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We derive the Noether currents and charges associated with an internal galilean invariance π(x) →
π(x)+bµx

µ—a symmetry recently postulated in the context of so-called galileon theories. Along the
way we clarify the physical interpretation of the Noether charges associated with ordinary Galileo-
and Lorentz-boosts.

There has been recent interest in galileon theories. In
their simplest version [1], these correspond to an effective
field theory for a Goldstone boson π that is invariant
under internal Galilean transformations

π(x) → π(x) + bµx
µ . (1)

This theory has a number of interesting and novel field-
theoretical properties, at the classical level as well as at
the quantum-mechanical one [1–4], which make it po-
tentially relevant for IR-modifications of gravity [1], for
consistent violations of the null energy condition within
QFT [5], and for alternatives to slow-roll inflation [6–8].
Several generalizations of the minimal galileon have been
proposed, and some of them will be briefly touched upon
in the following.
Here we will derive the conserved local currents and

global charges that the Noether theorem associates with
the symmetry (1). However, it is instructive to con-
sider first the conservation laws associated with ordinary
Galilean invariance, that is with the symmetry

~x → ~x+ ~v0 t , (2)

because their interpretation presents some subtleties. We
will briefly discuss the analogous case of Lorentz invari-
ance below. The position ~x can be a dynamical degree
of freedom, like for a non-relativistic mechanical system
made up of point particles and parameterized by their
positions, or an integration variable, that is an argument
for fields in a field theory. Typically systems that are
galilean invariant are also translationally invariant—for
instance this is guaranteed if the system is galilean invari-
ant and time-translationally invariant—so that we also
have a symmetry

~x → ~x+ ~x0 . (3)

Now we apply the standard derivation of the Noether
theorem. Let us start with the symmetry (3). Because
of it, the variation of the action under an infinitesimal
weakly time-dependent translation with parameter ~x0(t)

must start at order ~̇x0:

δS ≃

∫

dt ~̇x0 · ~P . (4)
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On a solution to the equations of motion the action is sta-

tionary, which implies the conservation of ~P . As is well

known, the charge ~P associated with spatial translations
is the total momentum of the system.
Now, the fact that the system is also invariant under

(2) implies that, in fact, δS in (4) should start at order

~̈x0,

δS ≃ −

∫

dt ~̈x0 · ~Ξ (5)

(the minus sign upfront is for notational convenience).

This is equivalent to saying that ~P in (4) is itself a total
time derivative,

~P = ~̇Ξ , (6)

which combined with the conservation of ~P , implies that

on all solutions ~Ξ is a linear function of time:

~Ξ(t) = ~Ξ0 + ~P t . (7)

~Ξ(t) is nothing but the center of mass position ~Xcm times
the total mass of the system. Eq. (7) is the global con-
servation law associated with Galilean invariance. To ex-
plicitly check this, let’s perform a galilean transformation
(2) with mildly time-dependent ~v0(t). We have

δS ≃

∫

dt ~̇v0 · ~Q , (8)

implying conservation of the quantity ~Q on a solution.

We can express ~Q in terms of ~P and ~Ξ, by noticing that
the time-dependent Galilean transformation we are per-
forming can also be viewed as a time dependent transla-
tion with parameter ~x0(t) = ~v0(t)t. From (5) and (6) we
have

δS ≃

∫

dt
(

~̇v0t+ ~v0
)

· ~̇Ξ (9)

which compared with (8) yields

~Q = ~P t− ~Ξ . (10)

The conservation of ~Q is thus equivalent to eq. (7), with
~Ξ0 = − ~Q. Therefore, we see that the conservation law
associated with Galilean invariance is more conveniently
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rephrased as the statement that there is a quantity—the
center of mass position—that evolves linearly in time.
This is in addition to, and not a consequence of, the

conservation of the total momentum. Of course if ~P is
conserved, we can always say that ~P t evolves linearly

in time. But eq. (7), with ~Ξ defined in (5), is a much

stronger statement. It says that there is a quantity ~Ξ(t)
that is a local functional of the dynamical variables, with
no explicit time dependence, that happens to evolve lin-
early in time. It is as strong as an ordinary conservation
law, whereby a local functional of the dynamical variables
happens to be constant in time. To be completely clear,
by ‘local functional’ we mean, in the point-particle me-
chanical case, a function of the particles’ coordinates and
their time derivatives, all evaluated at the same time, and
in the field theory case, the space integral of a local den-

sity. Indeed, the standard expressions for ~Ξ for Galilean
mechanics is

~Ξmech.(t) =
∑

a

ma~xa(t) (11)

