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We address in detail the issue of possible resonances in the massive modes on a brane without
reflection symmetry. After identifying a set of solvability conditions, we show explicitly how the
modes of the asymmetric case can be traced back to the modes of the symmetric RS-2 scenario. The
possible occurrence of resonances is revisited and discussed by finding analytical solutions. We find
that the resonant behavior is very mild even for strong asymmetries, and moreover it occurs only
for very large masses, so that its effects on the Newtonian potential are exponentially suppressed.
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General considerations. The set-up for the Randall-Sundrum scenario of Ref.[1] (RS-2 scenario) is a single 3-brane
with positive tension embedded in a AdS5 space with reflection symmetry along the extra dimension. The problem
of a single 3-brane embedded in a AdS5 space without reflection symmetry, i.e. with different cosmological constants
Λ+ and Λ− in each side, has been considered in [2–5]. In Ref.[3], this asymmetric scenario arises (rigorously) as the
thin wall limit of a self-gravitating thick domain wall spacetime generated by a topologically non-trivial scalar field
configuration, and the Newtonian potential is shown to be the usual one: a dominant four dimensional term due to a
massless bound state, plus small corrections due to the massive modes. Some properties of the asymmetric scenarios
have been discussed in [2–12]. In particular, the occurrence of resonances related to the asymmetry has been put
forward in [4].

Technically, the evaluation of the contribution of the Kaluza-Klein (KK) modes to the Newtonian potential on the
brane requires an explicit knowledge of the graviton wavefunction and, in order to quantize the system, regulator
(negative tension) branes are introduced. In the RS-2 scenario, due to the assumed reflection symmetry and hence with
the fifth dimension compactified on an orbifold S1/Z2, we have two branes that represent the boundaries of the fifth
dimension. At the end of the calculation, the regulator brane is taken to infinity and a non-compact fifth dimension
is thus obtained. The techniques employed to obtain the KK modes in the RS-2 symmetric scenario can be extended
to the asymmetric case without modifications. The evaluation of these modes is, however, not as straightforward as
in the Z2-symmetric case, since the symmetry to characterize this modes is no longer at our disposal. Additionally, it
may be difficult to fix their normalization, which is crucial to get the correct relative contribution from the zero mode
as compared to the massive ones in the gravitational Newtonian potential on the brane. Given the current interest in
asymmetric scenarios as brane-worlds, a careful derivation of the massive modes is then in order. Since a thorough
discussion of this problem leads to certain solvability conditions which must be satisfied, let us first revisit in some
detail the evaluation of the KK modes in the RS-2 scenario.

KK modes in the symmetric scenario. Let us consider the metric of the RS-2 scenario in conformal coordinates

gab = e2A(z) (ηµν dx
µ
adx

ν
b + dzadzb) , (1)

where A(z) = − ln(1 + k|z|) and ηµν = diag(−1, 1, 1, 1). In order to find the KK expansion of the graviton modes we
parametrize the graviton fluctuation in the standard way

gab = e2A(z) ((ηµν + hµν) dxµadx
ν
b + dzadzb) , (2)

and define hµν = eip·xeA(z)/2ψµν(z), so that ψµν satisfies the Schrödinger equation(
− d2

dz2
+ VQM

)
ψµν(z) = m2ψµν(z), −∞ < z <∞, (3)

with

VQM =
15

4

k2

(1 + k|z|)2
− 3kδ(z). (4)

Integration of (3,4) across the brane, ψµν being continuous, yields

ψµν(0+) = ψµν(0−),
d

dz
ψµν(0+)− d

dz
ψµν(0−) = −3k ψµν(0). (5)
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(we shall omit the indices µ, ν from now on). For m2 = 0 the solution of (3, 4) is well-known to be ψ0(z) = N0e
3A(z)/2,

with N0 a normalization constant.
Let us focus on the massive modes. How many nontrivial solutions does (3,4) have? Let ϕ(z) = ψm(z)/ψm(0), with

ψm(0) 6= 0. Since the difference between two solutions ϕ1(z) and ϕ2(z) of (3,4) associated to the same eigenvalue m2

has a continuous first derivative everywhere, this difference is the classical solution ψclasm (z) of(
− d2

dz2
+

15

4

k2

(1 + k|z|)2

)
ψclasm (z) = m2ψclasm (z), ψclasm (0) = 0, −∞ < z <∞. (6)

