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Higgs-induced spectroscopic shifts near strong gravity sources
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We explore the consequences of the mass generation due to the Higgs field in strong gravity
astrophysical environments. The vacuum expectation value of the Higgs field is predicted to depend
on the curvature of spacetime, potentially giving rise to peculiar spectroscopic shifts, named hereafter
“Higgs shifts.” Higgs shifts could be searched through dedicated multiwavelength and multispecies
surveys with high spatial and spectral resolution near strong gravity sources such as Sagittarius
A∗ or broad searches for signals due to primordial black holes. The possible absence of Higgs
shifts in these surveys should provide limits to the coupling between the Higgs particle and the
curvature of spacetime, a topic of interest for a recently proposed Higgs-driven inflationary model.
We discuss some conceptual issues regarding the coexistence between the Higgs mechanism and
gravity, especially for their different handling of fundamental and composite particles.

PACS numbers: 14.80.Bn, 04.70.Bw, 04.50.Kd, 95.30.Sf

I. INTRODUCTION

One of the most important predictions of the standard
model of particle physics is the existence of a scalar parti-
cle, called the Higgs particle, responsible for the sponta-
neous symmetry breaking of the electroweak sector, pro-
viding a dynamical mechanism to generate the mass of
the intermediate vector bosonsW± and Z0 and of all fun-
damental fermionic matter fields [1]. The identification
of the Higgs particle is considered an important milestone
for the final validation of the standard model, and is the
primary focus of research planned at the highest energy
accelerators such as the Large Hadron Collider at CERN.

Although several implications of the Higgs coupling
to fermions have been discussed in detail, little atten-
tion has been devoted so far, to our knowledge, to the
fact that the Higgs particle should also play a crucial
role in gravitational phenomena, provided that it satis-
fies the equivalence principle. If the Higgs field is coupled
to the spacetime metric, its vacuum expectation value
should differ from the one in a flat spacetime. As dis-
cussed in Sec. II (see also [2] for a preliminary account),
different values for the mass of particles such as elec-
trons and protons should then occur in the same region,
with consequences for the energy levels of bound states
of spectroscopic relevance. Peculiar “Higgs shifts” in the
emission or absorption spectrum of atoms are expected,
and it should be possible to distinguish them amidst the
usual Doppler, gravitational, and cosmological shifts us-
ing multispecies spectroscopic analysis. In Sec. III we
discuss in more detail what we consider the most promis-
ing cases for the observation of Higgs shifts from super-
massive black holes near the Galactic center or primordial
black holes − in particular, molecular tracers and neu-
tral hydrogen in interstellar clouds and spectra of a star
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with high eccentricity, x-ray and γ-ray narrow lines. In
the conclusions, we comment on general features of the
Higgs-curvature connection, in particular potential insta-
bilities due to the metric backreaction and the difference
between Higgs physics and general relativity in dealing
with the elementary or composite nature of particles.

II. HIGGS FIELD IN CURVED SPACETIME

Quantum field theory in curved spacetime has been
studied for several decades for both noninteracting and
interacting fields (see [3] for an overview). The La-
grangian density for an interacting scalar field in a generic
curved spacetime gµν is written as:

L =
√
−g

[

1

2
gµν∂µφ∂νφ− 1

2
(µ2 + ξR)φ2 − λ

4
φ4

]

, (1)

where µ and λ are the mass parameter and the self-
coupling quartic coefficient of the scalar field, respec-
tively, g is the determinant of the metric gµν , and ξ is
a coefficient representing the coupling strength between
the scalar field φ and the Ricci scalar R. This last co-
efficient is considered as a free parameter in all models
analyzed so far, and only two prescriptions have been
suggested on theoretical grounds. The so-called minimal

