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Low-Resolution Face Recognition via Coupled
Locality Preserving Mappings
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Abstract—Practical face recognition systems are sometimes
confronted with low-resolution face images. Traditional two-step
methods solve this problem through employing super-resolution
(SR). However, these methods usually have limited performance
because the target of SR is not absolutely consistent with that
of face recognition. Moreover, time-consuming sophisticated
SR algorithms are not suitable for real-time applications. To
avoid these limitations, we propose a novel approach for LR face
recognition without any SR preprocessing. Our method based on
coupled mappings (CMs), projects the face images with different
resolutions into a unified feature space which favors the task of
classification. These CMs are learned through optimizing the
objective function to minimize the difference between the cor-
respondences (i.e., low-resolution image and its high-resolution
counterpart). Inspired by locality preserving methods for dimen-
sionality reduction, we introduce a penalty weighting matrix into
our objective function. Our method significantly improves the
recognition performance. Finally, we conduct experiments on
publicly available databases to verify the efficacy of our algorithm.

Index Terms—Coupled locality preserving mappings, face recog-
nition, low-resolution.

I. INTRODUCTION

T HE performance of a real-world face recognition system
usually declines when the input face images are degraded

seriously, such as low-resolution (LR) with size of only 12 12
pixels. This is a critical problem for surveillance circumstances.
Compared with high-resolution (HR) images, these LR images
lose some discriminative details across different persons.

Intuitively, recovering the lost information of LR face images
first is a promising solution for achieving better performance. In
fact, most existing “two-step” methods of LR face recognition
employ a preprocessing of SR as the first step. Subsequently,
the super-resolved face images are passed to the second step
for recognition. During the past decade, many SR methods are
proposed to predict the corresponding HR image from a single
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LR image [7] or multiple LR ones [6]. Most real-world sys-
tems select the rapid and simple interpolation methods, e.g., bi-
linear, cubic, and spline. Recently, learning-based super-reso-
lution (LSR) methods [4], [5], [7], [12] attract more attention
because of their outstanding performance. Freeman et al. [7]
propose a patch-wise Markov network learned from the training
set as the SR prediction model. Baker and Kanade [4] propose
“face hallucination” to infer the HR face image from an input
LR one based on face priors. Liu et al. [12] propose to integrate
a holistic model and a local model for SR reconstruction. Chang
et al. [5] propose a method based on LLE [16] which has fairly
good performance. The following LSR methods are proposed
based on the early works mentioned above.

Recently, some algorithms attempt to avoid explicit SR in the
image domain. The approach performs SR reconstruction in the
eigenface domain has been investigated in [8]. The researchers
propose a video-based LR face recognition approach with im-
plicit SR [1]. More recently, P. Hennings-Yeomans et al. [10]
propose a joint objective function that integrates the aims of
super-resolution and face recognition. Compared with two-step
methods, this method improves the recognition rate. However,
the speed of this algorithm is slow, even for the speed-up ver-
sion, because the optimization procedure needs to be executed
for each test image with regard to each enrollment. In this letter,
we focus on the problem of single LR face recognition.

To overcome the limitations of previous methods, we pro-
pose a new efficient method for LR face recognition without
any SR preprocessing. According to the aim of recognition, we
learn the coupled projections to map the face images with dif-
ferent resolutions into a unified feature space and carry out the
recognition step in the new space. An overview of our method
is shown in Fig. 1. Inspired by the works of [3], [11], we in-
volve the objective of preserving the local structure of the orig-
inal space into our optimization to achieve better performance.
With proper constraints, the formulated optimization problem
could be solved in an analytical close-form. These good charac-
teristics make our procedure efficient and effective in both of-
fline training phase and online testing phase. The efficacy of our
method will be illustrated in the experiments on the FERET.

II. LOW-RESOLUTION FACE RECOGNITION

A. Problem Statement

Under many cases, the task of LR face recognition may re-
duce to find a proper distance measure between a LR face image
and a HR one, i.e., . Here, ,

and , represent the fea-
ture vectors of the LR query images in the probe set and the
HR ones enrolled in the gallery set. Obviously, some common
distances (e.g., Euclidean distance) can not be calculated di-
rectly since the dimensions of LR and HR features are not equal
(i.e., ). To solve this problem, the traditional two-step

1070-9908/$26.00 © 2009 IEEE

Authorized licensed use limited to: INSTITUTE OF COMPUTING TECHNOLOGY CAS. Downloaded on December 28, 2009 at 20:46 from IEEE Xplore.  Restrictions apply. 



