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A new class of quantum channels called Grassmann channels is introduced and their classical and
quantum capacity is calculated. The channel class appears in a study of the two-mode squeezing
operator constructed from operators satisfying the fermionic algebra. We compare Grassmann
channels with the channels induced by the bosonic two-mode squeezing operator. Among other
results, we challenge the relevance of calculating entanglement measures to assess or compare the
ability of bosonic and fermionic states to send quantum information to uniformly accelerated frames.

I. INTRODUCTION

The notion of quantum channel capacity is central to quantum Shannon theory. Early devel-
opment in the seventies [1] was a starting point to an impressive amount of knowledge that has
been acquired in the last two decades [2, 3]. Two of the most investigated areas is the classi-
cal [4] and quantum capacity [5] of a quantum channel. The classical/quantum capacity informs
us about the ability of a quantum channel to transmit classical or quantum correlations. More
precisely, consider a sender who has, in principle, at his disposal an optimal encoder producing
a classical or quantum code, and a receiver able to process the channel output and recover the
transmitted information (that is, to decode) with an arbitrarily high precision. In this way,
the information can be transmitted at the rate given by the capacity and cannot be improved
by any other choice of encoding. Various additional conditions or restrictions might be added,
for instance if privacy is required [6] or some sort of assistance in terms of other quantum or
classical resources available to the communicating parties [7, 8]. This leads to a large number
of important capacity definitions relevant under given circumstances and one might even try
to characterize the whole capacity multi-dimensional regions in which the axes correspond to
various available resources [9–11].
Due to the presence of regularization (see below) the classical or quantum capacity is not effi-

ciently computable. There are, however, particular examples of channels for which the classical
or quantum capacity is easy to calculate. In the case of the classical capacity, every such exam-
ple must be cherished since the proof usually involves some nontrivial manipulations [12–17].
For the quantum capacity almost all known non-trivial examples fall in the class of degradable
channels [18, 23, 25]. Among these examples are exceptional cases for which both capacities are
known, to our knowledge there are only two examples: (i) a qubit erasure channel [18] and (ii)
Hadamard channels [14]. There are also trivial examples of such channels with zero quantum
capacity: entanglement-breaking channels [15] and anti-degradable channels. In this paper we
add another member into the elite group of non-trivial examples: the Grassmann channels. In
order to find the quantum capacity we show that the Grassmann channels are degradable while
to find the classical capacity we make use of the fact that the Grassmann channels are of a direct
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sum form. We show that the channels which form the structure of the Grassmann channels are
new members of the surprisingly broad family of channels studied in [17] for which the classical
capacity is efficiently calculable. The lowest-dimensional example of the Grassmann channels
turns out to be a qubit erasure channel. In general, higher-dimensional Grassmann channels
have certain traits in common with a qubit erasure channel making them interesting in the light
of some recent capacity results [3, 19]. We further investigate physical implications of the capac-
ities calculations and conclude, in contrary to the common opinion, that (i) it makes absolutely
no qualitative difference for the study of the Unruh effect whether the states are composed of
bosons or fermions (at least for the quantum information transmission purposes) and (ii) näıve
calculations of certain entanglement measures of states shared between inertial and uniformly
accelerated observers do not provide much insight about the channel’s ability to reliably send
quantum information. Another physical conclusion is an intriguing connection of the Grass-
mann channels and their bosonic relatives to the well studied family of transpose-depolarizing
channels.
The paper is organized as follows. In Sec. II we recall some basic notions from quantum

Shannon theory together with the fermionic algebra and briefly discuss various relevant physical
situations. It is followed by Sec. III in which we describe the construction of the qudit Grass-
mann channels and study some of their properties. Sections IV and V contain the calculation
of the quantum and classical capacity of the whole (infinite-dimensional) class of Grassmann
channels. In Sec. VI we discuss several physical properties of the Grassmann channels.

II. DEFINITIONS

Fermions and their correlated pairs

For a set of modes that are specified by quantum numbers compactly denoted by κ, the
exchange characteristics of indistinguishable fermions that may occupy those modes are reflected
in the anticommutation relations obeyed by the corresponding creation (annihilation) operators
aκ (a†κ):

{aκ, a†κ′} = δ(κ− κ′), (1)

{a†κ, a†κ′} = {aκ, aκ′} = 0. (2)

An interesting transformation that preserves the anticommutation relations results from the fol-
lowing algorithm. Within the available modes two subsets are chosen. Each of the modes from
the subset of lower cardinality is related through an injective function f(κ) = κ′ to the elements
of the other subset. In this way, the modes are paired and so are the creation-annihilation op-

erators aκ, a
†
κ and af(κ), a

†
f(κ). In order to make simpler the notation, the operators af(κ), a

†
f(κ)

from now on will be denoted by a different letter, for instance, af(κ), a
†
f(κ) → cκ, c

†
κ. It can be

directly shown that the so called Bogoliubov transformations

bκ = cos raκ − e−iφ sin rc†κ (3a)

b†κ = cos ra†κ − eiφ sin rcκ (3b)

dκ = cos rcκ + e−iφ sin ra†κ (3c)

d†κ = cos rc†κ + eiφ sin raκ. (3d)

preserve the anticommutation relations Eq. (1). These transformations were first introduced
for the generation of the Bardeen-Cooper-Schreiffer (BCS) states, which are an excellent ap-
proximation to the ground state of a weakly interacting superconductor [27]. In that case, the
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modes are thought to describe electrons with the quantum numbers usually taken as the vector

wave number ~k and the projection of the spin s. The function f is such that f(~k, s) = (−~k,−s).
The Cooper pairs that are described using the operators bκ, dκ, as a consequence, have opposite
momenta and spin.
Bogoliubov transformations have been very useful in the description of strongly correlated

fermions in diverse scenarios like condensed matter [28], ultracold degenerate atomic Fermi
gases [29] or quantum field theory of particles on spacetime with a nontrivial metric [30, 31,
33, 34]. To illustrate the impact of these transformations in the latter area, consider negligible
interacting massive fermions. For a uniformly accelerated observer, the adequate spacetime
coordinates are the Rindler ones; for which two wedges, that can not be causally connected, are
identified, we shall denote them by right R and left L wedges. The right (left) Rindler modes are
only supported on the right (left) wedge. An important question concerns to the energy spectra
seen by a Rindler observer in connection to the Unruh effect [32]. The most clear treatments of
the problem rely on comparisons between the so-called Unruh modes and the Rindler modes.
They are naturally carried out in terms of generalized Bogoliubov transformations [30] that
take into account that each Unruh mode needs for its representation an infinite superposition
of Rindler modes. In this kind of scenario, perhaps the simplest realization of a Bogoliubov
transformation corresponds to the case of a spin one-half fermion moving in a one dimensional
space. Then, the modes of each fermion can be described in terms of a Grassmann field and a
basic transformation is

(

a
(R)
k,s

ā
(L)†

−k,−s

)

=

(

cos r −e−iφ sin r
eiφ sin r cos r

)(

bk,s
b̄†−k,−s

)

. (4)

where a, a† stand for particles and ā, ā† for antiparticles, k denotes the wave number and s its
spin projection. The real parameter r can be chosen to depend on the acceleration α and the

rest mass m of the Rindler observer as tan r = e−
πc2

α

√
k2+(mc/~)2 [33]. Note that Eq. (4) is

Eqs. (3a) and (3d) written in the matrix form and with the notation adjusted to the relevant
physical situation.

Classical and quantum capacity

Let K : A′ 7→ A be a quantum channel mapping density operator from an input Hilbert
space HA′ to an output Hilbert space HA. We define VK : A′ 7→ AC to be its isometric
extension. Equivalently, by embedding the isometry into a higher-dimensional Hilbert space
we write UK : A′C′ 7→ AC, where UK is a unitary operator. Using the isometry picture

the complementary channel of K is defined as Kc(σ) = TrA[VKσV
†
K] ≡ TrA ◦ VK ◦ σ. The

second equality is how we will occasionally abbreviate similar expressions. When there is no
chance of confusion we will omit the mode index A or C for states. The von Neumann entropy
H(̺A) = −Tr[̺A log ̺A] will be written in the economic way as H(A)̺ which is mainly suitable
for dealing with the parts of multipartite states ̺A = TrBC...[̺ABC...]. This convention will
also be used for other entropic quantities.
A classical ensemble can be written in the form of a classical-quantum state σXA′ =

∑

x p(x)|x〉〈x|X ⊗ σx,A′ with a probability distribution function p(x). Then, for a quantum
channel K the capacity is given by the regularized expression [4]

C(K) = lim
n→∞

1

n
CHol(K⊗n). (5)

CHol(K) is the Holevo quantity

CHol(K) = sup
{p(x),σx,A′}

I(X : A)ς , (6)
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where ςXA = K(σXA′ ) and I(X : A) = H(X)+H(A)−H(XA) is the mutual information. For
the optimization task in Eq. (6) it is sufficient to consider σx,A′ to be pure states.
The expression for the quantum capacity contains regularization as well [5]

Q(K) = lim
n→∞

1

n
Q(1)(K⊗n). (7)

Q(1)(K) is the optimized coherent information

Q(1)(K) = sup
ψ

[H(A)τ −H(C)τ ], (8)

where τAC = VK ◦ ψA′ .
There exists a generalization of the von Neumann entropy known as the α-Rényi entropy

Hα(ρ)
df
= 1/(1 − α) log [Tr ρα], where the von Neumann entropy is recovered for α → 1. A

quantum channel D is called degradable [23, 24] if there exists another channel M such that
M ◦ D = Dc holds. The channel M is called a degrading map. Finally, ln is the natural
logarithm and log denotes the base two logarithm unless stated otherwise.