coupling scenario simply assumes ξ = 0. This however
is unnatural if the scalar field represents a Higgs field −
leaving aside the doublet nature of the latter due to the
SU(2)L⊗U(1)Y gauge symmetry which will be irrelevant
in the following discussion. Indeed, if we believe that the
standard model at some energy will merge with gravita-
tion, we expect an interaction term between metric in-
variants and the scalar field. A minimal coupling instead
minimizes the crosstalk between the standard model and
the gravitational sectors, as in this case they will be only
related via the metric tensor-scalar field kinetic term in
Eq. (1). Moreover, this choice is not stable against quan-
tum corrections [4], as confirmed by studying renormal-
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ization group features [3]. Proper renormalization behav-
ior is instead fulfilled for a conformal coupling of ξ = 1/6,
which has been shown to be a fixed point of the renor-
malization group equations [3, 5, 6]. It would be highly
desirable to extract the Higgs-curvature coupling coeffi-
cient − or to obtain at least upper bounds − from the
phenomenological analysis of particle observables in the
presence of strong gravity, and from now on we discuss a
possible scenario towards this direction.
In the spontaneously broken phase the Higgs field de-

velops a vacuum expectation value v0 = (−µ2/λ)
1/2

in
flat spacetime, with the masses of the elementary par-
ticles directly proportional to v0 via the Yukawa coef-
ficients of the fermion-Higgs Lagrangian density term,
mi = yiv0/

√
2. In a curved spacetime instead, the effec-

tive coefficient of the Higgs field µ2 7→ µ2 + ξR, and the
vacuum expectation value of the Higgs field will become
spacetime dependent through the curvature scalar as:

v =

√

−µ2 + ξR

λ
≃ v0

(

1 +
ξR

2µ2

)

, (2)

where the last expression holds in a weak-curvature limit.
In the case of an elementary particle, such as the elec-

tron, provided that the Yukawa couplings yi are constants
yet to be determined − presumably from algebraic or
group-theoretic arguments of an underlying fundamental
theory embedding the standard model− the massmi will
be simply changed proportionally to the Higgs vacuum
expectation value, so that

δmi =
yi√
2
(v − v0) ≃

yiξRv0
23/2µ2

=
ξR

2µ2
mi. (3)

The situation for composite particles such as protons and
neutrons is more involved. We assume that their masses
are made of a flavor-dependent contribution proportional
to the masses of the three valence quarks determined by
the Higgs coupling, and a color-symmetrical term only
dependent on the quark-quark and quark-gluon interac-
tion, i.e. proportional to the QCD constant ΛQCD ≃ 300
MeV. The latter term dominates for lighter, relativis-
tic quarks constituting the valence component of pro-
tons and neutrons. Then, due to the universality of
the QCD coupling constant for different flavors and for
all gluons exchange, we can parametrize the proton and
neutron masses in terms of flavor-dependent and flavor-
independent parts as:

mp = (2yu + yd)v/
√
2 +mQCD,

mn = (yu + 2yd)v/
√
2 +mQCD, (4)

where yu and yd are the Yukawa couplings of the up and
down quarks, and mQCD is a flavor-independent contri-
bution related to the gluon binding energy, depending
on ΛQCD. For a generic atom of atomic number Z and
atomic mass A we then obtain:

M(A,Z) = Zmp + (A− Z)mn =

1√
2
[yu(Z +A) + yd(2A− Z)]v + AmQCD, (5)

where we have neglected to first approximation the con-
tributions of the electron mass, the electron-nucleus bind-
ing energy, and the nucleon-nucleon binding energy. The
purely QCD-dependent mass term should be independent
on the curvature of spacetime, since otherwise the gluon
could acquire a mass giving rise to the explicit break-
ing of the color symmetry. This is analogous to the case
of the other unbroken symmetry of the standard model,
U(1)em, which leads to the electric charge conservation
even in a generic curved spacetime. By considering the
Yukawa couplings yu and yd as determining the current
quark masses mu and md (with central values quoted
in the Particle Data Group of 2.25 and 5 MeV, respec-
tively), it is evident that for composite states of quarks
such as protons and neutrons and their combinations,
the flavor/Yukawa coupling independent term dominates,
and the effect of curved spacetime is therefore strongly
suppressed. Therefore, the possibility of detecting Higgs
shifts in atomic and molecular spectroscopy relies on the
fact that electronic transitions depend primarily on the
mass of the electron, while molecular transitions due to
vibrational or rotational degrees of freedom depend upon
the mass of the nuclei. While the electron mass is di-
rectly proportional to the Yukawa coupling to the Higgs
particle, the mass of the nuclei is mainly due to the con-
tribution of its proton and neutron constituents, which
in turn depends mainly on the color binding energy. We
therefore expect that molecular transitions will not be
affected by the Higgs shifts to leading order, unlike elec-
tronic transitions.
In the relevant example of atomic hydrogen spec-