LI et al.: LOW-RESOLUTION FACE RECOGNITION 21

Fig. 1. Overview of our method via coupled locality preserving mappings.

methods employ super-resolution functions to project the LR
image into the target HR space, and then calculate the distance
in the HR space as:

(1)

In (1), denotes the SR functions, where is
the HR estimate for the LR image . Obviously, the per-
formance of the first SR step is very important for the two-step
method. Unfortunately, most existing SR methods are not in the
most proper way to improve the performance of the subsequent
recognition step.

Different from previous methods, our approach attempts to
project the data points in the original HR and LR feature spaces
into a unified feature space by coupled mappings: one for LR
feature vectors, ; the other for HR ones,

. represents the dimensionality of the new feature
space. Then, we can measure the distance by

(2)

Note that the two-step methods can be seen as a special case of
our algorithm with settings of , and

.
Now the key problem of our method becomes to pursue the

ideal unified feature space. For face recognition, we expect that
the projection of each LR image and the corresponding HR pro-
jected image should be as close as possible in the new feature
space. This principle could be formulated by the following ob-
jective function:

(3)

indicates the number of the training images. To minimize the
above objective function, we can get coupled mappings.

More specifically, we consider two matrices and with
sizes of and to specify the mapping functions

as and , respectively. In this
context, (3) could be reformulated as

(4)

In the following Section II-B, we derive the analytical solution
for this minimization problem.

B. Optimization Solution

Using some deductions of linear algebra [2], we can rewrite
the objective function (4) into a new form as (5), shown at the
bottom of the page. Here, is the matrix trace operator.
The training set in the original LR and HR feature spaces is
denoted as and ,
respectively.

Furthermore, the objective function is rewritten as

(6)

Let , and , where

is the identity matrix. Consequently, we obtain a concise form
as

(7)

Finally, we add the constraints to achieve scaling and translation
invariance, and solve the optimization problem by minimizing

(8)

where is the vector of ones with entries.
Let and ; the solution to the optimization
problem with respect to could be given by the second to

st smallest generalized eigenvectors of , where
both sizes of matrices and are .

A more efficient solution for this eigendecomposition
problem is proposed in the following. Let us expand
to obtain two linear equations as follows:

(9)

(10)

Consequently, from (10), we get

(11)

Finally, substituting (11) into (9) we obtain

(5)
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(12)

Let , ; (12) is still a gen-
eralized eigendecomposition problem with eigenvalue
and the corresponding eigenvector . The sizes of matrices
and are . Obviously the computational complexity of

is lower than . After is
calculated, could be computed by (11) directly. From the
formulations above, we can see that our objective agrees with
canonical correlation analysis (CCA) [9], which is a powerful
tool in multivariate analysis.

Note that, since is not always invertible (e.g.,
), we need to perform a regularization operation, say
. is set to a small positive value that is smaller than the

smallest nonzero eigenvalue (such as ). The same
regularization is adopted for .

C. Coupled Locality Preserving Mappings

Inspired by the works of [3], [11], we introduce the locality
preserving objective into our minimization criterion as follows:

(13)

Similar with the work of [15], the penalty weighting matrix
(with size of ) serves to preserve the local relationship
between data points in the original feature spaces. is defined
on the neighborhoods of the data points as follows:

otherwise
(14)

Here, is the parameter specifying the width of Gaussian func-
tion, which is set to where is a scale
parameter. contains the indices of nearest neighbors of

. In this letter, we select the neighborhood system defined in
the HR feature space, because HR feature is considered to have
more discriminative information [10].

Then (13) could be written in matrix form as

(15)

Here, the matrices and are defined based on the weight
matrix as and , respec-
tively. The off diagonal entries in the two matrices are all ze-
roes.

Similar deduction with (5) to (7), we obtain

(16)

where , and

. Finally, we solve the optimiza-

tion problem by minimizing

(17)

TABLE I
LOW-RESOLUTION FACE RECOGNITION BASED ON CMS/CLPMS

where is the identity matrix with size of , and 1 is the
vector of ones with entries. Similarly, let and

, the solution to the optimization problem with respect
to could be given by the 2-nd to st smallest generalized
eigenvectors of . Note that, this formulation can
not be solved in the efficient way as described from (9) to (12).

