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We analyze decay processes of the inflaton field, φ, during the coherent oscillation

phase after inflation in f(φ)R gravity. It is inevitable that the inflaton decays grav-

itationally into gauge fields in the presence of f(φ)R coupling. We show a concrete

calculation of the rate that the inflaton field decays into a pair of gauge fields via

the trace anomaly. Comparing this new decay channel via the anomaly with the

channels from the tree-level analysis, we found that the branching ratio crucially

depends on masses and the internal multiplicities (flavor quantum number) of decay

product particles. While the inflaton decays exclusively into light fields, heavy fields

still play a role in quantum loops. We argue that this process in principle allows us

to constrain the effects of arbitrary heavy particles in the reheating. We also applied

our analysis to Higgs inflation, and found that the gravitational decay rate would

never exceed gauge interaction decay rates if quantum gravity is unimportant.

I. INTRODUCTION

Inflationary cosmology has passed numbers of stringent observational tests, such as ob-

servations of cosmic microwave background temperature anisotropy [1]. Despite the success

of inflation models, identity of the field that drives inflation is little understood. Any infla-

tion models require a graceful exit, so-called reheating after inflation (see reviews, e.g., [2–6]

and references therein), otherwise the observed universe cannot be predicted by the models.

The universe must be thermalized and dominated by radiation fluids before the primordial

nucleosynthesis. Thermalization is initiated by the decay of the inflaton field into lighter
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particles, and then the particles come to a state of local equilibrium with each other.

It has been shown that inflation occurs naturally in models with non-minimal gravity [7–

11], and the spectrum of scalar curvature perturbations [12–14] as well as of tensor gravity

wave perturbations [15–18] can be affected by the presence of f(φ)R, thereby allowing us to

constrain f(φ) from the cosmological data. The f(φ)R gravity can also play an important

role in the inflaton decay at the reheating [19–22].

In theories with non-minimal couplings between the Ricci curvature and scalar fields, e.g.,

scalar-tensor gravity [19–22], R2 gravity [23–27], supergravity [28–30], and higher dimen-

sional gravity theories, inflaton fields can decay via gravitational effects. The gravitational

two-body decay rate is typically given by

Γgrav(σ → 2) ≈ C

16π

m3
σ

M2
P l

, (1)

where MP l ≡ (8πG)−1/2 ≃ 2.4 × 1018 GeV, mσ is the inflaton mass, and C is a model-

dependent fudge factor. The inflaton field condensate, σ, decays into any pairs of light fields

if they are not conformally invariant. The unknown factor, C, significantly depends not only

on the gravitational sector but also on the detailed properties of the matter sector, such as

mass spectrum, spins, and the number of degrees of freedom at the energy scale of reheating.

Thus, understanding physical grounds of C merits further understanding of the reheating.

In this paper, we will take an advantage of this gravitational nature in the reheating

mechanism. We consider only the gravitational effect and assume no direct interaction

between the inflaton field and matter fields. Since gravity interacts universally, the inflaton

field interacts with every field that exists at the reheating. Especially we focus on an

emergent interaction in case of the inflaton couples to gravity non-minimally. Although the

inflaton is assumed to be gauge-singlet, its decay products (matter and radiation) may be

charged under some gauge group, e.g. SU(N). We aim to constrain physical properties of

new particle species at the reheating, such as spin, mass spectrum, and the number of degrees

of freedom. As was discussed in [20], the large number of degrees of freedom significantly

enhance the gravitational decay.

Our approach can be contrasted with the recent development of Higgs inflation model

[31–35], where no new degrees of freedom is introduced. The model with non-minimal kinetic

gravitational coupling, Gµν∂µφ∂νφ, is another possibility [36, 37] in this direction. Reheating

in Higgs inflation has been considered by [38, 39].
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The organization of this paper is as follows. In Sec. II an inflation model with non-minimal

gravitational coupling and U(1) charged matter Lagrangian is given. The gravitationally

induced interactions are derived. The rates of gravitational inflaton decay are given in

Sec. III. Our main result, the decay rate via conformal (trace) anomaly [Eq. (32)], is

presented in subsection IIIB. Implications of the gravitational inflaton decay for reheating

are investigated in Sec. IV. An implication for Higgs inflation is given there. We show a

detailed derivation of fermionic one-loop decay rate via trace anomaly in Appendix. We

work with the metric signature (+,−,−,−) throughout the paper. This sign convention is

different from previous works [19, 20].