III. GRASSMANN CHANNELS

Definition 1. We define a d-mode fermionic state as

|F 〉 =
d
∏

i=1

(a†i )
ni |vac〉 = |n1 . . . nd〉 ≡ |~n〉,

where ni ∈ {0, 1}. Following the properties of the fermionic operators we see that (i) each mode
is occupied by at most one particle and (ii) the state |F 〉 is completely antisymmetric. For

0 ≤ k ≤ d there is
(

d
k

)

possible fermionic states for which
∑d
i=1 ni = k holds.

The operator related to a Bogoliubov transformation Eq. (4) over the i-th fermionic modes
a and c reads

UAiCi
= exp

[

r(a†i c
†
ie

−iφ − ciaie
iφ)
]

, (9)

where r, φ ∈ R. The operator exponent might be factorized according to the following identity:

Theorem 2 ([21]). Let J+, J− and J3 be operators satisfying the commutation relations

[J3, J±] = ±J±
[J+, J−] = 2J3.

(10)

Then the following identity holds

eλ+J++λ3J3+λ−J− = eΛ+J+elnΛ3J3eΛ−J− , (11)

where

Λ± =
2λ± sinh f

2f cosh f − λ3 sinh f

Λ3 =

(

cosh f − λ3
2f

sinh f

)−2

f =
(

(λ3/2)
2 + λ−λ+

)1/2
.

(12)
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In our case we have

J+ = a†c†

J− = ca = −ac

J3 =
1

2

(

a†a+ c†c− 1
)

.

(13)

This choice satisfies the commutation relations in Eqs. (10). We get from Eq. (9) λ± = ±re∓iφ
and λ3 = 0 leading to

UAiCi
= cos r exp [a†i c

†
ie

−iφ tan r] exp [(a†iai + c†i ci) ln cos
−1 r] exp [−ciaieiφ tan r]. (14)

We might safely set φ = 0 since we will later see that it has no relevance in this work.
We collect the majority of identities used in the course of the paper in the following lemma.

Lemma 3. Let a and c be operators obeying the canonical anticommutation relations Eq. (1).
Then the following identities hold

[aici, a
†
jc

†
j ] = 2δijJ3 (15a)

[a†iai, a
†
jc

†
j ] = δija

†
jc

†
j (15b)

[a†iai, a
†
j] = δija

†
j (15c)

[a†jc
†
j , a

†
i ] = 0 (15d)

[ k
∏

j=1

ajcj , a
†
i

]

= 0 (15e)

[ k
∏

j=1

a†jc
†
j , c

†
i

]

= 0 (15f)

(−)∆k−1

k
∏

j=1

ajcj =

k
∏

j=1

aj

k
∏

j=1

cj . (15g)

The first equation is a generalization of the second row in Eq. (10), Eq. (15c) simplifies to

a†iaia
†
i = a†i for i = j, Eq. (15e) holds for i 6= j and ∆k−1 = k(k − 1)/2.

Proof. Eqs. (15a)-(15f) directly follow from Eq. (1). In Eq. (15g) we move all aj on the left of
all cj . So all aj on the LHS of Eq. (15g) for even j ‘jump over’ an odd number of cj operators.
Similarly every odd aj switches its position with an even number of cj operators. The total
acquired phase is

k
∏

j=1

(−)(k−j) = (−)
∑k

j=1
(k−j) = (−)k(k−1)/2 ≡ (−)∆k−1 .

�

Taking into account Eq. (15g) the action of d copies of the fermionic unitary operator results
in

|Ψ〉AC =
d
⊗

i=1

UAiCi
|vac〉 = cosd r

d
∑

k=0

(−)∆k−1 tank r

(dk)
∑

n1,...,nd

|~n〉A |~n〉C . (16)
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If we wanted to see how UAC =
⊗d

i=1 UAiCi
transforms a fermionic qudit written in the

multi-rail basis of d modes

|ψ〉A′C′ =

d
∑

i=1

βia
†
i |vac〉 =

d
∑

i=1

βi |i〉A′ |vac〉C′

we might just calculate |Φ〉AC = UAC |ψ〉A′C′ . In order to simplify this complicated calculation
we first observe

UAC = cosd r exp
[

tan r

d
∑

i=1

a†ic
†
i

]

exp
[

d
∑

i=1

(a†iai + c†i ci) ln cos
−1 r

]

exp
[

tan r

d
∑

i=1

aici

]

, (17)

where Eqs. (15a) and (15b) for i 6= j were utilized. To proceed we make use of the main
advantage of the multi-rail encoding. Due to the presence of ci annihilating the vacuum state
we observe

exp
[

tan r
d
∑

i=1

aici

](

d
∑

i=1

βia
†
i

)

|vac〉 =
d
∑

i=1

βia
†
i |vac〉 .

We may then write

|Φ〉AC = cosd r exp
[

tan r

d
∑

i=1

a†i c
†
i

]

exp
[

d
∑

i=1

(a†iai + c†ici) ln cos
−1 r

](

d
∑

i=1

βia
†
i

)

|vac〉

= cosd−1 r exp
[

tan r
d
∑

i=1

a†i c
†
i

](

d
∑

i=1

βia
†
i

)

|vac〉

= cosd−1 r
(

d
∑

i=1

βia
†
i

)

exp
[

tan r
d
∑

i=1

a†ic
†
i

]

|vac〉 .

(18)

The second row follows from Eq. (15c) (see why i = j does not spoil the commutator). The
last equality is possible due to Eq. (15d).
The action of the unitary UAB leads to

|Φ〉AC = UAC

d
∑

i=1

βi |i〉A′ |vac〉C′ = cosd−1 r
(

d
∑

i=1

βia
†
i

)

exp
[

tan r

d
∑

j=1

a†jc
†
j

]

|vac〉 (19a)

= cosd−1 r
(

d
∑

i=1

βia
†
i

)

d+1
∑

k=1

tank−1 r(−)∆k−2

∑

Nk

|. . . nj . . . 〉A |. . . nj . . . 〉C (19b)

= cosd−1 r

d
∑

k=1

tank−1 r(−)∆k−2

[

∑

Nk

d−k+1
∑

i∈I

(±)iβi |. . . nj + 1i . . . 〉A |. . . nj . . . 〉C

]

, (19c)

where we have defined the set Nk = {(n1, . . . , nd)|
∑d

j=1 nj = k − 1} to be the sum over all

possible states with k − 1 fermions. The additional fermion (with respect to the C subsystem)

in Eq. (19c) occupies the i-th position. There is
(

d
k−1

)

states |. . . nj . . . 〉C in the middle sum of

Eq. (19c) for a given Nk (k = 1 . . . d). The rightmost sum of Eq. (19c) sums over i ∈ I, for a
fixed Nk, such that I = {i | ni = 0} and thus contains d−k+1 terms, justifying the upper limit

in the sum. Taking, for example, β0 = 1 we verify cos2(d−1) r
∑d
k=1 tan

2(k−1) r
(

d−1
k−1

)

= 1. The
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multiplicative sign (±)i in Eq. (19c) is dependent on the fermionic state of the A subsystem. It
appears following the operator rules specific to the fermionic algebra. Let us recall some basic
properties of the algebra

a†i |. . . nj . . . 〉 = (1 − ni)(−)
∑i−1

j=1
nj |. . . nj + 1i . . . 〉

ai |. . . nj . . . 〉 = ni(−)
∑i−1

j=1
nj |. . . nj − 1i . . . 〉 .

(20)

Isometry output Eq. (19) gives rise to a new class of channels we nicknamed Grassmann chan-
nels.

Definition 4. The d-dimensional Grassmann channel Gd is a quantum channel defined by the
action of its isometry VGd

as Gd(ψA′) = TrC ◦ VGd
◦ψA′ . The action of the channel on an input

qudit is given by

Gd : ψA′ 7→ γ
(d)
A = cos2(d−1) r

d
⊕

k=1

tan2(k−1) r

(

d− 1

k − 1

)

χ
(d)
k =

d
⊕

k=1

pkGd,k(ψA′), (21)

where pk = cos2(d−1) r tan2(k−1) r
(

d−1
k−1

)

. Gd,k are channels constituting the Grassmann channel

Gd and χ
(d)
k = Gd,k(ψA′) having Tr

[

χ
(d)
k

]

= 1. The output block dimension dimχ
(d)
k =

(

d
k

)

for
k = 1, . . . , d is known as a Grassmann number, hence the name Grassmann channels.