D. Our Algorithm

After the coupled mapping matrices are computed, our
method projects the LR query images and the HR enrollments
into a new unified feature space and performs face recognition.
The proposed method of the LR face recognition has two
phases. One is the offline phase which includes learning the
coupled mappings and performing transformations on enrolled
HR images. The other is online phase which consists of query
LR image transformation and feature matching. In Table I, we
summarize our method of LR face recognition.

From the algorithm, we can see that our approach does not
involve any SR or optimization process in the online recogni-
tion phase. Therefore, our method is more suitable for real-time
systems.

III. EXPERIMENTS

We carry out our experiments on the FERET [14] face data-
base. The training set has 1002 frontal face images from 429
persons. We evaluate our method based on the standard gallery
(1196 images) and the probe set “fafb” (1195 images). In all ex-
periments, the HR face images with size of 72 72 pixels are
aligned with the positions of two eyes. The LR images with size
of 12 12 pixels are generated by the operation of smoothing
and downsampling.

In our experiments, we compare our methods with
(with PCA features) [10] and several two-step algorithms,
which include HR-PCA/LDA (using the HR query images),
Spline-PCA/LDA (first restoring the LR query images by spline
interpolation), and LSR-PCA/LDA (first restoring the LR query
images by LSR [5] with five neighbors and patch size of 8 8
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Fig. 2. (a) Recognition results with different dimensionalities. (b) Cumulative recognition results. (c) Super-resolution examples. From top to bottom: LR image,
spline interpolation result, LSR [5] result, and original HR face image. (d) Time requirements.

pixels). There are some super-resolved face examples shown in
Fig. 2(c). In the experiments, the distribution of each pixel is
adjusted to mean zero, variance one. In our algorithm based on
CLPMs, we set .

In Fig. 2(a), the recognition rate with different feature dimen-
sionalities are drawn. Our methods based on coupled mappings
(CMs) with 144-D features and coupled locality preserving
mappings (CLPMs) with 80-D features achieve the recognition
rate of 78.2% and 90.1%, respectively. On the other hand,
the rates achieved by Spline-PCA and LSR-PCA with 400-D
features are 61.8% and 62.5%. The rates of Spline-LDA and
LSR-LDA with 150-D features are only 75.8% and 79.1% and
still lower than the proposed CLPMs.

According to the dimensionality selected above, we plot the
cumulative recognition results of the different methods in Fig.
2(b). From the results, we see that our method outperform the
methods of LR face recognition involved in comparison, sev-
eral two-step methods and . Specially, the result of the pro-
posed CLPMs is even close to that of HR-LDA.

Besides, we show the results of CLPMs using different
numbers of the nearest neighbors in Fig. 2(b). We can see
that the proposed algorithm achieves the best performance
when , and the recognition rate descends as
ascends. Because there are only two or four images in most
classes in the training set of FERET, when , our
semi-supervised learning in CPLMs must involve the wrong
neighbor information. In this case, the performance declines.

In Fig. 2(d), we list the mean time requirements for recog-
nizing per query face image on a 3.4 GHz CPU. We can see that
our method runs as fast as face recognition using HR face im-
ages directly. Meanwhile, the two-step methods are slower than
the proposed method because of the expensive preprocessing
SR. is also time-consuming because of its optimization
scheme.

IV. CONCLUSIONS

In this letter, we propose a novel approach to solve the
problem of the LR face recognition. Different from the tradi-
tional two-step methods, our algorithm projects the face images
with different resolutions into a unified feature space through
coupled mappings. Under the aim of recognition, we propose a
minimization objective function w.r.t. the coupled mappings to
guarantee the discriminative ability in the new space. Our time-
saving method, without any SR, is more suitable for real-time
applications. The experimental results on FERET show that

our methods can achieve satisfactory performance. Besides, it
is worth noting that it is straightforward to extend our method
to incorporate supervised information (such as class labels) and
to employ nonlinear mappings by kernel techniques.

The performance of real-world LR face recognition will be
degraded by the factors of noise, geometric distortion and so
on. Considering these factors with LR simultaneously and using
more stable features (i.e., Gabor wavelets) instead of original
intensity features in our method will be pursued in future work.
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