II. f(φ)R GRAVITY AND INDUCED COUPLINGS

For concreteness, we assume that the inflaton, φ, is a neutral scalar field that is non-

minimally coupled to gravity but gauge-singlet, i.e. no direct interaction with the SU(3)C⊗
SU(2)L ⊗ U(1)Y standard model sector or any other matter fields. To make physics clear,

we employ a QED-like model, U(1)-charged scalars and fermions, as a matter sector at the

energy scale of reheating:

L =
√−g

[

−1

2
f(φ)R+

1

2
gµν∂µφ∂νφ− V (φ)

]

+ Lm, (2)

Lm =
√−g





Nχ
∑

s=1

(

(Dµχs)
∗Dµχs −m2

sχ
∗
sχs
)

+

Nψ
∑

f=1

ψ̄f (i /D −mf )ψf −
1

4
FµνF

µν



 , (3)

where Nχ and Nψ are the internal flavor quantum number for scalar and fermion, respec-

tively. We impose the boundary condition f(v) = M2
P l, where v is the vacuum expectation

value (vev) of φ at the potential minimum, to guarantee the ordinary Einstein gravity at low

energy.1 We have explicitly shown the square root of the determinant of the metric,
√−g,

to emphasize that two sectors talk to each other only minimally via gravity. The covariant

1 This dynamic boundary condition is motivated by the spirit of Zee’s induced gravity theory [40] and also

applied to other models of non-minimally coupled inflation [7, 21].
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derivatives for each field are defined as

Dµχ ≡ gµν(∂ν − igAν)χ, (4)

/Dψ ≡ eµαγ
α(∂µ − Γµ − igAµ)ψ, (5)

F µν ≡ gµρgνσFρσ ≡ gµρgνσ(∇ρAσ −∇σAρ) = gµρgνσ(∂ρAσ − ∂σAρ), (6)

where g is the gauge coupling constant and assumed to be weakly coupled, g . O(1). Here

α, β, γ, · · · denote Lorentz indices while λ, µ, ν, · · · denote general coordinate indices. eµα
is a tetrad (vierbein) field. Γµ is a spin connection and Σαβare generators of the Lorentz

group given by Γµ ≡ −1
2
Σαβeλα∇µeλβ and Σαβ = −Σβα = 1

4
[γα, γβ] (see, e.g., § 12.5 in

[41]; § 3.8 in [42]). This simple model is rich enough to demonstrate important gravitational

decay processes in reheating as we will see in the following section.

After inflation the inflaton field oscillates about the minimum of the potential. Thus we

expand φ as

φ = v + σ, (7)

where σ represents coherent condensate of inflaton quanta measured from its vev, 〈φ〉 = v.

In the Jordan frame, where the theory was originally defined, the inflaton, σ, decays into the

matter sector through loops and mixing involving graviton if there is no direct interaction. It

is simpler to compute physical quantities in the Einstein frame, where inflaton and graviton

are diagonalized.

Performing conformal transformation to the metric tensor

gµν → ĝµν = Ω2gµν , Ω2 =
f(φ)

M2
P l

, (8)
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and rescaling fields simultaneously,2 3

σ → σ̂ = σ

√

1 +
3

2

(

f ′(v)

MP l

)2

, χ→ χ̂ = Ω−1χ, (9)

ψ → ψ̂ = Ω−3/2ψ, Aµ → Âµ = Aµ, Aµ → Âµ = Ω−2Aµ, (10)

interactions are spontaneously induced by gravity. Transformed matter Lagrangians are

given by

L̂χ =
√

−ĝ
Nχ
∑

s=1

[

ĝµν(Dµχ̂s)
∗Dνχ̂s − Ω−2m2

sχ̂
∗
sχ̂s
]

, (11)

L̂ψ =
√

−ĝ
Nψ
∑

f=1

ˆ̄ψf

[

iêµαγ
α(∂µ − Γ̂µ − igÂµ)− Ω−1mf

]

ψ̂f , (12)

L̂Aµ = −1

4

√

−ĝĝµρĝνσF̂µνF̂ρσ, (13)

where the covariant derivative for scalars is defined as

Dµχ̂ ≡ ∂µχ̂+ χ̂∂µ(lnΩ)− igÂµχ̂. (14)

From Eqs. (11), (12) and (13) it can be seen that massless fermions and gauge bosons are

conformally invariant at the classical level while massless scalars are not.4

2 Since canonical kinetic terms are needed to quantize fields in the new coordinate (Einstein frame), the

field redefinitions (9) and (10) are necessary. The rescaling of σ [Eq. (9)] follows immediately from [43]

φ→ φ̂ =MPl

∫ φ

dφ

√

1

f(φ)
+

3

2

(

f ′(φ)

f(φ)

)2

.

