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Abstract

We numerically investigate the impact of the General Theory of Relativity (GTR) on the
satellite-to-satellite range ρ and range-rate ρ̇ of the twin GRACE A/B spacecrafts through their
dynamical equations of motion. The present-day accuracies in measuring such observables are
σρ ∼ 1 − 10 µm, σρ̇ ∼ 0.1 − 1 µm s−1. Studies for a follow-on of such a mission points toward a
range-rate accuracy of the order of σρ̇ ∼ 1 nm s−1 or better. We also compute the dynamical range
and range-rate perturbations caused by the first six zonal harmonic coefficients Jℓ, ℓ = 2, 3, 4, 5, 6, 7
of the classical multipolar expansion of the terrestrial gravitational potential in order to evaluate
their aliasing impact on the relativistic effects. Conversely, we also quantitatively assessed the pos-
sible a-priori “imprinting” of GTR itself, not solved-for in all the GRACE-based Earth’s gravity
models produced so far, on the estimated values of the low degree zonals of the geopotential. The
present analysis can also be extended, in principle, to different orbital configurations in order to
design a suitable dedicated mission able to accurately measure the relativistic effects considered.
Moreover, also other non-classical dynamical features of motion, caused by, e.g., modified models
of gravity, can be considered in further studies.

Keywords: Experimental studies of gravity, Experimental tests of gravitational theories, Satellite
orbits, Harmonics of the gravity potential field; geopotential theory and determination
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1 Introduction

The Gravity Recovery and Climate Experiment
(GRACE) mission [1, 2, 3], jointly launched in
March 2002 by NASA and the German Space
Agency (DLR) to map the terrestrial gravita-
tional field with an unprecedented accuracy, con-
sists of a tandem of two spacecrafts moving along
low-altitude, nearly polar orbits (see Table 1 and
Table 2) continuously linked by an inter-satellite

microwave K-band ranging (KBR) system accu-
rate to better than 10 µm (biased range ρ) [4]
and 1 µm s−1 (range-rate) [4, 5]. Investigations
concerning a follow-on of the GRACE mission
are being currently performed [6]; by using an
interferometric laser ranging system it would be
possible to reach an accuracy level of ∼nm s−1

or better in measuring the range-rate [7].

Although GRACE was not specifically de-
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signed to directly test the General Theory of Rel-
ativity (GTR), which, actually, has never been
solved-for in the several global gravity field so-
lutions1 produced so far by different institutions
from long data records from GRACE, the great
accuracy in its KBR may, in fact, allow, in prin-
ciple, to measure some consequences of GTR
by exploiting such direct accurate observables.
Concerning the Lense-Thirring effect [8], con-
nected with the rotation of the source of the
gravitational field, a similar idea was envisaged
in Ref. [9]. Thus, it is important to investigate
the impact of the dynamical2 effects of GTR on
both range and range-rate to check if it falls
within the present-or future-measurability do-
main of GRACE-type missions. This will be the
subject of Section 2. Concerning other, clock-
related relativistic effects in GRACE, it must
be recalled that dual-frequency carrier-phase
Global Positioning System (GPS) receivers are
flying on both satellites. They are used for pre-
cise orbit determination of both the GRACE
A/B spacecrafts, and to time-tag the KBR sys-
tem; the relativistic effects in the GRACE GPS
data have been examined in Ref. [10].

It should be recalled that some of the Earth’s
gravity field solutions retrieved from GRACE
data have been used as background reference
models in the LAGEOS-based tests [11, 12] of
the Lense-Thirring effect [8]; the even zonal har-
monic coefficients Jℓ, ℓ = 2, 4, 6, ... of the mul-
tipolar expansion of the classical part of the
terrestrial gravitational potential, estimated as
solve-for parameters in the GRACE-based mod-
els, may retain an a-priori “imprinting” by GTR
itself which, as already noted, has never been

1See http://icgem.gfz-potsdam.de/ICGEM/ on the
WEB.

2Here we will not deal with the relativistic features of
the propagation of electromagnetic waves.

explicitly solved-for so far in the GRACE data
processing. This aspect will be treated in Section
3. Section 4 is devoted to the conclusions.

Finally, let us remark that the approach fol-
lowed here in the specific case of GTR can well
be extended to other dynamical effects predicted,
e.g., by modified models of gravity. An investi-
gation of the effects of a Yukawa-like extra-force
on the orbit of GRACE-A has recently been per-
formed in Ref. [13].

