (8) and (9) in the Einstein field equations, one can readily get the
following expressions for pr and pt:

pr =
1

8πG

l

r2

{[

1− 4M√
πr

γ

(

3

2
,
(r −R0)

2

4α

)]

(1 + l)− 1

}

(15)

(since ν ′ = l/r) and

pt =
1

8πG

[

1

2

(

1− 2m(r)

r

)(

1

2
(ν ′)2 + ν ′′ − 1

2
λ′ν ′ +

1

r
(ν ′ − λ′)

)]

. (16)
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Moreover, since

λ′ =
2

r

m′r −m

r − 2m
and m′ =

M(r − R0)
2

2
√
π α

3

2

exp

(

−(r − R0)
2

4α

)

,

we arrive at

pt =
1

8πG

1

4r3

{

l2
[

r − 4M√
π

γ

(

3

2
,
(r − R0)

2

4α

)]

−2(l + 2)

[

Mr(r − R0)
2

2
√
π α3/2

exp

(

−(r − R0)
2

4α

)

− 2M√
π

γ

(

3

2
.
(r −R0)

2

4α

)]}

. (17)

As a final comment, the spacetime is not asymptotically flat. If this spacetime were
to be joined to an exterior Schwarzschild spacetime at the boundary of the halo, then the
pressure anisotropy would be an advantage [25].

4 Stability of circular orbits

Given the four-velocity Uα = dxσ

dτ
of a test particle moving solely in the subspace of the

halo and restricting ourselves to θ = π/2, the equation gνσU
νUσ = −m2

0 can be cast in a
Newtonian form

(

dr

dτ

)2

= E2 + V (r), (18)

which gives

V (r) = −
[

E2

(

1− r−le−λ

B0

)

+ e−λ

(

1 +
L2

r2

)]

. (19)

The constants

E =
U0

m0
and L =

U3

m0
(20)

are, respectively, the conserved relativistic energy and angular momentum per unit rest
mass of the test particle [25]. Circular orbits are defined by r = R0, a constant, so that
dR0

dτ
= 0 and, additionally, dV

dr
|r=R0

= 0. From these two conditions follow the conserved
parameters:

L = ±
√

l

2− l
R0 (21)

and, using L in V (R) = −E2, we get

E = ±
√

2B0

2− l
R

l/2
0 . (22)
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The orbits will be stable if d2V
dr2

|r=R0
< 0 and unstable if d2V

dr2
|r=R0

> 0. We first determine
d2V
dr2

at r = R0 by substituting the expressions for L and E:

d2V

dr2

∣

∣

∣

∣

r=R0

= A +B + C +D, where

A =

[

1− 4M

r
√
π

∫ (r−R0)2/4α

0

√
te−tdt

]

[

2

2− l
l(l + 1)

R0

r2+l
− 6l

2− l

R2
0

r4

]

,

B = −2M

r3

[

r2(r −R0)√
πα3/2

e−(r−R0)2/4α − r2(r − R0)
3

4
√
πα5/2

e−(r−R0)2/4α

−r(r −R0)
2

√
πα3/2

e−(r−R0)2/4α

](

2

2− l

R0

rl
− 1− l

2− l

R2
0

r2

)

,

C = −4M

r2
r(r − R0)

2

2
√
πα3/2

e−(r−R0)2/4α
2

2− l
l

(

− R0

r1+1
+

R2
0

r3

)

,

D =
8M√
πr2

[

∫ (r−R0)2/4α

0

√
te−tdt

]

2

2− l
l

(

− R0

r1+l
+

R2
0

r3

)

− 8M√
πr3

∫ (r−R0)2/4α

0

√
te−tdt

(

2

2− l

R0

rl
− 1− l

2− l

R2
0

r2

)

. (23)

In Eqs. (1) and (10), r is the distance in the radial outward direction. We will therefore
assume that r > R0, which does not result in a loss of generality. Our aim is to show that
under certain conditions, V ′′(R0) is negative, resulting in a stable orbit.

Since α controls the “width” of the Gaussian curve, we study the smearing effect by
assuming that r − R0 ≈ √

α, the fundamental condition discussed in Sec. 3. Returning
to Eq. (23), the mass of the shell, which we are treating as the analogue of a smeared
central object, has a relatively small value when measured in kpc (and we must therefore
assume that G = 1). In conjunction with the condition r −R0 ≈

√
α, the first term A is

less than l/R0. Next, factoring B, we have
[

r − r(r − R0)
2

4α
− (r − R0)

](

−2M

r2
r − R0√
πα3/2

e−(r−R0)2/4α

)

×
(

2

2− l

R0

rl
− 1− l

2− l

R2
0

r2

)

.

Since (r−R0)
2 ≈ α, the first factor is approximately equal to R0 − r/4, which is positive

for r not too large. Observe that B exceeds C in absolute value. Because of the α in the
denominator, |B| easily overtakes A as well, even for moderately small α. Finally, since
D is negative, V ′′(R0) is also negative, provided, of course, that R0− r/4 is positive. The
last condition limits the size of the variable r.

4.1 The effect of the noncommutative geometry

It is shown by Nicolini, Smailagic, and Spallucci [22] that at large distances one would
expect only a minimal deviation from the standard vacuum Schwarzschild geometry. Re-
ferring to Eqs. (1) and (10), new physics can only be expected if r ≈ √

α. In our
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model, this condition corresponds to r − R0 ≈ √
α. As we just saw, if r is too large,

then V ′′(R0) is no longer negative. This case is an example of a large distance that
produces the appearance of a Schwarzschild geometry since the smearing, although very
much present, is no longer apparent. So, in a sense, the unseen dark matter is replaced
by the unseen noncommutative geometry. (Regarding large-scale structures, it is worth
noting that a Gaussian source has also been used in Ref. [28] to model phantom-energy
supported wormholes, as well as in Ref. [29] to model the physical effects of short-distance
fluctuations of noncommutative coordinates in the study of black holes.)