3 In the linearized theory, infinitesimal conformal transformation simply corresponds to diagonalization

between graviton and inflaton, σ̂, canonically normalized. Since two frames are very close at the potential

minimum of the inflaton, we do not have to re-scale matter fields [19]. If one would like to know non-

linear interaction, finite conformal transformation is necessary and matter fields should also be re-scaled

accordingly.
4 The spinor and gauge field connections are conformally invariant:

Γ̂µ ≡ −1

2
Σαβ êλα∇̂µ(êλβ)

= −1

2
ΣαβΩ−1eλα(∂µeλβ − Γ̂σ

µλeσβ)−
1

2
ΣαβeλαeλβΩ

−1∂µΩ = Γµ,

Γ̂σ
µλ ≡ 1

2
ĝνσ(∂λĝµν + ∂µĝλν − ∂ν ĝµλ)

= Γσ
µλ + (δσµΩ

−1∂λΩ+ δσλΩ
−1∂µΩ− gνσgµλΩ

−1∂νΩ).

F̂µν = Fµν , F̂µν = Ω−4Fµν .



6

Interaction between the inflaton field and matter fields appears through the conformal

factor Ω(σ̂):

Ω2 = 1 +
f ′(v)σ

M2
P l

+
f ′′(v)σ2

2M2
P l

+
f ′′′(v)σ3

6M2
P l

+ · · ·

= 1 +
F1(v)σ̂

M2
P l

+
F2(v)σ̂

2

2M2
P l

+
F3(v)σ̂

3

6M2
P l

+ · · · , (15)

where we have defined

Fn(v) ≡
dnf/dφn(v)

(

1 + 3
2
[f ′(v)/MP l]

2)n/2
, (16)

where n is integer number and f (n)(v) ≡ dnf/dφn(v) is the n-th derivative of f(φ) with

respect to φ at vev. Since σ/MP l ≪ 1 during the coherent oscillation phase after inflation,

it is natural to assume the series (15) is convergent.

The interaction Lagrangians to the lowest order in σ are given by expanding Eqs. (11)

and (12);

L̂σχχ =
√

−ĝ F1(v)

2M2
P l

(

ĝµνχ̂(Dµχ̂)
∗∂ν σ̂ + ĝµν(∂µσ̂)χ̂

∗Dνχ̂+ 2m2
χσ̂χ̂

∗χ̂
)

=
√

−ĝ F1(v)

2M2
P l

(

ĝµν∂µσ̂∂ν(χ̂
∗χ̂) + 2m2

χσ̂χ̂
∗χ̂
)

(17)

≈
√

−ĝ F1(v)

M2
P l

σ̂
(

−ĝµν(Dµχ̂)
∗Dνχ̂+ 2m2

χχ̂
∗χ̂
)

, (18)

L̂σψ̄ψ =
√

−ĝ F1(v)mψ

2M2
P l

σ̂ ˆ̄ψψ̂. (19)

In deriving the last line of Lσχχ, we have used integration by parts and the classical equations

of motion for χ̂ and χ̂∗ from Eq. (11):

∂ν(
√

−ĝĝµν∂µχ̂) = −
√

−ĝ
(

Ω−2m2
χ + g2Â2 − 2igÂµĝ

µν∂ν

)

χ̂, (20)

∂ν(
√

−ĝĝµν∂µχ̂∗) = −
√

−ĝ
(

Ω−2m2
χ + g2Â2 + 2igÂµĝ

µν∂ν

)

χ̂∗, (21)

where ∂µÂ
µ = 0 has been used. The classical field equations correspond to the on-mass

shell condition in the Feynman diagrams. Therefore, the expression (18) can be used only

for analysis at tree-level (see Figs. 1, 2 and 3). For an analysis off the mass shell one has

to use the expression (17) instead (see Fig. 4). Note that neither 4-leg nor 5-leg interaction

appears due to exact cancellation in σ̂(Dµχ̂)
∗Dµχ̂ term on the mass shell (see Fig. 5). Note

also that higher order interaction Lagrangians can be derived systematically by expanding
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σ

χ−

χ+

σ

ψ̄

ψ

FIG. 1: Gravitational inflaton decay at tree-level.

Eqs. (11) and (12) in power series of σ̂. In the following sections we compute exclusively

in the Einstein frame. We shall suppress carets on variables when it does not cause any

confusion.