2 General relativistic effects in

the satellite-to-satellite range

and range-rate

The approach followed is as follows. We simul-
taneously integrated the equations of motion of
both the GRACE spacecrafts in cartesian coor-
dinates with and without the dynamical orbital
perturbations of the Newtonian monopole which
we are interested in. The time span of the in-
tegrations is ∆t = 30 d. The method adopted,
implemented with the software package MATH-
EMATICA, is the Runge-Kutta one. The ini-
tial conditions, common to all the numerical in-
tegrations, are in Table 1; they correspond to
the Keplerian orbital elements listed in Table 2.
It can be noted that the altitudes of the twin
GRACE spacecrafts are of about 500 km with
respect to the Earth’s surface, and that their or-
bits are almost circular and polar. The resulting
numerically integrated trajectories have, then,
been used to compute the satellite-to-satellite
range perturbation ∆ρ as the difference among
the perturbed and the un-perturbed ranges. The
range-rate perturbation ∆ρ̇ has been computed
by numerically differentiating ∆ρ. Our code
was previously tested by numerically comput-
ing the time evolution of the node perturbation
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Table 1: State vectors, in cartesian coordinates referred to ITRF, of the pair
GRACE A/B used as initial conditions for the present analysis. They have been ob-
tained from the files GNV1B 2003-09-14 A 00 and GNV1B 2003-09-14 B 00, retrieved
from ftp://cddis.gsfc.nasa.gov/pub/slr/predicts/current/graceA irvs 081202 0.gfz and
ftp://cddis.gsfc.nasa.gov/pub/slr/predicts/current/graceB irvs 081201 1.gfz. The epoch is
13 September 2003. See ftp://podaac.jpl.nasa.gov/pub/grace/doc/Handbook 1B v1.3.pdf for the
explanation of the GPS Navigation Data Format Record (GNV1B) format.

S/C x0 (m) y0 (m) z0 (m) ẋ0 (m s−1) ẏ0 (m s−1) ż0 (m s−1)

A 1075039.75 −3246695.67 −5943208.1 2088.38438 −6255.78024 3807.799
B 1007605.75 −3066941.52 −6049698.6 2138.63176 −6362.53248 3595.342

Table 2: Keplerian orbital elements of the pair GRACE A/B corresponding to the state vectors in
cartesian coordinates of Table 1. They are the semi-major axis a, the eccentricity e, the inclination I
to the Earth’s equator, the longitude of the ascending node Ω, the argument of pericenter ω, and the
mean anomaly M. The Keplerian orbital periods of the GRACE pair is P (Kep) .

= 2π
√

a3/GM⊕ =
1.56 h= 0.065 d.

S/C a0 (km) e0 I0 (deg) Ω0 (deg) ω0 (deg) M0 (deg)

A 6841.11877 0.00272831 89.9395 −71.5742 119.916 −179.997
B 6839.80210 0.00298412 89.8374 −71.5081 118.082 −179.997

of GRACE-A due to the Lense-Thirring effect
over ∆t = 30 d, and by comparing its result-
ing shift with the well known analytical results
[8] for the secular node precession, computed
for GRACE-A: the agreement between the two
outcomes was remarkable. The same has suc-
cessfully been done for the Schwarzschild-type
perigee precession of GRACE-A.

In Figure 1 we display the result of our numer-
ical integrations for GTR whose3 Schwarzschild
and Lense-Thirring accelerations have been re-
trieved from Ref. [14]. Both the GTR pertur-

3It is assumed that the de Sitter precession has been
transformed away.

bations induce cumulative4, long-term effects on
the inter-satellite GRACE range; after ∆t = 30 d
the peak-to-peak amplitude of the Schwarzschild
signal is ∆ρSch ∼ 5 × 105 µm = 50 cm, while
the Lense-Thirring range shift is ∆ρLT = 2 ×
103 µm = 0.2 cm. By assuming a present-
day accuracy of σρ ∼ 5 µm in measuring the
satellite-to-satellite range, it turns out that the
Schwarzschild effect is, in principle, detectable
with a relative accuracy of the order of 1×10−5,
while the Lense-Thirring signature would fall
within the measurability domain at a ∼ 0.3%

4Note, from Table 2, that the orbital period of the
GRACE spacecrafts is just 1.56 h.
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Figure 1: Differences of the numerically integrated satellite-to-satellite ranges (left column) and
range-rates (right column) for GRACE A/B with and without the general relativistic Schwarzschild
(blue line) and Lense-Thirring (red line) dynamical perturbations. The initial conditions, quoted
in Table 1, are common to both the perturbed and un-perturbed integrations. The time span is
∆t = 30 d. The units are µm (range) and µm s−1 (range-rate).