To convince ourselves that the linear evolution of ~Ξ
and the conservation of ~P are really independent physical
laws, we can consider a mechanical system that is invari-
ant under translations but not under galilean boosts, like
for instance one made up of many point-particles inter-
acting via a two-body potential and with non-Newtonian
kinetic energies:

S =

∫

dt
∑

a

ma

(

1
2 ~̇x

2
a +α ~̇x 4

a

)

−
∑

a<b

Vab(|~xa−~xb|) . (12)

The system is invariant under translations, and thus the
total momentum

~P =
∑

a

ma~̇xa

(

1 + 4α ~̇x 2
a

)

(13)

is conserved. Nevertheless, for nonzero α the system is
not invariant under galilean transformations, and as a

consequence ~P is not associated with the time derivative
of a collective coordinate—there is no local combination
of ~xa and ~̇xa that evolves linearly in time. The conser-

vation of ~P does not imply that the system as a whole
moves at constant speed. It only does for Galilean (or
Lorentz-) invariant theories.
Of course all of the above discussion can be straight-

forwardly generalized to the relativistic case. Indeed for
a Lorentz-invariant field theory the Noether charges as-
sociated with the Lorentz boosts are (see e.g. [9])

J0i = tP i −

∫

d3xT 00xi , (14)

where T µν is the (symmetric) stress-energy tensor. They
are close relatives of the angular momentum, but unlike
it, they are usually glossed over. From the above discus-
sion their physical interpretation is clear: their conserva-
tion implies the existence of a collective coordinate

~Ξ(t) =

∫

d3xT 00(x) ~x ≡ M ~Xcm(t) (15)

that evolves linearly with time.
We can now move on to the galileon case, and run

an analogous derivation. The theory enjoys an internal
Galilean invariance (1) as well as a more conventional
shift invariance

π(x) → π(x) + c . (16)

The latter yields a standard Noether current jµ, which
we get by performing a weakly x-dependent infinitesimal
shift:

δS ≃

∫

d4x∂µc j
µ . (17)

However, because of the symmetry (1), this variation
should in fact start at second order in derivatives of c(x):

δS ≃ −

∫

d4x∂µ∂νc ξ
µν , (18)

so that the current jµ is a total divergence:

jν = ∂µξ
µν . (19)

(From now on, without loss of generality, we take ξµν to
be symmetric.) The global charge associated with jµ is
of course

Q =

∫

d3x j0 . (20)

Now, the π equation of motion is equivalent to the con-
servation of jµ,

∂µj
µ = ∂µ∂νξ

µν = 0 (21)

which implies that the spacial integral of ξ00 evolves lin-
early in time—it is the analogue of our center-of-mass
coordinate above:

∂2
0

∫

d3x ξ00 = 2∂0

∫

d3x∂iξ
0i +

∫

d3x∂i∂jξ
ij = 0 (22)

Moreover, its time-derivative is the shift Noether charge
Q—the analogue of the total momentum:

∂0

∫

d3x ξ00 =

∫

d3x
(

∂µξ
0µ − ∂iξ

0i
)

=

∫

d3x j0 (23)

In conclusion, there is a local functional of the fields

Ξ(t) ≡

∫

d3x ξ00(x) (24)

that on all solutions happens to evolve linearly in time,

Ξ(t) = Ξ0 +Q t . (25)

Like in our original example, this statement can be seen
as a consequence of the internal galilean invariance (1),
but there is more. After all, our galilean symmetry has
four parameters, and here we discovered just one global
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conservation law. There should be four locally conserved
currents, and four associated global charges. To iden-
tify them, we run Noether’s theorem with a weakly x-
dependent galilean shift (1), with parameter bµ(x). The
variation of the action starts at order ∂b:

δS ≃

∫

d4x∂µbα J µ (α) ; (26)