III. INFLATON DECAY BY BREAKING CONFORMAL INVARIANCE

A. Induced decay at tree-level

With the interaction Lagrangians, Lσχχ and Lσψ̄ψ, the inflaton decays into a light pair of

scalers or fermions at tree level (Fig. 1). The rates are given by the standard quantum field

theory analysis [44];

Γ(σ → χ+χ−) =
Nχĝ

2
χ

4πmσ

(

1−
4m2

χ

m2
σ

)1/2

, (22)

Γ(σ → ψ̄ψ) =
Nψĝ

2
ψmσ

8π

(

1−
4m2

ψ

m2
σ

)3/2

, (23)

where gravitationally induced coupling constants are defined as [19, 20]

ĝχ ≡
F1(v)(m

2
σ + 2m2

χ)

4M2
P l

, (24)

ĝψ ≡ F1(v)mψ

2M2
P l

. (25)

Note that ĝχ is evaluated on the mass shell, and the first term is due to the derivative

coupling of scalars.5

The tree-level two-body decays are kinematically suppressed as seen in Eqs. (22) and

(23). Especially the inflaton cannot decay into scalars or fermions if decay products are

5 For the scalaron decay in Starobinsky’s R2-inflation [23–27], one can identify F1(v)/MPl = 2/
√
6 and

mσ = µ for the scalaron mass.
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σ

χ−

Aµ

χ+

σ

ψ̄

Aµ

ψ

FIG. 2: Three-body decays at tree level.

heavier than half mass of the inflaton, mσ < 2mχ, 2mψ. It is usual to have the global flavor

symmetry broken, and masses of particles are different as in particle physics. Thus, we

split flavor quantum number into two pieces; Nχ = Nχℓ +Nχh and Nψ = Nψℓ +Nψh, where

Nχℓ and Nψℓ denote the number of species lighter than half of the inflaton mass while Nχh

and Nψh denote the number of heavier species. In this case one should replace Nχ, Nψ in

Eqs. (22) and (23) with Nχℓ , Nψℓ .

At tree-level the inflaton also decays into three-body (Fig. 2) and four-body final states

(Fig. 3). Gauge bosons are produced in the radiative decay (Bremsstrahlung) processes.

From Eq. (18) one may naively expect scalar QED-like interactions shown in Fig. 5. However,

they do not appear if one evaluate the derivative couplings properly.

How fast do these processes proceed? Three-body decays are phase-space suppressed

compared to the two-body decays. For bosonic decays

Γ(σ → χ+χ−) ≃
Nχĝ

2
χ

4πmσ
≃ Nχ[F1(v)]

2m3
σ

64πM4
P l

, (26)

Γ(σ → χ+χ−Aµ) ≃ α

8π
Γ(σ → χ+χ−), (27)

where mχ ≪ mσ is assumed and α ≡ g2/(4π). For fermionic decays

Γ(σ → ψ̄ψ) ≃
Nψĝ

2
ψmσ

8π
=
Nψ[F1(v)]

2mσm
2
ψ

32πM4
P l

, (28)

Γ(σ → ψ̄ψAµ) ≃ α

8π
Γ(σ → ψ̄ψ), (29)

where mψ ≪ mσ is assumed. If g ∼ O(0.1), Γ(σ → 3)/Γ(σ → 2) ≃ g2/(32π2) ∼ O(10−4 −
10−3) for both χ and ψ.6 Although the branching ratio of three-body decay is small, pairs

of decay products quickly annihilate into gauge bosons right after the gravitational inflaton

6 Soft photon processes in Figs. 2 and 3 are known to be infra-red log divergent. Therefore, we consider

only hard photon processes in Figs. 2 and 3 by introducing a finite infra-red energy cutoff for outgoing

photons.
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σ

χ−

χ−

χ+

χ+

σ

ψ̄

ψ̄

ψ

ψ

σ

χ−

ψ̄

ψ

χ+

σ

ψ̄

χ−

χ+

ψ

σ

χ−

Aµ

Aν

χ+

σ

ψ̄

Aµ

Aν

ψ

σ

χ−

Aµ

Aν

χ+

σ

ψ̄

Aµ

Aν

ψ

FIG. 3: Four-body decays at tree level.

decay. The annihilation process proceeds much faster than the gravitational decay if g ∼
O(0.1).