Remark. The index k in Eq. (21) has two roles in χ
(d)
k . It labels the state but it also indicates

how many fermions the basis is composed of. We thus know in which basis χ
(d)
k is written.

Remark. The first Grassmann channel G1 is a trivial trace map. The second Grassmann channel
G2 is a channel recently playing an important role in quantum Shannon theory - a qubit erasure
channel [3, 18–20]. We now look at G2 and G3 cases in more detail.

Example. For d = 2 we get from Eq. (16)

|Ψ〉AC = cos2 r exp
[

tan r(a†1c
†
1 + a†2c

†
2)
]

|vac〉

= cos2 r

[

1 + tan r(a†1c
†
1 + a†2c

†
2) +

tan2 r

2
(a†1c

†
1 + a†2c

†
2)

2

]

|vac〉

= cos2 r

(

|vac〉+tan r
(

|10〉A |10〉C + |01〉A |01〉C
)

− tan2 r |11〉A |11〉C
)

.

(22)

Following Eq. (19c) we obtain

|Φ〉AC = cos r
(

(β1 |10〉+β2 |01〉) |vac〉+tan r (β1 |11〉 |01〉−β2 |11〉 |10〉)
)

(23a)

=
√

1− p
(

β1 |1〉+β2 |2〉
)

A
|0〉C +

√
p |3〉A

(

β1 |2〉−β2 |1〉
)

C
. (23b)

The last equation is Eq. (23a) rewritten using a reparametrization
√
1− p = cos r,

√
p = sin r

and a logical ket notation (|0〉, . . . , |3〉) to facilitate the comparison with an isometry output for
a qubit erasure channel

|Φ〉eraseAC =
√

1− p
(

β1 |1〉+β2 |2〉
)

A
|f〉C +

√
p |f〉A

(

β1 |1〉+β2 |2〉
)

C
. (24)

|f〉 is a flag state orthogonal to both |1〉 and |2〉. The most notable difference between Eq. (23b)
and Eq. (24) is the dimension of the output Hilbert space. For the latter the Hilbert space
is three-dimensional. But if we trace over the A or C subsystems and compare them we
immediately see that they indeed induce the same channel. The Grassmann channel G2 is just
embedded in a higher-dimensional space than the corresponding erasure channel and unitarily
rotated (note the difference in the second brackets of Eqs. (23b) and (24)).
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Example. For G3 we get from Eq. (19c)

|Φ〉AC = cos2 r
(

(β1 |100〉+β2 |010〉+β3 |001〉) |vac〉 (25a)

+ tan r [(−β1 |101〉−β2 |011〉) |001〉−(β1 |110〉−β3 |011〉) |010〉+(β2 |110〉+β3 |101〉) |100〉]
(25b)

− tan2 r |111〉(β1 |011〉−β2 |101〉+β3 |110〉)
)

. (25c)

The trace over the C subsystem gives us the output of G3

G3 : ψA′ 7→ γ
(3)
A = p1χ

(3)
1 ⊕ p2χ

(3)
2 ⊕ p3χ

(3)
3 , (26)

where p1 = cos4 r, p2 = 2 tan2 r cos4 r, p3 = tan4 r cos4 r. χ
(3)
1 is the input state itself and χ

(3)
3

is a flag state |111〉. We are interested in the form of χ
(3)
2

χ
(3)
2 =

1

2





|β2|2 + |β3|2 β2β̄1 −β3β̄1
β̄2β1 |β1|2 + |β3|2 β3β̄2
−β̄3β1 β̄3β2 |β1|2 + |β2|2



 (27)

where the two-fermionic basis is ordered as {|011〉, |101〉, |110〉}. We easily verify that the Kraus
operators

K1 =
1√
2





0 −1 0
1 0 0
0 0 0



 ,K2 =
1√
2





0 0 1
0 0 0
1 0 0



 ,K3 =
1√
2





0 0 0
0 0 1
0 1 0



 (28)

yields χ
(3)
2 .

In the proof of the next theorem we will extensively use the geometric picture from the
representation theory of the sl(d,C) Lie algebras. We summarized some basic facts in the
appendix.

Theorem 5. Let the first block of γ
(d)
A in Eq. (21) be written as

χ
(d)
1 =

1

d

(1+ L
∑

α=1

nαλ
(1)
α

)

, (29)

where λ
(1)
α are generators of the dual representation to the fundamental representation of the

sl(d,C) algebra, L = 2d(d − 1) and nα are functions of βiβ̄j. Then the remaining blocks in
Eq. (21) can be expanded with the same coefficients nα

χ
(d)
k =

1
(

d
k

)

(1+ L
∑

α=1

nαλ
(k)
α

)

, (30)

where λ
(k)
α are generators of the k-th completely antisymmetric representation of the sl(d,C)

algebra.

Remark. The number L in Eqs. (29) and (30) comes from the use of a redundant number of the
sl(2,C) subalgebras as discussed in the appendix. Namely, there is d(d− 1) diagonal generators
Hn, d(d− 1)/2 off-diagonal generators Eij (recall that i < j) and d(d− 1)/2 of their Hermitian

conjugates E†
ij .
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Remark. Since we use a linearly dependent set of algebra generators the expansion coefficients
nα are not unambiguously determined. For us, however, it is sufficient to show that at least
for one specific construction (the one presented here) the coefficients can be chosen to stay
preserved when switching to a higher-dimensional representation of sl(d,C).
The upcoming proof will be divided into two parts. We will separately prove Eq. (30) for

diagonal and off-diagonal generators. To better follow the proof it might be helpful to watch
the example of Eq. (19c) for d = 4. In the course of the proof there is a remark illustrating
results on this case.

Example. For d = 4 we get from Eq. (19c)

|Φ〉AC = cos3 r

(

(

β1 |1000〉+β2 |0100〉+β3 |0010〉+β4 |0001〉
)

|vac〉

+ tan r
[(

β1 |1001〉+β2 |0101〉+β3 |0011〉
)

|0001〉

+
(

β1 |1010〉+β2 |0110〉−β4 |0011〉
)

|0010〉

+
(

β1 |1100〉−β3 |0110〉−β4 |0101〉
)

|0100〉

−
(

β2 |1100〉+β3 |1010〉+β4 |1001〉
)

|1000〉
]

− tan2 r
[(

β1 |1011〉+β2 |0111〉
)

|0011〉+
(

β1 |1101〉−β3 |0111〉
)

|0101〉

−
(

β2 |1101〉+β3 |1011〉
)

|1001〉+
(

β1 |1110〉+β4 |0111〉
)

|0110〉

+
(

− β2 |1110〉+β4 |1011〉
)

|1010〉+
(

β3 |1110〉+β4 |1101〉
)

|1100〉
]

− tan3 r |1111〉
(

− β1 |0111〉+β2 |1011〉−β3 |1101〉+β4 |1110〉
)

)

.

(31)

We do not indicate the subsystems but in a product of two kets the first one is the A subsystem
and the second one is the C subsystem.

We will employ the fermionic representation of the sl(2,C) algebra [35] (see also Eqs. (A3))
(

1 0
0 −1

)

= a†mam − a†lal (32a)

(

0 1
0 0

)

= a†mal (32b)

(

0 0
1 0

)

= a†l am, (32c)

where m 6= l are mode labels.

Proof. (i) Let us first find the coefficients nα from Eq. (29) and then show that they remain
preserved in Eq. (30). Since we have

|β1|2
d

(

d
∑

i=1

a†iai +
d−1
∑

j=1

(a†1a1 − a†1+ja1+j)
)

= |β1|2a†1a1 ≡ |β1|2|1 . . . 0〉〈1 . . . 0| (33)

and so

|βi|2
d

(

d
∑

i=1

a†iai +

d−1
∑

j=1

(a†iai − a†i⊕jai⊕j)
)

= |βi|2a†iai ≡ |βi|2|0 . . . 1i . . . 0〉〈0 . . . 1i . . . 0| (34)
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there is (d−1) coefficients nα that equal |βi|2 for i = 1 . . . d. Note that i⊕j ≡ i+j mod (d+1).
For k > 1 we first notice in Eq. (19c) the presence of the factors (±)i. They are irrelevant

for now since we investigate the diagonal generators. The important fact is that the numerical
coefficients of all βi’s are the same in the absolute value, that is, equal to one. We trace over
C and the diagonal part of the A subsystem for a given k reads

diag [χ
(d)
k ] =

1
(

d
k

)

[

∑

Nk

d−k+1
∑

i∈I

|βi|2| . . . nj + 1i . . . 〉〈. . . nj + 1i . . . |
]

. (35)