level. Concerning the range-rate, if we assume
σρ̇ ∼ 0.5 µm s−1, the Schwarzschild perturba-
tion ∆ρ̇Sch, whose peak-to-peak nominal ampli-
tude is 600 µm s−1 = 0.6 mm s−1, would be de-
tectable at a ∼ 0.08% level. Instead, the Lense-
Thirring effect on the range-rate ∆ρ̇LT is too
small, amounting to about 8×10−4 µm s−1 = 0.8
nm s−1.

Thus, GTR affects the GRACE satellite-to-
satellite range in a detectable way, in principle,
given the present-day level of accuracy in mea-
suring it. The same also holds for the range-rate,
although only for the Schwarzschild signal, and

at a lower level of accuracy. Table 3 summarizes
the results of this Section. However, we wish to
point out that it should actually be checked if the
relativistic signatures are not absorbed and re-
moved from the range signal in estimating some
of the various range parameters which are solved-
for in the usual GRACE data processing. In-
deed, it is exposed to some mismodeled device
behavior, which requires estimating many em-
pirical parameters in semi-dynamical orbit pro-
cessing mode [15].

In Section 3 we will look at the competing
effects induced on the range and range-rate of
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Table 3: Peak-to-peak amplitudes of the inter-satellite GRACE range and range-rate perturbations
∆ρ, ∆ρ̇ caused by the general relativistic Schwarzschild and Lense-Thirring effects, and by the first
six zonal harmonics of the classical part of the geopotential over ∆t = 30 d. Concerning the zonals,
the values quoted for their perturbations have been obtained by setting Jℓ = 1, ℓ = 2, 3, 4, 5, 6, 7;
the nominal and mismodelled values of their range and range-rate perturbations can be obtained
by multiplying the figures in this Table with those of Table 4 for Jℓ and σJℓ . The present-day
accuracy in measuring the satellite-to satellite GRACE range and range-rate is σρ . 10 µm and
σρ̇ . 1 µm s−1, respectively.

Dynamical effect ∆ρ (µm) ∆ρ̇ (µm s−1)

Schwarzschild 5× 105 6× 102

Lense-Thirring 2× 103 8× 10−4

J2 2× 1015 8× 108

J3 7× 1015 8× 1012

J4 3× 1015 5× 1010

J5 8× 1015 9× 1012

J6 2× 1015 2× 1011

J7 8× 1015 8× 1012

GRACE by some low-degree zonal harmonics
Jℓ, ℓ ≥ 2 of the multipolar expansion of the New-
tonian part of the Earth’s gravitational poten-
tial accounting for its departures from spherical
symmetry. Indeed, their unavoidably imperfect
knowledge causes mismodeled range and range-
rate signals which would corrupt the recovery of
the relativistic ones at a level which has to be
quantitatively assessed. On the other hand, such
an investigation will also contribute to quanti-
tatively evaluate the level of a possible a-priori
“imprinting” of GTR itself, not solved-for so far
in all the GRACE-based models, on the esti-
mated values of such zonals. This issue has been
treated, in the framework of the LAGEOS-based
tests of the Lense-Thirring effect, in Ref. [16] as
far as the node precessions of the orbital planes
of the GRACE spacecrafts are concerned.

3 A-priori “imprint” level of

GTR in the even zonal KBR

signature

The range and range-rate perturbations
∆ρJℓ/Jℓ, ℓ = 2, 4, 6 and ∆ρ̇Jℓ/Jℓ, ℓ = 2, 4, 6
caused by the first three even zonals, divided
by the nominal values of the even zonals
themselves (see Table 4 for them and their
1-σ errors in one of the most recent global
Earth’s gravity field solution), are depicted in
Figure 2 and summarized in Table 3. They
have been computed as the relativistic effects
in Section 2. Also in this case the code used
has been tested by successfully reproducing the
well-known analytical results for the node and
perigee long-term variations caused by J2, J4, J6
[18] in the case of GRACE-A. In order to obtain
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Figure 2: Differences of the numerically integrated ranges (left column) and range-rates (right
column) for GRACE A/B with and without the classical dynamical perturbations due to the even
zonal harmonics Jℓ