In fig. 3 we show Feynman diagrams for four-body decays of the inflaton at tree-level. We

assumed the gauge interaction is the only renormalizable interaction of the matter sector,

χ and ψ; no Yukawa-interaction and no self-interaction are introduced. If there were the

Yukawa-interaction in the original frame, yχψ̄ψ + yχ∗ψ̄ψ, then the four-leg interaction,

yσ̂χ̂ ˆ̄ψψ̂ + yσ̂χ̂∗ ˆ̄ψψ̂, would show up in the Einstein frame. If there were the scalar self-

interaction, λ|χ|4, the five-leg interaction, λσ̂|χ̂|4 would show up. As was the case of three-

body decays, four-body decays are phase-space suppressed compared to two-body decays.
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B. Induced decay via quantum trace anomaly

In this subsection, we present the main result of this paper: the rate of gravitational

inflaton decay into gauge fields via gauge trace anomaly [Eq. (32)].

At classical level the inflaton can decay into only light degrees of freedom. At quantum

level, however, the inflaton can also decay into heavy degrees of freedom if they are inter-

mediate states. In Fig. 4 we show the two gauge boson decays of the inflaton via fermionic

and bosonic one-loops. Even though there is no induced coupling between the inflaton and

massless gauge bosons, the inflaton still decays into gauge bosons through the anomaly

process.

In the Einstein frame the fermionic matter field, ψ, couples to the inflaton by ĝψ =

F1(v)mψ/(2M
2
Pl), and it also couples to gauge fields minimally. The fermions mediate be-

tween σ and Aµ fields as a triangle loop (Fig. 4). We found that the the decay rate via

fermionic one-loop is given by

Γf(σ → 2Aµ) =
α2N2

ψ[F1(v)]
2m3

σ

256π3M4
Pl

∣

∣

∣

∣

∣

If

(

m2
σ

m2
ψ

)
∣

∣

∣

∣

∣

2

, (30)

where α ≡ g2/(4π). It is remarkable that the intermediate particle mass dependence appears

only in the function If (m
2
σ/m

2
ψ). A detailed derivation is given in Appendix. If ψ field is

heavier than the inflaton, the tree-level decay [Eq. (23)] is kinematically forbidden. But the

decay channel to gauge bosons is still open through heavy fermions.

The decay rate via bosonic one-loop (Fig. 4) is similarly given by

Γs(σ → 2Aµ) =
α2N2

χ[F1(v)]
2m3

σ

1024π3M4
Pl

(

2 +
m2
σ

m2
χ

)2 ∣
∣

∣

∣

Is

(

m2
σ

m2
χ

)
∣

∣

∣

∣

2

. (31)

The functions, If and Is, are given in Appendix.

The total decay rate for the process σ → 2Aµ is in general given by

Γ(σ → 2Aµ) =
α2[F1(v)]

2m3
σ

1024π3M4
Pl

∣

∣

∣

∣

∣

∣

Nψ
∑

f=1

2If

(

m2
σ

m2
f

)

+

Nχ
∑

s=1

(

2 +
m2
σ

m2
s

)

Is

(

m2
σ

m2
s

)

∣

∣

∣

∣

∣

∣

2

. (32)

We have assumed that there is no massive gauge field at the reheating. If energy scale of

reheating is lower than that of electroweak scale, three of four massless Bµ and W i
µ bosons

become massive Zµ and W±
µ bosons since the SU(2)L×U(1)Y gauge group is spontaneously

broken down to U(1)EM . To include a massive gauge boson in our model is straightforward
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σ(q)

Aµ(k)

Aν(k
′)

σ(q)

Aµ(k)

Aν(k
′)

σ(q)

Aµ(k)

Aν(k
′)

FIG. 4: Gravitational inflaton decay at 1-loop.

but beyond the scope of this paper. The vector boson loop contribution might be as sig-

nificant as scalars and fermions, but its evaluation is more involved than the present model

since one has to include the Faddeev-Popov ghost field in the loop diagrams [45, 46]. We

will briefly discuss an effect from massive gauge bosons in the following.

What is the physical origin of these decay processes? If there is a dimensionful parameter,

such as mass, in the Lagrangian, it breaks scale invariance explicitly. Conformal invariance

is also broken because the scale symmetry is a subgroup of the conformal symmetry. The

emergent interactions [Eqs. (17) and (19)] can be understood as a result of breaking this

conformal symmetry. At classical level there is no (energy) scale dependence in the di-

mensionless parameter, such as gauge coupling constant. At quantum level, however, the

conformal invariance ought to be broken as the gauge coupling constant, g, runs with its

energy scale.