4.2 Negative radial pressure

It is emphasized in Ref. [22] that a negative radial pressure is needed to retain the
smearing effect near the origin, referring now to Eqs. (1) and (10). The negative pressure
counteracts the inward gravitational pull, thereby preventing a collapse to a matter point.

Returning to Eq. (15), if r − R0 ≈ √
α, then pr is indeed negative if M , the mass of

the shell, is sufficiently large (since the shell need not be arbitrarily thin). But as long
as r − R0 ≈ √

α, we have V ′′(R0) < 0, so that the negative pressure is attributable to
the noncommutative geometry, much like traversable wormholes sustained in this manner
[26]. We will return to this observation in Sec. 6.

5 Attraction and total gravitational energy

Our next step is to consider the question of attractive gravity by studying the geodesic
equation for a test particle that is moving along a circular path of radius r = R:

d2xα

dτ 2
+ Γα

µγ

dxµ

dτ

dxγ

dτ
= 0. (24)

This equation implies that

d2r

dτ 2
= −1

2
e−λ

[

d

dr
eλ

(

dr

dτ

)2

+
d

dr
eν

(

dt

dτ

)2
]

, (25)

making use of Eq. (8). As before, as long as dr
dτ

= 0, we get

d2r

dτ 2
= −1

2
e−λB0lr

l−1

(

dt

dτ

)2

< 0. (26)

We conclude that objects are attracted toward the center.
According to Lyndell - Bell et al. [30], we can determine the total gravitational energy

EG between two fixed radii r1 and r2 by means of the following formula:

EG = MN −EM = 4π

∫ r2

r1

[1−
√
eλ(r)]ρr2dr, (27)

where

MN = 4π

∫ r2

r1

ρr2dr (28)
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is the Newtonian mass given by

MN = 4π

∫ r2

r1

ρr2dr =
M

(4π)1/2(α)
3

2

∫ r2

r1

exp

(

−(r −R0)
2

4α

)

r2dr. (29)

So the total gravitational energy is

EG =
M

(4π)1/2(α)
3

2

∫ r2

r1

[

1−
[

1− 2m(r)

r

]

−
1

2

]

exp

(

−(r − R0)
2

4α

)

r2dr, (30)

where m(r) is given in Eq. (13). Because of the small M , the integrand, and hence EG,
are negative, showing that gravity in the halo is indeed attractive.

6 The observed equation of state

The equation of state of the halo fluid can be obtained from a combination of rotation
curves and lensing measurements. To this end, let us rewrite the metric, Eq. (2), in the
following form:

ds2 = −e2Φ(r)dt2 +
1

[1− 2m(r)
r

]
dr2 + r2 + r2(dθ2 + sin2θdφ2), (31)

where

Φ(r) =
1

2
[lnB0 + l ln r] (32)

and m(r) is given in Eq. (13). As discussed in Ref. [25], the functions are determined
indirectly from certain lensing measurements defined by

Φlens =
Φ(r)

2
+

1

2

∫

m(r)

r2
dr =

lnB0

4
+

ln rl

4
+

∫

M γ (3/2, (r −R0)
2/4α)√

πr2
dr (33)

and

mlens =
1

2
r2Φ′(r) +

1

2
m(r) =

lr

4
+

M γ (3/2, (r− R0)
2/4α)√

π
. (34)

The observed equation of state depends on the dimensionless quantity

ω(r) =
pr + 2pt

3ρ
≈ 2

3

m′

RC −m′

lens

2m′

lens −m′

RC

, (35)

due to Faber and Visser [31]. The subscript RC refers to the rotation curve, i. e.,

φRC = Φ(r) =
1

2
[lnB0 + l ln r] (36)

and

mRC = r2Φ′(r) =
lr

2
. (37)
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The prime denotes the derivative with respect to r. The result is

ω(r) =
2

3

m′

RC −m′

lens

2m′

lens −m′

RC

=
l
√
πα

3

2 −M(r −R0)
2 exp [−(r −R0)

2/4α]

3M(r −R0)2 exp [−(r − R0)2/4α]
. (38)

At first glance, ω(r) > 0 due to the small value of M , just as in the case of ordinary
matter. But if α is very small and M sufficiently large, a situation we encountered in Sec.
4, then ω(r) < 0. This also follows from the fact that pt < 0 for a sufficiently small α
[Eq. (17)], since we already know that pr is negative. So the “quintessence-like” condition
is due entirely to the noncommutative geometry. Observe, however, that as α gets very
small, ω(r) approached −1/3 from the right, so that ω(r) is not in the actual quintessence
range.

As a final comment, at large distances, where the pressures are no longer negative,
we have ω(r) > 0. This may be interpreted to mean that the smearing, although still
present, is no longer seen at this distance, resulting in the appearance of ordinary matter.

7 Conclusion

In this paper we assume the existence of flat rotation curves in galaxies and discuss such
curves in the context of noncommutative geometry. The energy density of this geometry
is a smeared gravitational source, where the mass is diffused throughout a region of linear
dimension

√
α. This diffusion is due to the uncertainty attributable to the commutator

and is applicable to other large-scale structures. It is shown that this intrinsic property of
the noncommutative geometry is able to account for the stable circular orbits in remote
regions of the halo, as well as for attractive gravity. Sufficiently far from the orbit, the
smearing is no longer observed, which may be interpreted to mean that stable orbits are
due to the unseen noncommutative geometry instead of the unseen dark matter.
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