Following a procedure close to the one employed to obtain Green’s functions for the general self-adjoint problem
of the second order [15], the condition ψclasm (0) = 0 can be related to the solvability condition that ensures that
the (regularized) problem is consistent and that every solution of (3,4) can then be written as an arbitrary linear
combination of ψdistm (z) and ψclasm (z), where ψdistm (z) is any particular solution that carries all the singular information
(5) and ψclasm (z) is the classical solution of (6). Of course, in (3), the symmetry condition VQM (z) = VQM (−z) has the
consequence that for every m2 there exist solutions of even and odd parity. Since the even solution incorporates the
distributional solution, the odd solution is therefore the classical one. Being automatically orthogonal to each other,

(ψom, ψ
e
m) =

∫ ∞
−∞

dz ψom(z)∗ ψem(z) = 0, (7)

these even (or distributional) and odd (or classical) functions appropriately normalized are the two ortonormal modes
associated to the same eigenvalue m2, which is therefore degenerate.

The modes should be normalized by requiring

(ψm′ , ψm) =

∫ ∞
−∞

dz ψm′(z)
∗ ψm(z) = δ(m−m′). (8)

However, since the integral in (8) is divergent ∀m,m′, some regularization procedure is required.
Following [1](see [13] for a detailed derivation), we introduce regulator (negative tension) branes at ±zr taking

the limit zr → ∞ at the end and the resulting scenario will be called the regularized one. Now the gravitational
fluctuations satisfy the additional integrability conditions

ψm(z+r ) = ψm(z−r ),
d

dz
ψm(z+r )− d

dz
ψm(z−r ) =

3

2

k

1 + kzr
ψm(zr), (9)

and these conditions quantize the mass spectrum in units of π/zr. Now (8) reads as∫ zr

−zr
dz ψmp

(z)∗ψmq
(z) = δpq. (10)

The corresponding density of states is used to evaluate the Newtonian potential, which is then given by [1, 13]

VN (r) =
1

4πM3

m1m2

r

[
|ψ0(0)|2 +

4

3π

2∑
i=1

∫ +∞

0

dm |ψim(0)|2e−mrzr

]
, (11)

where M is the 5-dimensional Planck mass.
Solutions for the even modes are the best known, as they appear in the symmetric case. For m2 6= 0 the solution

is given by

ψem(z) = Ne
m(k−1 + |z|)1/2

{
Y2[m(k−1 + |z|)]− Y1(mk−1)

J1(mk−1)
J2[m(k−1 + |z|)]

}
, (12)

where Jn(x) and Yn(x) are the Bessel functions of order n of the first and second kind, respectively, and Ne
m is a

normalization constant determined by (10). Setting mp = mq = m we have

(2zr(N
e
m)2)−1 =

1

zr

∫ zr

0

dz (k−1 + z)

{
Y2[m(k−1 + z)]− Y1(mk−1)

J1(mk−1)
J2[m(k−1 + z)]

}2

(13)

and we obtain by making use of the asymptotics of the Bessel functions

(Ne
m)2 =

πm

2zr

[
1 +

Y 2
1 (mk−1)

J2
1 (mk−1)

]−1
. (14)
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FIG. 1: VQM and the (arbitrarily normalized) zero-mode ψ0 for k− > k+ > 0, with a regularized δ.

Let us now consider the odd massive modes. For m2 6= 0 the odd solution of (3,4) is given by

ψom(z) = No
m(k−1 + z)1/2

{
Y2[m(k−1 + z)]− Y2(mk−1)

J2(mk−1)
J2[m(k−1 + z)]

}
, z > 0 , (15)

with ψom(z) = −ψom(−z), z < 0, and with No
m a normalization constant in the Dirac’s sense of eq. (8). Since ψom(z)

has a zero at the brane’s position, ψom(0) = 0, as follows from (5) their derivative is continuous at z = 0 and, as
expected, the odd solutions are unaffected by the brane.

We stress that the odd modes have to be normalized by introducing the usual regulator branes. The boundary
conditions at z = ±zr turn the continuous spectrum of masses into a discrete one with even and odd modes sharing
the same mass spectrum for zr →∞. However, in the symmetric scenario the odd massive modes do not contribute
to the Newtonian potential at the brane located at z = 0 and we obtain the Newtonian potential of Ref.[1] (see also
[13]).