α labels the symmetry, and to avoid confusion for the mo-
ment we use a different notation than for Lorentz indices.
We have four conserved currents J µ (α), which we can
relate to jµ and ξµν using the same trick as above. We
think of our x-dependent galilean transformation as an
x-dependent shift (16), with parameter c(x) = bµ(x)x

µ.
By equating (26) with (18) we thus get

J µ (α) = ξµα − xαjµ . (27)

These are the four Noether currents associated with the
symmetry (1). They are conserved on the eom,

∂µJ
µ (α) = ∂µξ

µα − ∂µ
(

xαjµ
)

= −xα∂µj
µ , (28)

because jµ is. The associated global charges are

Qα =

∫

d3x ξ0α − xαj0 , (29)

or more explicitly:

Q0 =

∫

d3x ξ00 − tQ = Ξ(t)− tQ (30)

Qi =

∫

d3x
(

ξ0i − xij0
)

(31)

The conservation of Q0 is equivalent to the linear evo-
lution of Ξ(t) we discovered above. The conservation of
~Q is a more traditional conservation law, in that it does
not involve an explicit time dependence. Notice that the

second piece in ~Q is the total charge dipole of the system.
In summary, we have five locally conserved currents

jµ and J µ (α), and five corresponding global charges Q
and Qα. As an almost trivial example, we can consider
the simplest system with internal galilean invariance—
the free massless scalar:

S = −

∫

d4x 1
2 (∂π)

2 (32)

The various local quantities we have defined above are

jµ = −∂µπ , ξµν = −ηµν π , (33)

J µ (α) = −ηµα π + xα∂µπ , (34)

which yield the conserved charges

Q =
∫

d3x π̇ (35)

Q0 =
∫

d3xπ − t q (36)

~Q = −
∫

d3x π̇~x (37)

The first is just the usual charge associated with shift
invariance. The third is the total dipole moment of that
charge. The fact that it is conserved is here a trivial con-
sequence of the equation of motion (like all conservation
laws, to some extent), but it is nonetheless a non-trivial
statement (unheard of, at least). And so is the conser-
vation of Q0, which implies that the space integral of π
grows linearly in time.
We can now derive explicit expressions for the cur-

rents we have defined, in the case of a generic galileon
Lagrangian. The Lagrangian is a function of first and
second derivatives of π,

L = L(∂π, ∂∂π) , (38)

with suitable Lorentz contractions to ensure galilean in-
variance [1]. The shift current jµ is readily determined,
by noticing that under an infinitesimal shift (16) with
x-dependent parameter c(x), we have

δS =

∫

d4x
∂L

∂(∂µπ)
∂µc+

∂L

∂(∂µ∂νπ)
∂µ∂νc (39)

which compared with (17) yields

jµ =
∂L

∂(∂µπ)
− ∂ν

∂L

∂(∂µ∂νπ)
. (40)

To compute the currents associated with galilean shifts,
eq. (27), we need first to determine ξµν , which is de-
fined simply as a symmetric tensor with divergence jµ—
eq. (19). The second piece in (40) is manifestly the di-
vergence of a symmetric tensor. To rewrite the first piece
also as a total divergence requires more work. The rea-
son is that the Lagrangian is not invariant under galilean
shifts (1)—only the action is. That is, the Lagrangian
is invariant only up to a total derivative, which means
that the variation of the action under an infinitesimal x-
dependent shift is not manifestly of the form (18). To
proceed, we need the explicit expression for the galilean
invariants. At (n+ 1)-st order in π we have [1]

Ln+1 = T µ1ν1µ2ν2...µnνn ∂µ1
π∂ν1π ∂µ2

∂ν2π . . . ∂µn
∂νnπ
(41)

where T is a tensor whose explicit form we will not need.
Suffice it to say that it is symmetric under exchanging
any two (µν) pairs, and antisymmetric under exchanging
any two like indices (e.g., of the ν type) belonging to
different (µν) pairs. The latter symmetry ensures that
the derivative of Ln+1 w.r.t. ∂π is a total divergence:

∂Ln+1

∂(∂µπ)
= ∂ν2 T

µνµ2ν2...µnνn ∂νπ ∂µ2
π . . . ∂µn

∂νnπ +

∂µ2
T νµµ2ν2...µnνn ∂νπ ∂ν2π . . . ∂µn

∂νnπ (42)

as predicted. We can simplify this expression, by relat-
ing it to the derivative of Ln+1 w.r.t. ∂∂π. By swapping
ν with ν2 in the first term’s T and with µ2 in the sec-
ond term’s T , and by using the symmetry of T under
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exchanging whole (µν) pairs, we get