.
= −

√
2ℓ+ 1 Cℓ,0, ℓ = 2, 4, 6. For a better comparison with the relativistic

signatures of Figure 1, the values of the even zonals have been set equal to unity, i.e. ∆ρJℓ and
∆ρ̇Jℓ have been divided by Jℓ, ℓ = 2, 4, 6. According to the recent combined GOCE-GRACE
solution GOCO01S [17], the formal, statistical uncertainties in the normalized Stokes coefficients
are, σC2,0

= 0.44×10−12, σC4,0
= 0.8×10−13, σC6,0

= 0.4×10−13 respectively. The initial conditions,
quoted in Table 1, are common to both the perturbed and un-perturbed integrations. The time
span is ∆t = 30 d. The units are µm (range) and µm s−1 (range-rate).
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Table 4: Estimated values and formal, statistical errors of the normalized Stokes coefficients Cℓ,0

of the geopotential for ℓ = 2, 3, 4, 5, 6, 7 from the GOCE/GRACE-based solution GOCO01S [17].
Recall that Jℓ

.
= −

√
2ℓ+ 1 Cℓ,0.

Degree ℓ Cℓ,0 σCℓ,0

2 −0.484164968978546 × 10−3 0.445570221091724 × 10−12

3 0.957198053205652 × 10−6 0.278872574524992 × 10−12

4 0.540003306665179 × 10−6 0.861279816394233 × 10−13

5 0.686701781984240 × 10−7 0.602680991556504 × 10−13

6 −0.149958175526140 × 10−6 0.451610382407952 × 10−13

7 0.905106214220478 × 10−7 0.362372315970691 × 10−13

the magnitudes of the nominal and of the
mismodelled range and range-rate signatures it
is sufficient to multiply the figures in Figure 2
by Jℓ and σJℓ in Table 4, respectively.

According to the latest GOCE-GRACE solu-
tion GOCO01S [17], the formal, statistical un-
certainties are, σJ2 = 9.8 × 10−13, σJ4 = 2.4 ×
10−13, σJ6 = 1.4 × 10−13 respectively. Thus, the
resulting range and range-rate mismodeled sig-
nals are as large as 1960 µm and 7.8× 10−4 µm
s−1 (σJ2), 720 µm and 1.2× 10−2 µm s−1 (σJ4),
245 = µm and 3× 10−2 µm s−1 (σJ6). They are
smaller than the corresponding general relativis-
tic Schwarzschild effects, especially as far as the
range-rate is concerned (∆ρσJℓ

/∆ρSch ∼ 10−4 −
10−3, ∆ρ̇σJℓ

/∆ρ̇Sch ∼ 10−6 − 10−5, ℓ = 2, 4, 6).
Concerning the Lense-Thirring effect, the mis-
modelled even zonals ranges are of the same or-
der of magnitude or smaller than the gravito-
magnetic range shifts by one order of magnitude
(∆ρσJℓ

/∆ρLT ∼ 10−1 − 1), while the range-rate
ones are larger by about two orders of magni-
tude. However, it must be considered that, given
a specific Earth’s gravity field model, the realis-
tic errors in its estimated even zonals may be up

to one order of magnitude larger. Moreover, an
even more conservative approach to realistically
evaluate the true uncertainties in the even zon-
als consists of comparing their estimated values
from different global gravity field solutions.

Conversely, we can use Figure 1 and Figure
2 to obtain preliminary, quantitative evaluations
of a possible a-priori “imprinting” of GTR itself
in the even zonals considered. It can be done by
posing

∆xGTR = ∆xJℓ, x = ρ, ρ̇. (1)

Thus, by dividing the relativistic range and
range-rate perturbations by the corresponding
classical ones for each degree ℓ considered gives
us a sort of “effective” relativistic even zonal
∆J

(eff)
ℓ , i.e. the part of the even zonal of de-

gree ℓ which would give a signal as large as those
due to GTR. The Schwarzschild range pertur-

bation yields ∆J
(Sch)
2 = 2.5 × 10−10,∆J

(Sch)
4 =

1.7 × 10−10,∆J
(Sch)
6 = 2.8 × 10−10; given the

present-day level of accuracy in determining the
even zonals in the GRACE-based models, it ap-
pears that the “imprint” of the Schwarzschild
perturbation cannot be neglected. Concerning
the Lense-Thirring range effect, its a-priori im-
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pact on the even zonals is rather small, amount-

ing to ∆J
(LT)
2 = 1 × 10−12,∆J

(LT)
4 = 7 ×

10−13,∆J
(LT)
6 = 1× 10−12. It barely falls within

the (formal) measurability domain of the most
recent GRACE-based models. Table 5 summa-
rizes the results for the range. The situation for