Each diagonal element
∑d−k+1

i∈I |βi|2| . . . nj + 1i . . . 〉〈. . . nj + 1i . . . | corresponding to a given nj
can be factorized

d−k+1
∑

i∈I

|βi|2| . . . nj + 1i . . . 〉〈. . . nj + 1i . . . |

=

(

d−k+1
∑

i∈I

|βi|2|0 . . . 1i . . . 0〉〈0 . . . 1i . . . 0|
)

| . . . nj . . . 〉〈. . . nj . . . |, (36)

where the expression in the parenthesis in the second line can be rewritten using the fermionic
representation of the sl(2,C) algebra from Eq. (34). The rest serves as a label (recall that there

is
(

d
k−1

)

orthogonal states for which
∑

nj = k − 1). However, because of the factorization in

Eq. (36) the dimension of the first expression will become d′ = d−∑d
j=1 nj giving us

d−k+1
∑

i∈I

|βi|2| . . . nj + 1i . . . 〉〈. . . nj + 1i . . . |

=

(

d−k+1
∑

i∈I

|βi|2
(

d′
∑

i=1

a†iai +

d′−1
∑

j=1

(a†iai − a†i⊕jai⊕j)
)

)

| . . . nj . . . 〉〈. . . nj . . . |. (37)

So the diagonal elements for k > 1 can also be expressed using only the sl(2,C) diagonal algebra
generators. This is what we expected following the discussion in the appendix.
Now we have to make sure that there is the right number of summands when constructing

the direct sum sl(2,C) subalgebra representations also discussed in the appendix in the last
paragraph. This is indeed the case. The orthogonal ‘label states’ factorized out in Eq. (37)
label the subspace in which the sl(2,C) subalgebra in the parenthesis lives. We want to count
how often this situation happens. Since it is a sl(2,C) subalgebra we have two spots out of d
in each ket occupied by two fermions (by choosing, for example, β1 and β2 or any other pair)

and the remaining number of spots can be occupied by
∑d
j=1 nj fermions. The number of

possibilities is

#[orthogonal subspaces] =

(

d− 2
∑d

j=1 nj

)

≡
(

d− 2

k − 1

)

.

We thus reproduced the result found in the appendix for all completely antisymmetric repre-
sentations of the sl(d,C) algebras.
Remark. We might verify the above considerations on Eq. (31). For k = 2 (lines 2 to 5) tracing
over C and taking the diagonal part gives us unnormalized Eq. (35) for which d − k + 1 = 3.

There is
(

4
1

)

= 4 states where
∑d

j=1 nj = 1 holds and they can be factorized out as in Eq. (37).

There are therefore four blocks with mutually orthogonal flags attached to them but only
(

2
1

)

= 2
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of them have a common pair of coefficients (e.g., β1 and β2). This is the case illustrated in
Fig. 5b. All edges of the octahedron are sl(2,C) algebras. The pairs of parallel lines form the
generators of a completely antisymmetric representation of sl(4,C) in the form of a direct sum.
They span a 4-dimensional space but none of the spaces is orthogonal to any other.

(ii) Proving Eq. (30) for off-diagonal generators is considerably simpler. Looking at
the rightmost sum of Eq. (19c) we see that every state |. . . nj . . . 〉C is multiplied by
∑

j βj(±)j |. . . nj + 1i . . . 〉A containing one fermion more in the i-th mode compared to the
C subsystem. Tracing over C and taking the off-diagonal part gives us expressions of the
following type

∑

l,m

βlβ̄m(±)l(±)m| . . . ni + 1l . . . 〉〈. . . nj + 1m . . . |. (38)

We immediately recognize the off-diagonal matrices forming Eq. (38) to be proportional to
the step operators pertaining to the sl(2,C) subalgebra from Eq (32). The situation is only
complicated by the presence of a function (±)l(±)m responsible for the change of a sign. The
function comes from the fermionic relations Eq. (20). The change of sign therefore appears if
we annihilate the fermion in the l-th mode and create it in the m-th mode

(±)l(±)m |. . . nj + 1m . . . 〉A = a†mal |. . . nj + 1l . . . 〉 .

But this is precisely the action of the operator from Eq. (32b) representing the sl(2,C) subalge-
bra. We again take a direct sum of

(

d−2
k−1

)

off-diagonal generators. They form the off-diagonal

generators of the k-th lowest completely antisymmetric representation of sl(d,C). �

Corollary 6. The Grassmann channels Gd are SU(d) covariant.

Proof. The proof is identical to Corollary 17 for completely symmetric representations of sl(d,C)
in [22] showing that the Unruh channel is SU(d) covariant. �

IV. QUANTUM CAPACITY

There is an interesting symmetry between the A and C output subsystem captured in the
following lemmas and later necessary for the proof of degradability of the Grassmann channels.

Lemma 7. Labeling the Pauli matrices σZ and σX by Z and X and a d-dimensional identity
by Id we first introduce an infinite product Z ⊗ I2 ⊗ Z ⊗ I2 ⊗ Z ⊗ I2 ⊗ . . . . A d-mode unitary
operator Ξd is defined as the first d unitaries of the product. Then the following identity holds

O0→(d−1) ◦X⊗2d ◦ (Ξd ⊗ Id) ◦ (−)d
(

d
∑

i=1

βia
†
i

)

|vac〉AC = tand−1 r
(

d
∑

i=1

βic
†
i

)

|~n〉A |~n〉C , (39)

where
∑d
i=1 ni = d−1 and O(k−1)→(d−k) : tan

k−1 r → tand−k r is a non-physical operation solely
acting on the trigonometric function in Eq. (19b) (or Eq. (19c)). For k = 1 we understand
O0→(d−1)(1) = tand−1 r in Eq. (39).

Proof. We prove the identity by a direct calculation. Using properties of the fermionic algebra,
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the following hold:

X⊗2d ◦ (Ξd ⊗ Id)
(

d
∑

i=1

βia
†
i |vac〉AC

)

= X⊗2d ◦ (Ξd ⊗ Id) ◦
(

d
∑

i=1

βi |0 . . . 1i . . . 0〉A
)

|vac〉C

(40a)

= (−)iX⊗2d ◦
(

d
∑

i=1

βi |0 . . . 1i . . . 0〉A
)

|vac〉C (40b)

= (−)i
(

d
∑

i=1

βi |1 . . . 0i . . . 1〉A
)

|1 . . . 1〉C . (40c)

On the other hand we have

tand−1 r

d
∑

i=1

βic
†
i |~n〉A |~n〉C = tand−1 r

(

d
∑

i=1

(−)d−1+i−1βi |1 . . . 0i . . . 1〉A
)

|1 . . . 1〉C . (41)

By multiplying Eq. (40a) by (−)d−2 and exchanging the trigonometric function (represented by
the action of O0→(d−1)) we get the RHS of Eq. (41) and therefore also Eq. (39). �

The purpose of the next lemma is to present two extensively used identities.

Lemma 8. Let a be a fermionic operator. Then, the following identities hold

Za† = −a†Z (42a)

Xa† = aX. (42b)

Proof. Directly follows from Eq. (1) once we realize that X = a + a† and Z = a†a − aa† =
2a†a− 1 = 1− 2aa†. �

Lemma 9. The following relation holds

O(k−1)→(d−k) ◦X⊗2d ◦ (Ξd ⊗ Id) ◦
(

d
∑

i=1

βia
†
i

)

|Ψ〉AC =
(

d
∑

i=1

βic
†
i

)

|(±)~m,k,dΨ〉AC , (43)

where |(±)~m,k,dΨ〉AC is |Ψ〉AC from Eq. (16) with some of the summands having a negative
sign.

Remark. The indices of the phase function will be described and the function explicitly written.

Proof. To make the derivation smoother we will first prove a specific part of Eq. (43) in which
k = 2

O1→(d−2)(tan r) ◦X⊗2d ◦ (Ξd ⊗ Id) ◦
(

d
∑

i=1
i6=j

βia
†
i

)

a†jc
†
j |vac〉AC

= tand−2 r(−)j−1
(

d
∑

i=1
i6=j

βic
†
i

)

∣

∣~mj
〉

A

∣

∣~mj
〉

C
. (44)
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where
∑d

i=1m
j
i = d − 2 and mj

j = 0. Let us ignore for a while the function O1→(d−2). Using

identities (15d), (42a),(42b) and Lemma 7 (note the missing j-th summand from both sides of
Eq. (39)) the LHS of Eq. (44) reads

(−)jajcj ◦X⊗2d ◦ (Ξd ⊗ Id) ◦
(

d
∑

i=1
i6=j

βia
†
i

)

|vac〉AC = (−)j(−)dajcj

(

d
∑

i=1
i6=j

βic
†
i

)

|~n〉A |~n〉C (45a)

= (−)j(−)d(−)d−1Υ
(

d
∑

i=1
i6=j

βic
†
i

)

∣

∣~mj
〉

A

∣

∣~mj
〉

C
,

(45b)

where Υ = (−)j−2(−)j−2 = (−)j−1(−)j−1 ≡ 1 depending on whether i < j or j < i. Thus
we recovered the phase on the RHS of Eq. (44). It is time to justify the presence of O1→(d−2)

in Eq. (44). Eq. (19c) indicates that the exponent of tank−1 r coincides with the number of
excitations of the C subsystem and is one less than the number of excitations in the A subsystem.
From reasons that will become clear later we would like the exponent of the trigonometric
function tand−2 r on the RHS to correspond to the number of excitations of the A subsystem
which is indeed equal to d− 2.
To prove Eq. (43) we first rewrite Eq. (16) as

d+1
∑

k=1

tank−1 r(−)∆k−2

∑

Nk

∣

∣~nJ
〉

A

∣

∣~nJ
〉

C
=

d+1
∑

k=1

tank−1 r
∑

Nk

(a†jc
†
j)
nj |vac〉AC =

1

cosd r
|Ψ〉AC ,

where we have used the notation introduced in Eq. (19c). We have also introduced the set J ,
for a fixed Nk, as J = {j|1 ≤ j ≤ d, nj = 1}. Let us investigate the expression for a chosen k:

O(k−1)→(d−k)(tan
k−1 r) ◦X⊗2d ◦ (Ξd ⊗ Id) ◦

(

d
∑

i=1
i/∈J

βia
†
i

)

∑

Nk

(a†jc
†
j)
nj |vac〉AC (46a)

= O(k−1)→(d−k)(tan
k−1 r) ◦

∑

Nk

((−1)jajcj)
nj ◦X⊗2d ◦ (Ξd ⊗ Id) ◦

(

d
∑

i=1
i/∈J

βia
†
i

)

|vac〉AC (46b)

= tand−k r(−)d
∑

Nk

((−1)jajcj)
nj

(

d
∑

i=1
i/∈J

βic
†
i

) ∣

∣

∣

~n′
〉

A

∣

∣

∣

~n′
〉

C
(46c)

= tand−k r(−)d
∑

Nk

(−)jnj (−)(k−1)(d−1)Υk−1(−)∆k−2

(

d
∑

i=1
i/∈J

βic
†
i

)

∣

∣~mJ
〉

A

∣

∣~mJ
〉

C
(46d)

= tand−k r
(

d
∑

i=1
i/∈J

βic
†
i

)

∑

Nk

(±)~m,k,d
∣

∣~mJ
〉

A

∣

∣~mJ
〉

C
, (46e)

In the first equality of Eq. (46) we used Eqs. (15f), (42a) and (42b), and in the second equality
Lemma 7 was used with the summands corresponding to the set J removed from both sides of
Eq. (39). Here

∑

i n
′
i = d− 1 holds. In the third equality, Eqs. (15e), (15g) and the properties

of the fermionic algebra leading to Υ in Eq. (45b) were used and we introduced a vector
∣

∣~mJ
〉
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such that
∑d

i=1m
J
i = d− k and mJ

j = 0 if j ∈ J . Finally in the last equation we collected all
phases into a single function (±)~m,k,d.
To prove the lemma we realize that the LHS of Eq. (43) is Eq. (46a) summed over k

cosd r

d
∑

k=1

[

O(k−1)→(d−k)(tan
k−1 r) ◦X⊗2d ◦ (Ξd ⊗ Id) ◦

(

d
∑

i=1
i/∈J

βia
†
i

)

∑

Nk

(a†jc
†
j)
nj

]

|vac〉AC (47)

(note that we sum only to d since the (d+ 1)-th summand disappeared). The RHS of Eq. (43)
is just a sum of Eq. (46e) over k

cosd r

d
∑

k=1

tand−k r
(

d
∑

i=1
i/∈J

βic
†
i

)

∑

Nk

(±)~m,k,d
∣

∣~mJ
〉

A

∣

∣~mJ
〉

C
=
(

d
∑

i=1

βic
†
i

)

|(±)~m,k,dΨ〉AC (48)

Notice that if we exchange (d − k) for (k − 1) in tand−k r,Nk,
∣

∣~mJ
〉

A
and

∣

∣~mJ
〉

C
such that

∑d
i=1m

J
i = k − 1 we indeed get

( d
∑

i=1

βic
†
i

)

|Ψ〉AC up to the phase function. �

Remark. The important fact about Eq. (46e) is that the sign depends on chosen d, k and Nk
so it is in general different for each summand over Nk but common for each sum over i.

Lemma 10. Following the notation of Definition 4 we label γ
(d)
C = TrA ◦ΦAC. Then we have

O(k−1)→(d−k) ◦W ◦ γ(d)A = γ
(d)
C , (49)

where W is a unitary transformation.

Proof. Lemma 9 is powerful since it allows us to compare the outputs of Grassmann channels

with their complementary outputs γ
(d)
C . Indeed, from the form of |Φ〉AC we can deduce the

explicit form of the block matrices from which γ
(d)
A is composed of (see Eq. (21)). However, if

we wanted to compare γ
(d)
A with γ

(d)
C given by unitary UAC in Eqs. (19) it would be a difficult

task. The advantage of Lemma 9 is that we don’t even need to know γ
(d)
A or γ

(d)
C explicitly to

find the relation between them.
Let us rewrite the previous lemma result in the following way

(

d
∑

i=1

βia
†
i

)

|Ψ〉AC = O(k−1)→(d−k) ◦ (Ξd ⊗ Id) ◦X⊗2d ◦
(

d
∑

i=1

βic
†
i

)

|(±)~m,k,dΨ〉AC . (50)

Recall thatO(k−1)→(d−k)◦(Ξd⊗Id)◦X⊗2d is an involution and O(k−1)→(d−k) is a scalar function.

Note that Ξd⊗ Id commutes or anticommutes with X⊗2d depending on the specific form of Ξd.
We incorporate this sign change into (±)~m,k,d. Tracing out the A subsystem we have

γ
(d)
C = TrA ◦

(

d
∑

i=1

βia
†
i

)

|Ψ〉AC = O(k−1)→(d−k) ◦W ◦ TrA ◦
(

d
∑

i=1

βic
†
i

)

|(±)~m,k,dΨ〉AC (51a)

= O(k−1)→(d−k) ◦W ◦ TrA ◦
(

d
∑

i=1

βic
†
i

)

|Ψ〉AC (51b)

= O(k−1)→(d−k) ◦W ◦ TrC ◦
(

d
∑

i=1

βia
†
i

)

|Ψ〉AC (51c)

= O(k−1)→(d−k) ◦W ◦ γ(d)A . (51d)
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FIG. 1: Quantum capacity for Grassmann channels for d = 2, 5, 10, 50 and 100. In the left plot the
capacity is calculated using the base two logarithm and in the right plot using the base d logarithm.
The curves follow the order in the legend.

The first equality holds since all the unitaries in Eq. (50) act locally and O(k−1)→(d−k) is again a
scalar function (the unitaryW appears as the result of tracing over unitarily-locally transformed
state |Φ〉AC). The sign ambivalence in the second equality is irrelevant because tracing over A
means creating of a convex sum of states belonging to the C subsystem so the phase disappears,
the third equality is a simple permutation argument due to the symmetry of |Ψ〉AC between

the modes A and C and in Eq. (51d) we invoke the definition of γ
(d)
A . �

Let us formally define the complementary Grassmann channel based on Lemma 10 and Def-
inition 4:

Definition 11. The d-dimensional complementary Grassmann channel Gcd is the quantum chan-
nel defined by the isometry VGd

as Gcd(ψA′) = TrA ◦VGd
◦ ψA′ . The action of the channel on an

input qudit is given by

Gcd : ψA′ 7→ γ
(d)
C = cos2(d−1) r

d
⊕

k=1

tan2(d−k) r

(

d− 1

k − 1

)

W ◦ χ(d)
k , (52)

where χ
(d)
k has been introduced in Eq. (21).

For the purpose of proving degradability, W is a harmless unitary matrix independent on k
so we may just ignore it. But O(k−1)→(d−k) is not a completely positive map so degradability
remains to be proven.

Theorem 12. All Grassmann channels Gd from Eq. (21) are degradable for r ∈ [0, π/4].

Remark. Note that the degradability of a qubit erasure channel on the whole interval is recovered
for d = 2. This corresponds to p ∈ [0, 1/2] in Eq. (23b) as is valid for a ‘standard’ qubit erasure
channel Eq. (24) [18].

Proof. We will prove the theorem by a direct construction of the degrading map. Rewriting
Eqs. (21) and (52) we get

γ
(d)
A =

d
⊕

k=1

pkχ
(d)
k ≡

d
⊕

k=1

pkGd,k(ψA′) (53)

γ̃
(d)
C =Wγ

(d)
C W † =

d
⊕

k=1

p̃kχ
(d)
k , (54)
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where pk = cos2(d−1) r tan2(k−1) r
(

d−1
k−1

)

and p̃k = cos2(d−1) r tan2(d−k) r
(

d−1
k−1

)

. Recall that for

the purpose of the degrading map construction we may work with γ̃
(d)
C instead of γ

(d)
C . We

assume the existence of the following degrading map

M : γ
(d)
A 7→ q1γ

(d)
A +

d
∑

k=2

qkχ
(d)
k =

d
∑

k=1

p̃kχ
(d)
k ≡ γ̃

(d)
C . (55)

In order for M to be a completely positive map we have to show that 0 ≤ qk and
∑d

k=1 qk = 1
for r ∈ [0, π/4]. For all d we get from Eq. (55) the following set of d linear equations

q1p1 = p̃1

q1p2 + q2 = p̃2

...

q1pd + qd = p̃d.