troscopy, the spectral lines depend on the reduced mass
µH = memp/(me +mp) and ultimately, due to the large
mass ratio mp/me, on the electron mass. At the molec-
ular level, unless electronic transitions are excited, the
Higgs shift is shown to be negligible even in the most fa-
vorable case of pyramidal molecules such as ammonia, for
which tunneling provides exponentially higher sensitivity
to the change in masses of the atoms. In particular, in
the case of the nitrogen atom constituting the ammonia
molecule, we have:

MN =
21√
2
(yu + yd)v + 14mQCD, (6)

with the effective mass for the inversion spectrum of am-
monia equal to µNH3

= 3MHMN/(3MH + MN). For
Yukawa couplings of ye = 2.89× 10−6, yu = 1.27× 10−5,
yd = 2.83 × 10−5, and a pure gluonic contribution of
mQCD = 928 MeV, mass shifts of δµH/µH = 4 × 10−3

for hydrogen and δµNH3
/µNH3

= 3.4×10−5 for ammonia
are obtained for a variation of δv = 1 GeV around v0=
250 GeV (δv/v0 = 4 × 10−3). Therefore, it is clear that,
even if the ammonia inversion spectrum is in principle
more sensitive (by a factor ≃ 4 ÷ 5 as discussed in [7])
to the masses of its constituents than spectra from other
molecular and nonpyramidal species, under the hypoth-
esis that mQCD does not couple to the Higgs vacuum its
sensitivity does not match the one of atomic hydrogen.
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III. ASTROPHYSICAL CONSIDERATIONS

We now discuss qualitatively the possibility of observ-
ing Higgs shifts from astrophysical objects. This implies
a number of restrictive hypotheses both on the gravita-
tional sources and their coupling to the Higgs particle,
and on the detectability of the Higgs shift amidst other
sources of wavelength shift. As remarked above, it is
important to detect both spectroscopic lines due to elec-
tronic transitions and nuclear (vibrational or rotational)
transitions. This is difficult to achieve in the same region
of space from the same species for a gas at thermal equi-
librium, due to the large energy scale difference required
for effectively producing these excitations. A compara-
tive analysis of wavelength shifts from different species
seems then necessary. This should allow for discrimina-
tion from the Doppler shift and the purely gravitational
shift. The Doppler shift should be the same for molecules
belonging to the same comoving cloud, while the wave-
length shift expected from general relativity will act uni-
versally on all particles, so unlike the Higgs shift it will
not distinguish between fundamental particles and inter-
actions binding energies.
A further difficulty is that the Ricci scalar R is zero in

the case of symmetrical gravitational sources, which are
described by the Schwarzschild or the Kerr metric. We
will then make the hypothesis that the Higgs field couples
to another scalar invariant, for instance the Kretschmann
invariant defined as K1 = RµνρσR

µνρσ , where Rµνρσ is
the Riemann curvature tensor. This invariant plays an
important role in quadratic theories of gravity [8–10] and
more in general in modified f(R) theories [11]. In the case
of the Schwarzschild metric the Kretschmann invariant is
K1 = 12R2

s/r
6, with Rs the Schwarzschild radius Rs =

2GM/c2, and r the distance from the center of the mass
M . If we replace the Higgs-Ricci curvature coupling term
ξφ2R/2 in Eq. (1) with a Higgs-Kretschmann coupling
term we obtain the modified Lagrangian density

LK =
√
−g

[

1

2
gµν∂µφ∂νφ− 1

2
(µ2 + ξ′K

1/2
1 )φ2 − λ

4
φ4

]

,

(7)
in which the curvature-scalar interaction term appears

proportional to K
1/2
1 for dimensional reasons. This could

appear problematic in regions of weak spacetime curva-
ture where K1 → 0 since divergencies may occur, but
in the context of spacetime regions analyzed here this
coupling may be considered as arising from an effective
interaction Lagrangian valid for strong and static gravi-
tational fields. In this case the mass term µ2 maps onto