the range-rate, depicted in Table 6, is ∆J
(Sch)
2 =

7.5 × 10−7,∆J
(Sch)
4 = 1.2 × 10−8,∆J

(Sch)
6 =

3 × 10−9, and ∆J
(LT)
2 = 1 × 10−12,∆J

(LT)
4 =

1.6×10−14,∆J
(LT)
6 = 4×10−15. In this case, the

a-priori “imprinting” of the Schwarzschild per-
turbation on the even zonals is larger than for the
range, while the bias due to the Lense-Thirring
effect is practically not detectable, even for the
most recent ones. Following the approach of
Ref. [16], it can be shown that a Lense-Thirring
“imprint” in J4 and J6 as large as that of Table
5 would correspond to a 0.2 − 0.3% systematic
bias in the LAGEOS-based tests5 of such a rela-
tivistic effect.

In Figure 3 we repeat the same analysis for
the first three odd zonals; see also Table 3.
Since the formal, statistical errors are σJ3 =
7 × 10−13, σJ5 = 2 × 10−13, σJ7 = 1 × 10−13, re-
spectively [17], the mismodeled signals amount
to 4900 µm, 5.6 µm s−1 (σJ3), 1600 µm, 1.8 µm
s−1 (σJ5), and 800 µm, 0.8 µm s−1 (σJ7). Al-
though their time signature is different, the cor-
rupting impact of the odd zonals on the GTR
is larger than that of the even zonals. In-
deed, for the Schwarzschild perturbation we have
∆ρσJℓ

/∆ρSch ∼ 0.2 − 1 × 10−2, ∆ρ̇σJℓ
/∆ρ̇Sch ∼

1 − 9 × 10−3, ℓ = 3, 5, 7, while for the Lense-
Thirring effect the situation is worse since
∆ρσJℓ

/∆ρLT ∼ 0.4 − 2.45, ∆ρ̇σJℓ
/∆ρ̇LT ∼ 1 −

5They are mainly affected by such even zonals, being
the other ones of higher degree negligible. This is a reason
for which we do not consider other even zonals in the
present study.

7 × 103, ℓ = 3, 5, 7. The possible “imprinting”

of GTR on J3, J5 and J7 amounts to ∆J
(Sch)
3 =

7 × 10−11,∆J
(Sch)
5 = 6 × 10−11,∆J

(Sch)
7 = 6 ×

10−11, and ∆J
(LT)
3 = 3 × 10−13,∆J

(LT)
5 = 2.5 ×

10−13,∆J
(LT)
7 = 2.5× 10−13 for the range, as re-

sumed in Table 5. The potential “imprinting”
of GTR from the range-rate summarized in Ta-

ble 6, is ∆J
(Sch)
3 = 7.5 × 10−11,∆J

(Sch)
5 = 7 ×

10−11,∆J
(Sch)
7 = 7.5 × 10−11, and ∆J

(LT)
3 = 1×

10−16,∆J
(LT)
5 = 9 × 10−17,∆J

(LT)
7 = 1 × 10−16.

Thus, also for the odd zonals, the a-priori poten-
tial impact of the Schwarzschild perturbations to
the range and the range-rate is not negligible.

4 Summary and conclusions

Given the present-day high level of accuracy
in measuring the GRACE satellite-to-satellite
range (σρ . 10 µm) and range-rate (σρ̇ . 1 µm
s−1), we preliminarily investigated the possibil-
ity of measuring the dynamical orbital effects
of GTR, in both its Schwarzschild and Lense-
Thirring components, on such directly observ-
able quantities. A further motivation is given by
the currently ongoing efforts to design a follow-
on of GRACE accurate to nm s−1 or better.
Moreover, it must be recalled that GTR has
never been solved-for in all the GRACE-based
Earth’s global gravity field solutions produced so
far, so that the multipoles of the terrestrial grav-
itational field estimated in them may, in princi-
ple, retain an a-priori “imprinting” of GTR it-
self. This is important in view of the fact that
such Earth’s gravity field solutions have been
used as background reference models in some
tests of GTR itself performed with other satel-
lites.