(56)

The set is easily solvable. The first equation gives us q1 = tan2(d−1) r which we plug into the
remaining equations. We get

qk =

(

d− 1

k − 1

)

cos2(d−1) r
(

tan2(d−k) r − tan2(d+k−2) r
)

(57)

for k = 2 . . . d. Since for r ∈ [0, π/4] the tangent function is monotonously increasing and
0 ≤ tan r ≤ 1 holds as well we may conclude that for k = 1 . . . d all qk are positive. Finally,

summing the left and right side of the equation set and using
∑d
k=1 pk =

∑d
k=1 p̃k = 1 we find

that
∑d

k=1 qk = 1. �

We might proceed to the calculation of the quantum capacity of the Grassmann channels.
Due to the degradability the quantum capacity formula Eq. (7) reduces to the optimized co-
herent information Eq. (8). Furthermore, according to Theorem 5 the Grassmann channels are
covariant. Therefore, the supremum in Eq. (8) is achieved for a maximally mixed input qudit
and the quantum capacity formula reads

Q(Gd) =
1

d
cos2(d−1) r

d
∑

k=1

k

(

d

k

)

log k
(

tan2(d−k) r − tan2(k−1) r
)

. (58)

The plots for various d can be found in Fig. 1.

V. CLASSICAL CAPACITY

We first present a simple generalization of the characterization theorem derived in [17] (The-
orem 1).

Theorem 13 ([17]). The quantum channel T : H
(Cd)→ H

(Cd′) is of the form

T (ρ) =
Id′ −mM(ρ)

d′ −m
,

where M is a positive, linear and trace-preserving map such that there exists a state ρ0 where
mM(ρ0) is a projection of rank m if and only if the α-Rényi minimal output entropy Hα

min(T ) =
minρH

α(T (ρ)) is α-independent.
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Remark. The (almost trivial) generalization lies in setting d′ 6= d.

We now show that the blocks from which all the Grassmann channels are composed fulfill
the required conditions.

Lemma 14. Every block of the qudit Grassmann channel Gd : H
(Cd) → H

(C2d−1
)

has the
following form:

Gd,k(ρ) =
Id′ −mMd,k(ρ)

d′ −m
(59)

where d′ =
(

d
k

)

is the dimension of the output space. Moreover, for all input pure states ρ0,
mMd,k(ρ0) is a projection of rank m

Proof. Consider the k-th block of the qudit Grassmann channel with input of the form |1〉〈1|.
Then the output state will have the following form:

φ
(k)
A =

1
(

d−1
k−1

)

∑

si

|1 s2 . . . sd〉〈1 s2 . . . sd|A (60)

where we are using the convention
∑d

i=2 si = k− 1 and normalized the block. Now suppose we

let m =
(

d−1
k

)

and we know the dimension of the output space for the k-th block is equal to
(

d
k

)

, then d′ −m =
(

d
k

)

−
(

d−1
k

)

=
(

d−1
k−1

)

. Therefore,

Id′ − (d′ −m)Gd,k(|1〉〈1|) = Id′ −
∑

si

|1 s2 . . . sd〉〈1 s2 . . . sd| (61)

=
∑

ti

|0 t2 . . . td〉〈0 t2 . . . td|. (62)

with the convention now being
∑d
i=2 ti = k. The matrix in Eq. (62) has rank m =

(

d−1
k

)

.
Thus with an input of the form ρ0 = |1〉〈1|, we have found a matrix Md,k(ρ0) that satisfies the
condition in Eq. (59).
Now, in order to generalize this result to arbitrary pure inputs, one can use the SU(d) covari-

ance of the Grassmann channel presented in Corollary 6. Assume Rd,r to be an r-dimensional
unitary representation of SU(d). Then due to covariance the following holds:

Gd,k(ρ) = Gd,k(Rd,d ◦ ρ0) = Rd,d′ ◦ Gd,k(ρ0). (63)

Thus the following chain of equalities hold:

Rd,d′ ◦
(

mMd,k(ρ0)
)

= Rd,d′ ◦
(

(Id′ − (d′ −m)Gd,k(ρ0)
)

(64a)

= Id′ − (d′ −m)Rd,d′ ◦ Gd,k(ρ0) (64b)

= Id′ − (d′ −m)Gd,k(Rd,d ◦ ρ0) (64c)

= mMd,k(Rd,d ◦ ρ0). (64d)

The last equality follows from defining mMd,k(Rd,d ◦ ρ0) in this way, since it has rank m since
it is just equal to a rotated state of rank m. Thus every block, after normalization, has the
form of Eq. (59). �

Corollary 15. Grassmann channels have a direct sum form Eq. (21). Hence from Lemma 3
in [13] it follows that all Grassmann channels have the Holevo capacity additive. From Eqs. (5)
and (6) we get

C(Gd) = sup
{p(x),σx,A′}

[

H(A)Gd(σXA′ ) −
∑

x

p(x)H(A)Gd(σx,A′ )

]

. (65)
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FIG. 2: Classical capacity for Grassmann channels for d = 2, 5, 10, 50 and 100. The vertical dashed
lines at r = π/4 label the point where the quantum capacity in Fig. 1 equals zero. In the left plot the
capacity is calculated using the base two logarithm and in the right plot using the base d logarithm.
The curves follow the order in the legend.

Consequently, exploiting the result from [14, 26] for covariant channels, the classical capacity
is given by

C(Gd) = H({pk}) +
d
∑

k=1

pk log

(

d

k

)

−H(A)Gd(ρ0)

= log d− cos2(d−1) r

d
∑

k=1

tan2(k−1) r

(

d− 1

k − 1

)

log k. (66)

VI. PHYSICAL IMPLICATIONS

Bosons, fermions and non-inertial observers

It is often claimed that there is a fundamental difference between the entanglement behavior
of maximally entangled states built upon fermions and bosons in a relativistic setting [33].
Namely, provided that a uniformly accelerated observer has one half of an initially maximally
entangled state it is found that in the infinite acceleration limit the bosonic entanglement
disappears while the fermionic entanglement partially persists. Based on this näıve approach
it is concluded that in the infinite limit entangled fermionic states might be useful for various
quantum-informational protocols where a certain amount of shared entanglement is usually
needed.
However, our capacity results suggest something different at least for the purpose of quan-

tum communication between an inertial and noninertial observer. For the purpose of sending
quantum messages the ultimate measure of a channel’s capability to transmit the information
is its quantum capacity which has nothing to do with any particular entanglement measure.
We found that there is no qualitative difference between the behavior of the quantum capacity
for the qudit Grassmann channel (fermions) and its bosonic equivalent introduced in Ref. [22]
where we study the bosonic version of transformation Eq. (9). This led to the definition of the
qudit Unruh channels as the bosonic counterpart of the qudit Grassmann channel. One of the
resolved problems is the quantum capacity of the qudit Unruh channels which we can compare
with the Grassmann channels. As a result we find that quantum capacities for both channels
converge to zero as we approach the infinite acceleration limit. So from the viewpoint of quan-
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FIG. 3: Quantum capacity for the Grassmann channel (on the left) and the Unruh channel (on the right)
taken from [22]. The parameters w = tan2 r and z = tanh2 r are chosen to compare the capacities for
the same proper acceleration. The capacity of the Unruh channel is in general higher but importantly
for the infinite acceleration limit (w = z = 1) both capacities are equal zero. The curves follow the
order in the legend.

tum Shannon theory entangled resources based on bosons or fermions are equally useful. The
only difference is in the capacity value for a finite acceleration. To fairly compare the capacities
we rewrite Eq. (58) as a function of w = tan2 r. Using cos2 r = 1/(1 + tan2 r) we get

Q(Gd) =
1

d

(

1

1 + w

)d−1 d
∑

k=1

k

(

k

d

)

log k
(

wd−k − wk−1
)

. (67)

This expression can be directly compared to the one we get for the qudit Unruh channel Ud [22]

Q(Ud) =
1

d
(1− z)d+1

∞
∑

k=1

k

(

d+ k − 1

k

)

log
d+ k − 1

k
zk−1. (68)

The Unruh channel outperforms the Grassmann channel for low-dimensional inputs as we can
see in Fig. 3. Due to the local similarities between the Rindler and Schwarzschild spacetime
(explicitly spelled out, for example, in [34]) the similar conclusion regarding the quantum
capacities also holds in the black hole scenario.

Grassmann channels and transpose-depolarizing channels

Let us define the family of qudit transpose-depolarizing channels [16].

Definition 16. Let T : H(Cd) → H(Cd) be a map defined as

T (σ) = tσ̄ + (1− t)1/d (69)

acting on normalized density matrices σ. The bar denotes complex conjugation in a given basis
and the map is a quantum channel in the following interval of t:

− 1

d− 1
≤ t ≤ 1

d+ 1
. (70)

Remark. The transpose-depolarizing channel for t = −1/(d− 1) is known as the d-dimensional
Werner-Holevo channel [36].
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Lemma 17. The complementary channels of the Gd,2 channels presented in Definition 4 are
the d-dimensional Werner-Holevo channels.