µ2 7→ µ2(1 + 2
√
3ξ′Rsλ

2
µ/r

3), (8)

where, in preparation for concrete estimates, we have
introduced the Compton wavelength associated to the
Higgs mass parameter µ as λµ = ~/(µc). Assuming a
Higgs mass of 160 GeV and a vacuum expectation value
of v0=250 GeV, we obtain a Compton wavelength for
the Higgs mass parameter λµ ≃ 2× 10−18 m: this is the

length scale with which the Kretschmann invariant has
to be confronted in any astrophysical setting.
If we imagine collecting electromagnetic signals emit-

ted from the innermost stable orbit of a Schwarzschild
black hole, assuming that the Kretschmann invari-
ant does not perturb significantly the stability analy-

sis of black holes, we obtain for r = 3Rs, K
1/2
1 =

(4/243)1/2R−2
s . The frequency shift is therefore inversely

proportional to the square of the Schwarzschild radius,
and it gets larger by considering rotating black holes due
to the smaller innermost stable orbits allowed in the Kerr
metric [12]. For supermassive black holes such as the
one located in our Galaxy, Sagittarius A∗ with an esti-
mated mass of M ≃ 2.6 × 106 solar masses [13–17], the
Schwarzschild radius is equal to Rs =≃ 8× 109 m. For a
solar mass black hole we obtain K1/2 = 1.5× 10−8 m−2.
In the two cases the product λ2

µK
1/2
1 is ≃ 8× 10−57 and

≃ 6×10−44 respectively, leading to tiny Higgs shifts quite
far from what can be achieved with any foreseeable sur-
vey unless quite large values of the Higgs-curvature cou-
pling parameter ξ′ are allowed. If we consider mini black
holes with a mass of the order of 1011 kg, which should
survive evaporation via quantum tunneling [18–20], we
obtain Rs ≃ 10−16 m, and δmi/mi ≃ 2× 10−5ξ′ ≃ δν/ν.
Recent surveys of molecular clouds, for instance contain-
ing ammonia [21, 22], have a spectral sensitivity cor-
responding to a Doppler shift of about 2-3 km/s, i.e.

δν/ν ≃ 10−5, comparable to the expected estimates
based on mini black holes. If the same spectral sensitivity
could be maintained in a broad survey of other spectro-
scopic transitions, upper limits of the order of ξ′ ≃ 1
could be achieved.
In spite of the pessimistic estimates reported above, it

may be worthwhile to perform surveys near the Galactic
center, especially keeping in mind the absolute lack of in-
formation on the Higgs-Kretschmann coupling ξ′. With a
1 pc resolution survey one should be able to obtain spec-
tra of atoms or molecules at a distance of r ≃ 2× 1016 m
from the Galactic center. While detailed surveys of the
Galactic center have been performed for various molec-
ular species such as for instance NH3 [23–27], CO [28],
H2CO [29, 30], and multispecies [31–33], observation of
atomic lines from the same region is difficult due to the
strong absorption at optical wavelengths. This issue may
be circumvented by focusing on high-precision observa-
tions of the 21 cm line of neutral hydrogen which still
depends on the electron-to-proton mass ratio. A further
refinement on this proposal is obtained by monitoring
neutral hydrogen surrounding stars with highly eccen-
tric orbits around Sagittarius A∗. This should provide
clearer signatures, especially in regard to a possible tem-
poral variability of the 21 cm line related to the proximity
of the star to the source of strong gravity.
The presence of spectroscopic shifts related to the

Higgs field could also be investigated in high-energy as-
trophysics phenomena. For instance, there should be a
further contribution in the redshift of the Kα emission
line from ionized iron of stars orbiting in proximity of
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the source of spacetime curvature [34]. Another possibil-
ity is the detection of shifts in the annihilation spectrum
near the Galactic center. Recent surveys have been per-
formed with an energy resolution ∆E/E = 1.47 × 10−4

at the positron annihilation peak [35]. In this case it is
crucial to achieve a high angular resolution of the detec-
tor, since the putative shifted signal from the Galactic
center will be otherwise smeared out by the nearby un-
shifted contributions. The intrinsic resolution of the 511
keV peak is limited by the environmental temperature
around the Galactic center, estimated to be T ≤ 5× 104