By numerically integrating the GRACE A/B
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Figure 3: Differences of the numerically integrated ranges (left column) and range-rates (right
column) for GRACE A/B with and without the classical dynamical perturbations due to the odd
zonal harmonics Jℓ

.
= −

√
2ℓ+ 1 Cℓ,0, ℓ = 3, 5, 7. For a better comparison with the relativistic

signatures of Figure 1, the values of the odd zonals have been set equal to unity, i.e. ∆ρJℓ and
∆ρ̇Jℓ have been divided by Jℓ, ℓ = 3, 5, 7. According to the recent combined GOCE-GRACE
solution GOCO01S [17], the formal, statistical uncertainties in the normalized Stokes coefficients
are, σC3,0

= 0.27×10−12, σC5,0
= 0.6×10−13, σC7,0

= 0.4×10−13 respectively. The initial conditions,
quoted in Table 1, are common to both the perturbed and un-perturbed integrations. The time
span is ∆t = 30 d. The units are µm (range) and µm s−1 (range-rate).
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Table 5: “Effective” general relativistic parts ∆J
(eff)
ℓ = 1, ℓ = 2, 3, 4, 5, 6, 7 of the zonals considered

due to the range perturbations ∆ρ. They are a measure of the possible a-priori “imprinting” of
GTR itself, not explicitly solved-for in all the GRACE-based solutions produced so far, on the
zonals.

Dynamical effect ∆J
(eff)
2 ∆J

(eff)
3 ∆J

(eff)
4 ∆J

(eff)
5 ∆J

(eff)
6 ∆J

(eff)
7

Schwarzschild 2.5× 10−10 7× 10−11 1.7× 10−10 6× 10−11 2.8× 10−10 6× 10−11

Lense-Thirring 1× 10−12 3× 10−13 7× 10−13 2.5 × 10−13 1× 10−12 2.5 × 10−13

Table 6: “Effective” general relativistic parts ∆J
(eff)
ℓ = 1, ℓ = 2, 3, 4, 5, 6, 7 of the zonals considered

due to the range-rate perturbations ∆ρ̇. They are a measure of the possible a-priori “imprinting”
of GTR itself, not explicitly solved-for in all the GRACE-based solutions produced so far, on the
zonals.

Dynamical effect ∆J
(eff)
2 ∆J

(eff)
3 ∆J

(eff)
4 ∆J

(eff)
5 ∆J

(eff)
6 ∆J

(eff)
7

Schwarzschild 7.5× 10−7 7.5× 10−11 1.2 × 10−8 7× 10−11 3× 10−9 7.5 × 10−11

Lense-Thirring 1× 10−12 1× 10−16 1.6 × 10−14 9× 10−17 4× 10−15 1× 10−16

equations of motion over a time span 30 d long
we found that the GTR range signals are as large
as 50 cm (Schwarzschild) and 0.2 cm (Lense-
Thirring), while the magnitude of the range-rate
effects are 0.6 mm s−1 (Schwarzschild) and 0.8
nm s−1 (Lense-Thirring). If, on the one hand,
they would be, in principle, measurable (apart
from the Lense-Thirring range-rate effect) with
a good level of accuracy, on the other hand the
imperfect knowledge of some low-degree zonal
harmonics of the geopotential causes competing
range and range-rate perturbations which would
corrupt the recovery of the relativistic signals of
interest. According the latest GOCE/GRACE-
based model, the mismodelled signatures of the
even zonals are smaller than the Schwarzschild
range and range-rate ones by several orders of

magnitude, but are about of the same order of
magnitude, or smaller by one order of magni-
tude, than the Lense-Thirring range perturba-
tion. The impact of the odd zonals is larger,
causing mismodelled range signals overwhelm-
ing the Lense-Thirring one. Conversely, by com-
paring the relativistic and the zonals range and
range-rate orbital effects it has been possible to
quantitatively assess the level of a possible a-
priori “imprinting” of GTR itself on the zonals
considered. It turned out that it is not negli-
gible as far as the Schwarzschild component is
considered, while the Lense-Thirring “imprint”
on some zonals is just at the edge of the present-
day level of accuracy in determining them.

As a caveat concerning the measurability of
the GTR effects considered here, we stress the
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need of checking with extensive numerical simu-
lations if the relativistic signatures are not actu-
ally absorbed and removed from the range signal
in estimating some of the various range param-
eters which are solved-for in the usual GRACE
data processing.

Finally, let us note that the approach pre-
sented here can, in principle, also be extended to
other satellite-to-satellite orbital configurations
suitably designed to enhance the relativistic sig-
natures, and to the dynamical effects caused by
various modified models of gravity.
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Höck, J. M. Brockmann, T. Fecher, T. Gru-
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