The asymmmetric case. Next, let us consider the spectrum of gravitational fluctuations of the asymmetric scenario
[3–5]. Here, where the gravitational fluctuations satisfy a Schrödinger equation which is not invariant under z ↔ −z,
the massive modes are not functions of definite parity. Instead of odd and even modes, we will have weak and
distributional ones. The weak modes will play a key role in determining in a consistent way the distributional modes
that contribute to the gravitation on the brane. Since this point seems to be taken lightly on previous works, we will
go through the calculations in some detail.

Let gab be the metric given by (1) with

A(z) = −Θ(−z) ln(1− k−z)−Θ(z) ln(1 + k+z), (16)

where k+ and k− are related to the cosmological constants Λ+ and Λ− at the sides of the brane by k± =
√
−Λ±/6.

It was shown that (1,16) can be associated to the metric of an asymmetric BPS domain wall spacetime [3], in the
distributional thin wall limit [14].

Now VQM is given by

VQM =
15

4

k2−
(1− k−z)2

Θ(−z) +
15

4

k2+
(1 + k+z)2

Θ(z)− 3

2
(k− + k+) δ(z). (17)

As with (3,4), the solution of (3,17) can be written as an arbitrary linear combination of a distributional solution
ψdistm (z), which carries the singular information

ψdistm (0+) = ψdistm (0−) = ψdistm (0) 6= 0,
d

dz
ψdistm (0+)− d

dz
ψdistm (0−) = −3

2
(k− + k+)ψdistm (0), (18)

and a weak solution ψwm(z), such that ψwm(0+) = ψwm(0−) = ψwm(0) = 0, with a continuous first derivative everywhere
and therefore not affected by the presence of the brane. Although ψwm is not strictly a classical solution, since
limz→0+ VQM 6= limz→0− VQM , the condition ψwm(0) = 0 can still be related to the solvability condition that ensures
that the (regularized) problem is consistent [15].

For m2 = 0 there exists a distributional solution ψ0(z) = N0e
3A(z)/2, with A(z) given by (16) and gravity is localized

on the brane since ψ0(z) can be normalized, with N0 given by

N0 =
√

2
[
k−1− + k−1+

]− 1
2 . (19)
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Fig. 1 shows the shape of VQM and the zero mode.
For m2 6= 0, the weak solution is given by

ψwm(z) = Nw
m


+k
−1/2
+ (k−1+ + z)1/2

[
J2(mk−1+ )Y2(m(k−1+ + z))− Y2(mk−1+ )J2(m(k−1+ + z))

]
, z > 0

−k−1/2− (k−1− − z)1/2
[
J2(mk−1− )Y2(m(k−1− − z))− Y2(mk−1− )J2(m(k−1− − z))

]
, z < 0

(20)

where Nw
m is a normalization constant to be found later.

It should be stressed that the weak solution (20) is unique, up to a multiplicative constant Nw
m, while a distributional

solution is one of an infinite set of particular solutions of (3,17,18) since, as follows from the solvability condition
ψwm(0) = 0, any linear combination of (20) and a particular solution of (3,17,18) is also a solution of (3,17,18). In
absence of Z2 symmetry, ψwm(z) and a particular ψdistm (z), although linearly independent solutions, are not automati-
cally orthogonal and can not be identified a priori with the orthonormal massive modes associated to m2, a fact that
has been overlooked in some previous works [5, 10]. This should not be a problem since in a regularized scenario, a
Gram-Schmidt process may be used to convert an independent set into an orthonormal set with the same span. In
the following, the regularization procedure of the previous section will be considered.

Introducing regulator branes at ±zr, where the limit zr → ∞ will be taken at the end of the calculations, the
gravitational fluctuations satisfy (3) but with VQM (z) given by

VQM =
15

4
Θ(−z) Θ(zr + z)

k2−
(1− k−z)2

+
15

4
Θ(z) Θ(zr − z)

k2+
(1 + k+z)2

−3

2
(k− + k+) δ(z) +

3

2

[
k−

1 + k−zr
δ(z + zr) +

k+
(1 + k+zr)

δ(z − zr)
]
, (21)

which imposes on ψm(z) the integrability conditions at z = ±zr

ψm(z+r ) = ψm(z−r ),
d

dz
ψm(z+r )− d

dz
ψm(z−r ) =

3

2

k+
1 + k+zr

ψm(zr), (22)