Proof. We take the corresponding part of the isometry output Eq. (19c) for k = 2 and rewrite
it as

Φ
(2)
AC = cosd−1 r tan r

d
∑

j=1

d−1
∑

i=1

i6=j

(±)iβi |0 . . . 1j . . . 1i . . . 0〉A |0 . . . 1j . . . 0〉C

≡
d
∑

j=1

d−1
∑

i=1

i6=j

(±)iβi |[ji]〉A |j〉C .
(71)

Note that |[ji]〉 = − |[ij]〉 so we can further write (leaving out the irrelevant trigonometric
functions)

Φ̃
(2)
AC =

d
∑

j=1

d−1
∑

i>j

|[ji]〉A
(

− βi |j〉+βj |i〉
)

C
. (72)

Considering an input pure state |ψ〉A′ =
∑d
l=1 βl |l〉A′ the isometry of Gd,2 reads

VGd,2
=

d
∑

j=1

d−1
∑

i>j

(

− δil |[ji]〉A |j〉〈l|CA′ + δjl |[ji]〉A |i〉〈l|CA′

)

. (73)

Tracing over A followed by normalizing by
√

1/
(

d−1
k−1

)

=
√

1/(d− 1) and changing the overall

sign leads to
(

d
2

)

Kraus operators of the form

Kij =
√

1

d− 1

(

|j〉〈i| − |i〉〈j|
)

, (74)

where 1 ≤ i < j ≤ d. These are well known as the Kraus operators for the d-dimensional
Werner-Holevo channels [36]. �

This result brings us two interesting points. As mentioned earlier, in [10] we study the
capacity region of the bosonic version of the transformation from Eq. (9) known as the qudit
Unruh channel [22]. One of the results is the characterization of the complementary channels
of the Unruh channel. Their structure is also block-diagonal as in the present case and the
first nontrivial complementary block for each d is the transpose-depolarizing channel Eq. (69)
for t = 1/(d + 1). This is a peculiar observation and raises a number of questions. First of
all, why for fermions we get the transpose-depolarizing channel from one end of the allowed
interval Eq. (70) and for bosons from the other end? Also, does some sort of intermediate
statistics interpolating between bosons and fermions correspond to the whole interval? One of
the obvious possibilities are anyons whose appearance is not limited just to the two-dimensional
world [37].
The identification of the d-dimensional Werner-Holevo channel also implies that the Grass-

mann channels do not belong to the class of Hadamard channels [10, 11] – the channels whose
complementary channel is entanglement-breaking. The reason is that the Werner-Holevo chan-
nels are known not to be entanglement-breaking. The transpose-depolarizing channels are
entanglement-breaking for −1/(d2− 1) ≤ t [16]. Henceforth, at least one of the complementary
blocks of all Grassmann channels has negative partial transpose.
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VII. CONCLUSIONS

We have introduced a new class of quantum channels to the group with computable classical
and quantum capacities, the Grassmann channels. Such channels are rare in quantum Shannon
theory since the calculation of the classical and quantum capacities requires an optimization over
an infinite number of channel uses. The Grassmann channels’ isometric extension is physically
well motivated and stems from the Bogoliubov transformation which preserve the canonical
anticommutation relations corresponding to the Fermi-Dirac statistics.
In order to determine the quantum capacity of the Grassmann channels, we have shown that

these channels are degradable and have explicitly calculated the degrading map. Combining
this with the result that the Grassmann channels are covariant we were able to give a closed
form for the quantum capacity. A different technique was used in order to calculate the classical
capacity of the set of Grassmann channels. We showed that each block, in the block diagonal
form of the matrix, had a particular form [17] which enabled the calculation of their minimum
output entropy. Exploiting this result allowed us to calculate the classical capacity of the
Grassmann channels.
To appreciate the capacity results from the physical point of view we compare the Grassmann

channels with the Unruh channels studied elsewhere [11, 22]. They share a close analog to the
Grassmann channels in the sense that their isometric extension appears formally identical. The
difference is that for the Unruh channels the isometry is built upon the operators obeying the
canonical commutation relations (relevant to the Bose-Einstein statistics) inducing a completely
different class of channels. In particular, the Unruh channels belong to the set of Hadamard
channels - the channels whose complementary channels are entanglement breaking. The set of
Grassmann channels do not fall in this class. This is the first example to our knowledge of a
set of channels that do not belong to the Hadamard class that have a computable and at the
same time nonzero classical and quantum capacity.
The main physical consequences also come from the comparison between the fermionic and

bosonic case. One of the discussed physical motivations for investigating this type of channel is
that both the fermionic and bosonic Bogoliubov transformation occurs in the study of particle
production in uniformly accelerated frames. Fermionic entanglement between two parties who
originally share a maximally entangled state exists to an extent even in the limit of infinite
acceleration of one of the participants. Contrary to the fermionic case, bosonic entanglement
vanishes in the infinite acceleration limit. Based on this observation it is believed that there is
a difference between these types of resources. The result of our work suggests that at least for
quantum communication purposes there is no difference whatsoever. The Unruh channel does
demonstrate a greater quantum capacity than the Grassmann channel when the acceleration
parameter is small, however in the infinite acceleration limit, both quantum capacities tend to
zero.
There exists another connection between the Unruh and Grassmann channels. Both channels

are direct sums of other quantum channels and so are their complementary channels. The first
non-trivial block of the complementary channel for a given dimension d belongs to the family of
qudit transpose-depolarizing channels which is a single-parameter family of quantum channels.
Interestingly, this holds both for the Grassmann channels and Unruh channels. The difference is
that the complementary block of the Unruh channel corresponds to the transpose-depolarizing
channel with the parameter at the upper limit of the allowed parameter interval, while the
first nontrivial complementary block of the Grassmann channel corresponds to the lower limit
of the allowed interval (the Werner-Holevo channel). This immediately raises the question:
Why does the fermionic case occupy one end of the interval while the bosonic case occupy the
other? Perhaps and even more interestingly, could there be intermediate statistics model (like
anyons, for example) that would explain intermediate values of the interval? Another direction
in which future research could be done is to consider the case of coupled fermions with a
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more active role of the spin variable and one can ask how the additional spin variable alters
the Grassmann channels and whether the classical and quantum capacity is still calculable.
Finally, the implications of the results here obtained to quantum information protocols inspired
by Cooper pairs in solid state or atomic physics scenarios deserve an independent detailed study.
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Appendix A: Geometric picture of the sl(d,C) Lie algebra representations

In the sl(d,C) case there may be several mutually commuting operators. A maximal linearly-
independent commuting set of operators of a (semi-simple) Lie algebra is called a Cartan sub-
algebra. Once a Cartan subalgebra has been chosen we can use the common eigenvectors to
label the basis vectors of an irreducible representation.

Definition 18. An r-tuple α = (α1, . . . , αr) of complex numbers is called a root if: (i) not all
the αi are zero, (ii) there is an element Eα of sl(d,C) such that

[Hi, Eα] = αiEα. (A1)

The set {Hi, Eα} is called the Cartan-Weyl basis [35]. The Cartan subalgebra of sl(d,C) has
dimension r = d− 1; we say that the rank of the Lie algebra is r. We write H = (H1, . . . , Hr)
for the Cartan subalgebra generated by the elements {H1, . . . , Hr} of the Lie algebra; these
elements are assumed to be independent. Among all the roots there is a class of special roots
called simple roots.

Definition 19. A root is called a simple root if it cannot be written as a linear combination of
other positive roots.

Definition 20. If ρ (where ρ : sl(d,C) → GL(V ) for some V ) is a representation of sl(d,C)
then a r-tuple µ = (µ1, . . . , µr) of complex numbers is a weight for ρ if there is a nonzero vector
ψ ∈ V such that ψ is an eigenvector of each Hi with eigenvalue µi.

http://arxiv.org/abs/quant-ph/0212025
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If µ is a weight and ψ a weight vector for ρ and α is a root then

ρ(Hi)ρ(E)ψ = (µi + αi)ρ(E)ψ. (A2)

In short, E changes all the eigenvalues of the Cartan operators and it creates a new weight
vector (or kills the weight vector). The root is a vector in the weight space that points in
the direction in which the weights are changing. The E operators are called shift or raising
and lowering operators. Roughly speaking, the positive roots correspond to raising operators
while the negative roots to lowering operators. We classify the irreducible representations by
the highest possible value of the weight. For general semi-simple Lie algebras we do exactly the
same thing once we have a suitable order on the weights in order to define the right notion of
highest weight.
A special example of the Cartan-Weyl basis is the Chevalley-Serre basis [35]. Two aspects

make this basis special. (i) The step operators are associated to simple roots and (ii) the
normalization is chosen such that the roots are integers. Unless explicitly stated we work in
this basis due to its accessible geometric interpretation.
To give the operators a geometric interpretation we will work with a specific matrix repre-

sentation of the sl(d,C) algebra. Let us define Eij , where 1 ≤ i 6= j ≤ d, as the matrix having
one where the i-th row and the j-th column intersect and the rest are zeros. Furthermore we
define a diagonal matrix Hi in which the i-th diagonal entry is 1, the (i+ 1)-th diagonal entry

is −1 and the rest are zeros. If we assume j = i + 1 the following set {Hi, Eij , E
†
ij} forms the