K [36], which leads to a relative energy spread at the an-
nihilation peak of KBT/Eγ ≃ 10−5. With a measured
positronium fraction close to unity (0.93 ± 0.04 from
[37]) and in the presence of neutral H or H2 gases, the
influence of external magnetic or electric fields on the an-
nihilation spectrum should be minimized. A comparative
analysis between signals for electron-positron and proton-
antiproton annihilation from strong gravity sources using
telescopes with both large energy and angular resolution
(with Fermi/GLAST being the best candidate available
now for the hadronic annihilation channel), might allow
a detailed test of the presence of Higgs shifts.

IV. CONCLUSIONS

We have discussed the interplay between the Higgs par-
ticle and the curvature of spacetime and the possibility of
observing peculiar spectroscopic shifts from strong grav-
ity astrophysical sources. Some final comments are in
order. Although the discussion relies on strong grav-
ity being associated to a nonzero Ricci scalar, or cou-
pling through the Kretschmann invariant, the main mes-
sage discussed in this note is to search for frequency
shifts which discriminate between transitions associated
to electronic or baryonic states. While we have focused
on sources of astrophysical interest, similar considera-
tions could be extended in a cosmological framework, for
instance by looking at the presence of specific frequency
shifts in high redshifts systems such as the quasar emis-
sion or absorption spectra. This could proceed along par-
allel lines, providing alternative interpretations to the al-
ready developed analysis of the possible time dependence
of the proton-electron mass ratio [7, 38], acquiring infor-
mation about the time evolution of the Higgs field. Based
on the alternative assumption that quasars redshifts are
not necessarily of cosmological origin, the possibility that
quasars are naked singularities [39–41] with strong grav-
itational redshifts possibly containing also a Higgs com-
ponent should be left open as a possibility. Astrophysical
limits arising from the analysis as suggested here are crit-

ical to test proposals that rely on having the Higgs boson
being responsible for the inflationary model, as discussed
in [42], especially considering the large curvature-Higgs
coupling (order of ξ ≃ 104) required in this scenario.
Furthermore, it is worth noticing that for the confor-

mal coupling the vacuum expectation value is increased
in a curved spacetime corresponding to positive (R > 0 or
K1 > 0) scalar invariants. Conceptually, the presence of
a positive feedback on the Higgs expectation value due to
a finite curvature may lead to gravitational instabilities.
If we consider a test mass located near a source of curved
spacetime, due to the Higgs field its mass will increase
with respect to the flat spacetime, consequently increas-
ing the local curvature, which in turn will increase the
value of the test mass. In principle, this positive feed-
back mechanism could generate a conceptual issue for
the coexistence of general relativity and Higgs couplings,
at least in its nonminimal version. Alternatively, if the
feedback turns out to be negative, an oscillatory behav-
ior for the spacetime metric is expected, leading to a
Higgs-driven mechanism for the emission of gravitational
radiation, with potential implications on the spectrum of
primordial density fluctuations imprinted in the temper-
ature anisotropies of the cosmic microwave background.
A general analysis on a scalar field with polynomial po-
tential terms up to the fourth order has been carried out
in [43], implying ξ ≤ 0 or ξ ≥ 1/6 for a stable Higgs field.
Lastly, we want to point out that in the standard model

the mass of fundamental particles have a different treat-
ment as compared to the mass of composite particles.
Assuming validity of the equivalence principle − an as-
sumption which will be analyzed in detail in a future con-
tribution − the gravitational mass of the electrons consti-
tuting a test body will change if the Higgs field is coupled
to curvature, while the nucleons will continue to keep,
at leading order, the usual gravitational charge. This is
in striking contrast with the standard general relativity
scenario, whereby all sources of energy contribute with-
out any distinctive feature. In turn, this originates an
unappealing contrast in dealing with the masses, based
on their classification as fundamental or composite − a
classification which has been proven to change in time as
further layers of elementary particles have emerged.
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Güsten, Astron. Astrophys. Suppl. 42, 163 (1980).
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