ψm(−z+r ) = ψm(−z−r ),
d

dz
ψm(−z+r )− d

dz
ψm(−z−r ) =

3

2

k−
1 + k−zr

ψm(−zr). (23)

As in the previous section, these conditions turn the continuous spectrum of massive modes into a discrete spectrum.
An analogous calculation to that of (14) leads to

(Nw
m)2 =

πm

zr

[
k−1−

(
Y 2
2 (mk−1− ) + J2

2 (mk−1− )
)

+ k−1+

(
Y 2
2 (mk−1+ ) + J2

2 (mk−1+ )
)]−1

. (24)

Next, to obtain the distributional mode ψdistm which is orthonormal to ψwm, we find the solution of (3,21) requiring
additionally that

(ψdistm , ψwm)zr
.
= lim
zr→∞

∫ zr

−zr
dz ψdistm (z)∗ψwm(z) = 0, (25)

which is evaluated making use of the asymptotics of the Bessel functions. This provides one and only one solution, up
to a multiplicative constant, which after normalization also in the regularized scenario gives the desired orthonormal
mode. We find

ψdistm (z) = Ndist
m


(k−1− − z)1/2

[
AY2(m(k−1− − z)) +BJ2(m(k−1− − z))

]
, z < 0

(k−1+ + z)1/2
[
CY2(m(k−1+ + z)) +DJ2(m(k−1+ + z))

]
, z > 0

(26)

where

A = +k
1
2
−
[
J−1
[
(Y +

2 )2 + (J+
2 )2

]
+ Y −2

[
J+
1 Y

+
2 − J

+
2 Y

+
1

]
+ J−2

[
J+
1 J

+
2 + Y +

1 Y
+
2

]]
,

B = −k
1
2
−
[
Y −1

[
(Y +

2 )2 + (J+
2 )2

]
+ J−2

[
J+
2 Y

+
1 − J

+
1 Y

+
2

]
+ Y −2

[
J+
1 J

+
2 + Y +

1 Y
+
2

]]
,

C = +k
1
2
+

[
J+
1

[
(Y −2 )2 + (J−2 )2

]
+ Y +

2

[
J−1 Y

−
2 − J

−
2 Y
−
1

]
+ J+

2

[
J−1 J

−
2 + Y −1 Y

−
2

]]
,

D = −k
1
2
+

[
Y +
1

[
(Y −2 )2 + (J−2 )2

]
+ J+

2

[
J−2 Y

−
1 − J

−
1 Y
−
2

]
+ Y +

2

[
J−1 J

−
2 + Y −1 Y

−
2

]]
,

(27)
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FIG. 2: |ψdist
m (0)|2 for different values of the ratio η = k+/k− as a function of x = m/k+.

with Y ±n = Yn(mk−1± ), J±n = Jn(mk−1± ) and

(Ndist
m )2 =

πm

zr

[
A2 +B2 + C2 +D2

]−1
. (28)

Resonances. We are now ready to discuss resonances in this scenario. In Fig. 2, the value of |ψdistm |2 on the brane
(z = 0) is plotted for different values of the asymmetry. As is expected on general grounds from the shape of VQM
(see Fig. 1), a resonance type behavior is observed. Although for strong asymmetries it becomes enhanced, this
is nevertheless a very mild resonance. For larger values of k+ and k−, it occurs at very high masses, making its
contribution to the Newtonian potential (11) negligible. Let us define η = k+/k− ≤ 1. The mass of the resonance,

defined as the location of the maximum of |ψdistm (0)|2, its approximately given by
√
k−k+ for η . 0.4. On the other

hand, as follows from (19), the strength of the zero mode on the brane decreases for strong asymmetries. For m� k+,
from (11) and (26,27,28), we find that the Newtonian potential in the asymmetric scenario is given by

VN (r) ' m1m2

2πM3

k−k+
r(k− + k+)

[
1 +

2(k2+ − k−k+ + k2−)

3k2−k
2
+

[
1

r2
+

6

r4(k− + k+)k2−k
2
+

[
k3− ln (2k+r) + k3+ ln (2k−r)

−11

6
(k3− + k3+) +

k5− + k5+
2(k2+ − k−k+ + k2−)