∂Ln+1

∂(∂µπ)
= −

2

(n− 1)
∂ν

∂Ln+1

∂(∂µ∂νπ)
. (43)

Plugging this into eq (40) we thus get the full n-th order
contributions to ξµν :

ξ
µν
n+1 = −

n+ 1

n− 1

∂Ln+1

∂(∂µ∂νπ)
. (44)

Notice however that this formula only holds when the
galilean invariants Ln+1 are written as in eq. (41), with T
obeying the aforementioned symmetry properties. This
is not the case for all the invariants explicitly displayed in
ref. [1], where an integration by parts was performed on
L3 to rewrite it in a more compact form, thus effectively
reshuffling its dependence on ∂π with that on ∂∂π. The
‘canonical’ form for all the invariants relevant in 4D can
be found instead in ref. [10] [14]. With this qualification
in mind, the currents associated with internal galilean
invariance therefore are

J
µ (α)
n+1 =

(

xα∂ν − n+1
n−1δ

α
ν

) ∂Ln+1

∂(∂µ∂νπ)
− xα ∂Ln+1

∂(∂µπ)
. (45)

This formula cannot be applied to the lowest-order invari-
ants, L1 = π and L2 = − 1

2 (∂π)
2—in deriving it we have

been assuming that Ln+1 depends non-trivially both on
∂π and on ∂∂π, and that it does not depend on π. For
L2, we already gave the relevant expressions in (33, 34).
The situation in trickier for L1. By applying Noether’s
theorem to it and using the identities 1 = 1

4∂µx
µ and

xµ = 1
2∂

µx2, we discover that its contributions to the
shift current and to the galilean one are

j
µ
1 = − 1

4x
µ, J

µ (α)
1 = − 1

2η
µαx2 . (46)

The global charges (20, 30, 31) thus acquire extra pieces
explicitly proportional to t and to t2. However, in the
presence of the tadpole L1 = π any solution will have
non-trivial boundary conditions at spacial infinity. Like
in the case of spontaneous symmetry breaking, this will
generically yield divergent global charges, thus making
their conservation useless. On the other hand the lo-
cal current conservation will still be perfectly valid. For
certain particularly symmetric solution, like the deSit-
ter ones discussed in [1], the dynamics of perturbations

about such asymptotically non-trivial solutions will still
be described by a galileon theory, this time without the
tadpole of course. In such a case the global charges
we derived can be used directly for the perturbations—
provided one uses the perturbations’ Lagrangian in our
formuale.

The generalization of our results to multi-galileon the-
ories [10–12] should be straightforward. Perhaps more
interesting is the generalization to the so called IR-
completions of the galileon, i.e. to theories that reduce
to the galileon in some appropriate limit—typically at
small distances and at small field values—and that away
from that limit are invariant under a different symmetry
group [1]. So far two possibilities have been proposed—
promoting the galileon symmetry group (spacetime
Poincaré plus internal shifts plus internal galilean trans-
formations) to the conformal group SO(4, 2) or to the
five-dimensional Poincaré group ISO(4, 1) [1, 13]. The
generalization of our results to the latter case should be
straightforward—aswas generalizing the analogous state-
ments we have for ordinary Galilean invariance to the
Lorentz-invariant case. The reason is that in all these
cases the transformation is linear in the relevant coordi-
nates. As clear from our derivation, this is the crucial
ingredient for our results. For instance, it never really
mattered whether our symmetries acted linearly or non-
linearly on the dynamical variables (point particle posi-
tions or fields)—the existence of a local functional that
grows linearly in time follows purely from the existence
of a symmetry that is linear in time. The conformal
group case is more complicated. There, the π shift and
galilean transformations get promoted to non-linearly re-
alized dilations and special conformal transformations [1]
[15]. At the infinitesimal level, the former are still linear
in xµ, thus yielding conservation laws similar to those we
discussed here. On the other hand, infinitesimal special
conformal transformations are quadratic in xµ. Among
the associated conservation laws, there will be one imply-
ing the existence of a local functional that grows quadrat-
ically with time.
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