Chevalley-Serre basis for sl(d,C). More explicitly, for d = 2 we get

H1 =

(

1 0
0 −1

)

(A3a)

E12 =

(

0 1
0 0

)

(A3b)

E†
12 =

(

0 0
1 0

)

. (A3c)

Therefore in this basis we have

[Hi, Eij ] = 2Eij (A4a)

[Hi, E
†
ij ] = −2E†

ij. (A4b)

The simple roots are elements of a vector space dual to the one spanned by elements of the
Cartan subalgebra.
This structure opens the door to an insightful geometric picture in terms of the so-called root

space diagram. The dual space will be called the space of roots. For the sl(d,C) Lie algebra the
space is (d − 1)-dimensional and the simple root vectors defined as an r-tuple of simple roots
form a non-orthogonal basis. Let us call the basis spanning the space of roots the root basis.
We are aware of the overuse of the expressions root and root vectors. The terminology is not
stabilized and differ in various textbooks. Also, the root space diagrams are sometimes called
weight diagrams. It can be shown that each consecutive simple root vectors subtend the angle
2π/3. We rewrite Eq. (A1) as

[Hi, Eij ] = (µ
(i)
i − µ

(j)
i )Eij , (A5)

where µ
(j)
i are called fundamental weights. The word fundamental reflects the fact that we are

dealing only with simple roots. We explicitly rewrite Eq. (A2) as the spectral decomposition

Hi =

d
∑

j=1

µ
(j)
i |ψj〉〈ψj |,
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FIG. 4: (a) We illustrate the spaces of roots for sl(2,C) and sl(3,C). The basis vectors are simple roots
and are indicated by αi. For the weights (vertices) we explicitly write down their coordinates in this
basis. We can read off the generators of the Cartan subalgebra from the weights. (b) It is sometimes
helpful to introduce an overcomplete basis. The position of α3 reflects the relation H3 = H1 +H2 for
H3 in Eq. (A6) and it is not a simple root.

where j labels the j-th component of a d-component spinor |ψ〉. The important role played by
the (fundamental) weights is that they are coordinates of the eigenvectors in the space of roots.
Fig. 4a illustrates the situation for d = 2 and d = 3. Hence for each fundamental representation
of sl(d,C) there is d points each representing an eigenvector ψj .
What about the role played by the shift operators? They have a precise geometric interpre-

tation as well. All points of the sl(d,C) fundamental representations are interconnected. The

operator responsible for a transition from site |ψi〉 to |ψj〉 is the operator Eij or E†
ij for the

opposite direction. It also follows from Eqs. (A4) that each segment connecting two neighboring
spinors has length two.
The fundamental representations of sl(d,C) algebra contain r = d − 1 independent sl(2,C)

subalgebras each satisfying Eqs. (A3). However, since the root space diagram is a complete

graph there are in total
(

d
2

)

linearly dependent sl(2,C) subalgebras corresponding to the num-
ber of edges. The diagonal generators of the ‘additional’ sl(2,C) subalgebras are constructed
similarly to the Hi’s above. The only difference is that 1 and −1 on the diagonal are separated
by one or more zeros. As an example (d = 3), the remaining diagonal generator is

H3 =





1 0 0
0 0 0
0 0 −1



 . (A6)

Therefore, the rank of the weight vectors equals three and it correspond to introducing an
overcomplete root basis, see Fig. 4b. Note that H3 does not correspond to a simple root.
Indeed, the axis α3 in Fig. 4b can be obtained by a linear combination of α1 and α2 which are
both positive root vectors.

Completely antisymmetric representations of the sl(d,C) algebra

For the purpose of this article we are interested in particular higher-dimensional representa-
tions of sl(d,C) - the completely antisymmetric representations. The lowest-dimensional anti-
symmetric representation is formed as the dual of the fundamental representation

ψj1 = εj1...jdψj2 . . . ψjd , (A7)
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where εj1...jd is a completely antisymmetric tensor and 1 ≤ j1, . . . , jd ≤ d. The dual
representation (of the fundamental representation only!) coincides with its complex conju-
gate representation. We get the dual representation from the fundamental representation by
Gsl(d,C) 7→ −Ḡsl(d,C) where Gsl(d,C) are all generators of sl(d,C). The eigenvalues remain the
same and the weight vectors just change the sign. Hence, the root space diagrams are the same
and they are just, vaguely speaking, pointing in the opposite direction. The interpretation of
the edges and points follows the fundamental case. The difference lies in the fact that the
antisymmetric representations of sl(d,C) are carried by d-component antisymmetrized spinors.
Higher-dimensional completely antisymmetric representations of the sl(d,C) algebra are

formed in an intuitive way. First of all, the dimension of the spaces of roots remains the
same as well as the number of algebra generators. The generators clearly satisfy the same com-
mutation relations since it is just a different representation of the same sl(d,C) algebra. The
root diagram ‘is grown’ in the direction of roots but this process cannot go on forever. The
spinors carrying the higher-dimensional representation are completely antisymmetrized and so
there are only

(

d
k

)

states in the k-th completely antisymmetric representation of sl(d,C) where
1 ≤ k ≤ d (formally, we should also include the trivial representation, k = 0). Fig. 5 illustrates

FIG. 5: (a) The left plot is the dual representation to the fundamental representation of sl(3,C)
where ψi are completely antisymmetric spinors from Eq. (A7). The middle plot is the second-lowest
(k = 2) completely antisymmetric representation of sl(3,C). Due to the antisymmetrization procedure
(indicated by the square brackets) the vertices do not correspond to any state. (b) The second lowest
(k = 2) completely antisymmetric representation of sl(4,C). The antisymmetrization procedure leaves
us with a six-dimensional space (the inner octahedron) with the spanning basis indicated. The spinors
are written in the Fock basis following Definition 1. The sign attached to an edge indicates the sign
induced by the (fermionic) sl(2,C) shift operator when applied on spinors the edge connects.

the growth of these representations for d = 3 and d = 4. The connection to the fermionic states

brought in Definition 1 is straightforward: The state |F 〉 = |n1 . . . nd〉 for which
∑d

i=1 ni = k
holds is an antisymmetric spinor carrying the k-th completely antisymmetric representation of
sl(d,C).
We find the matrix form of the generators of all higher-dimensional completely antisym-

metric sl(d,C) algebra representations. Because of the complete antisymmetry condition there
are only segments connecting two neighboring points. Therefore only the lowest-dimensional
representation of the sl(2,C) subalgebra appears in the construction. However, because for a
given edge there might be more segments parallel to it, the sl(d,C) subalgebra generators are
formed by a direct sum of the sl(2,C) subalgebras. The reason for a direct sum is that they, by
construction, act on mutually orthogonal subspaces. Finally, for every d there is only r = d− 1
linearly independent directions (or, said otherwise, only r = d − 1 independent sets of parallel
lines) so the number of generators equals the number of independent sl(2,C) subalgebras and
they manifestly satisfy the commutation relations for sl(d,C). Note that it does NOT mean
that the completely antisymmetric representations of sl(d,C) are direct sum representations.
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As a matter of fact, they are irreducible. The direct sum subalgebras we have created do not
themselves span mutually orthogonal subspaces. For illustration see Fig. 5b where any pair of
parallel segments ‘share’ spinors with some other pair of parallel segments.
The only ambiguity lies in the sign of the shift operators. We can see from Eq. (A3) that

switching their sign does not spoil the commutation relations. Let us illustrate the ambiguity on

an example from Fig. 5b. The transition from state |0011〉 to |0101〉 is provided by a†2a3 |0011〉 =
|0101〉 meanwhile to get from |0011〉 to |0110〉 we acquire a minus sign a†2a4 |0011〉 = − |0110〉.
Not accidentally, the operators a†iaj , a

†
jai are the fermionic representation of the shift operators

of the sl(2,C) algebra [35]. They play an important role in the proof of Theorem 5 where the
fermionic representation is properly introduced.
So far we talked about a direct sum of several sl(2,C) subalgebras but for the sake of proof

of Theorem 5 we need to specify how many summands there actually is. This transforms
into the question how many different sl(2,C) subalgebras corresponding to a chosen direction

exist. Let the direction be chosen by the step operators {a†2a1, a†1a2}. Then for a given d and

k there is
(

d−2
k−1

)

parallel segments in this particular direction for the k-th lowest completely

antisymmetric representation of sl(d,C). We get this number by a combinatorial argument: We
have a spinor with d positions where the first two slots are occupied. For the lowest-dimensional
representation (k = 1) the rest is occupied by zeros and therefore for the k-th lowest dimensional
representation there is (k − 1) ones to occupy the remaining (d − 2) free spaces. By a simple
permutation argument we can see that this holds for any of the (d − 1) linearly independent
directions. For the example in Fig. 5b we indeed get two parallel segments for each of the three
independent directions.
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