]]]
+O

(
1

r7

)
. (29)

It follows that we have a four dimensional behavior of the Newtonian gravitational potential up to distances r ∼ 102µm,
even for arbitrarily large asymmetries, as far as min{k−, k+} � 102 cm−1. As expected, for k− = k+ = k, the
Newtonian potential in the Z2-symmetric RS-2 scenario [1, 13] is recovered. From (29), we find that the contribution

of the massive tower of modes to the term ∼ r−3 of VN has a minimum for η =
√

3 − 1. Hence, there are slightly
asymmetric scenarios in which the contribution of the massive modes to VN is weaker than in the Z2-symmetric scenario
while, as follows from FIG. 2, for strong asymmetries the contribution of these modes grows with the asymmetry.

The occurrence of resonances in the asymmetric scenario, as well as the weakness of the zero mode and the
strength of the resonance for strong asymmetries, have been advanced in [4], where a sharp resonance behavior for

m = mres ∼
√
k−k+ appears in one of two modes, being both scattered by the brane. It should be noted that in [4],

a normalization condition is adopted which is reduced to the standard one only for k− = k+. From these modes, the
gravitational potential on the brane is then calculated numerically and compared to that of the Z2-symmetric RS-2
scenario with k−1 = (k−1+ + k−1+ )/2, finding that they differ the most at scales r ∼ m−1res = 1/

√
k+k−, and is argued

that this result shows that these resonances may contribute appreciably to the Newtonian potential on the brane [4].

Since the very same result is obtained from (29), which however receives no contribution from masses m ∼
√
k+k−,

it follows that the largest contribution to VN of the massive modes in the asymmetric scenario with respect to the
RS-2 symmetric scenario should be traced back to the asymmetry, and not to the existence of the resonance.

The question naturally arises as to whether (3,21) can have solutions with a clear resonance behavior as in [4],
so we shall elaborate a little further on the choice of modes. Indeed, any pair ψ1

m, ψ2
m, of orthonormalized linear

combinations of ψdistm and ψwm, can be taken also as the massive modes in the asymmetric scenario. However, in



6

the absence of additional symmetries, any other choice of modes different from the orthonormal set ψdistm , ψwm, is
arbitrary and therefore devoid of physical meaning. Let us consider the following example, which shows explicitly
this arbitrariness. Let ψ1

m, ψ2
m be given by

ψ1
m(z) =

1√
1 + c2

(
ψwm(z) + c ψdistm (z)

)
, ψ2

m(z) =
1√

1 + c2

(
−c ψwm(z) + ψdistm (z)

)
, (30)

where c is a constant which depends arbitrarily on m, k− and k+, and ψdistm , ψwm are given by (26,27,28) and (20,24),
respectively. The set {ψ1

m, ψ
2
m} is an orthonormal set, in the regularized scenario, of solutions of (3,21). Now, we have

|ψ1
m(0)|2 =

c2

1 + c2
|ψdistm (0)|2, |ψ2

m(0)|2 =
1

1 + c2
|ψdistm (0)|2, (31)

whose shapes depend on c. For instance, we can choose the constant c such that c → 0 for k− → k+ and hence
ψ1
m(z) → ψom and ψ2

m(z) → ψem as k− → k+, where ψom and ψem are the odd and even modes of the Z2 symmetric
scenario. In any event, a sharp resonance type behavior in one of these modes is an artifact introduced by an, up to
some extent, arbitrary descomposition as (30). Nevertheless, since

|ψ1
m(0)|2 + |ψ2

m(0)|2 = |ψdistm (0)|2, (32)

this decomposition gives exactly the same contribution to the Newtonian potential on the brane (11) as the original
set {ψdistm , ψwm}.

Discussion. We have shown that the calculation of the Newtonian potential arising in asymmetric RS-2 scenarios
requires a careful identification of the orthonormal massive modes associated with each value of m2. By normalizing
these modes in the standard way, we have revisited the calculations of [4]. Our analytical solutions show that the
resonant behavior is indeed present, but that it is extremely mild and has no significant contribution to the Newtonian
potential. We have shown that the main effect in the Newtonian potential arises not from the resonances, but from
the asymmetry itself. Hence, for a wide range of asymmetries, the asymmetric scenario is essentially on the same
footing as the original symmetrical one, in terms of the effective 4-dimensional gravitational potential on the brane.
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