The breaking of conformal invariance leads to non-zero value in the trace of the classical

energy-momentum tensor: [42]

T̂ µmµ = − Ω√
−ĝ

δŜm

δΩ
. (33)

In deriving this expression, we use definitions of the energy-momentum tensor and functional
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differentiation with respect to Ω;

Sm = Ŝm −
∫

d4x
δŜm

δĝµν
δĝµν

= Ŝm +

∫

d4x
√

−ĝT̂ µmµδ ln Ω

≃ Ŝm +

∫

d4x
√

−ĝT̂ µmµ
F1(v)σ̂

2M2
P l

, (34)

where we have used

T̂m
µν ≡ 2√

−ĝ
δŜm

δĝµν
, (35)

δĝµν = −2ĝµνδ ln Ω, (36)

in the second line of Eq. (34), and have used Eq. (15) in the last line of Eq. (34). The

inflaton field, σ, thus, couples to the matter fields via the trace of the energy momentum

tensor of matter fields. Suppressing carets on variables again, the leading effective interaction

Lagrangian can be written as (cf. [45, 46])

Lint =
√−gF1(v)σ

2M2
P l

T µmµ,

T µmµ =

Nχ
∑

s=1

2 [−(Dµχs)
∗Dµχs + 2U(χ∗

sχs)] +

Nψ
∑

f=1

mf ψ̄fψf +

NV
∑

v=1

2m2
vV

a∗
vµ V

µ
va

+
βh(g)

2g
FµνF

µν , (37)

where indices f , s, and v run through massive fermion, scalar, and vector field species,

respectively. We included the contribution from massive non-Abelian gauge fields. Here

βh(g) is the heavy particle contribution of the Callan-Symanzik (or Gell-Mann-Low) β-

function and given by (cf. [46])

βh(g) = − g3

(4π)2

∑

heavy

[(

11

3
N − 1

3

)

Nv −
1

3
Ns −

2

3
Nf

]

+O(g5), (38)

where Ns, Nf , and Nv are the internal (flavor) quantum number of scalar, fermion, and

SU(N) charged massive vector species, respectively. The term, −Nv/3, inside the bracket

stands for longitudinal components of massive vector fields. The summation is taken over

all species heavier than inflaton, and their masses should be less than a cut-off scale of the

model. This amounts for only the 1-loop correction to the effective action. The higher order

loops can be ignored if the perturbation expansion converges: g < 1.
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In Eq. (37) it has been taken into account only U(1) charge renormalization as the leading

effect to produce pairs of massless U(1) gauge bosons. For a consistent one-loop analysis,

one needs to include charge renormalization of SU(N) gauge fields, β(gv)V
a
µνV

∗µν
a /2gv, where

V a
µν ≡ ∂µV

a
ν − ∂νV

a
µ + gvfabcV

b
µV

c
ν and the index a, b, c take the value +, −, 3, · · · , N2 − 1.

Renormalization of massive vector fields is beyond the scope of this paper.

In the heavy intermediate particle limit, mi ≫ mσ, the decay width can be computed

from the effective interaction Lagrangian [Eq. (37)]. The inflaton decays into a pair of

massless gauge fields with

Γ(σ → 2Aµ) ≃
α2[F1(v)]

2m3
σ

1024π3M4
P l

∣

∣

∣

∣

∣

∑

i=s,f,v

bi

∣

∣

∣

∣

∣

2

, (39)

where bi are the first coefficients of the β-function (inside the bracket of Eq. (38)). With no

massive vector species, Nv = 0, the expression agrees with Eq. (32) in the limit of mi ≫ mσ.

IV. IMPLICATION FOR THE PHYSICS OF REHEATING

What could these decay rates imply to the physics of reheating after inflation? In general,

the gauge-singlet-inflaton field has difficulty in reheating. However, the presence of f(φ)R

term enables the singlet-inflaton to interact with matter as was shown in the previous sec-

tions. Therefore, the universe reheats naturally [19]. In order to connect the gravitational

inflaton decay to the observable universe, one actually needs to know the matter contents

of the universe after inflation. Some of them are associated with a visible sector involving

the standard model particles. Others are associated with a hidden sector involving dark

matter. While we did not address these distinction, new hints are provided by our model;

the gravitational decay rate crucially depends on spins, mass spectra, and the number of

degrees of freedom.

As the rates depend on the number of species in a specific way, they in principle allow

us to constrain the number of heavy particles at the reheating (Eqs. (22) and (23) for light

particles, Eqs. (30) and (31) for heavy particles). Let us split the degrees of freedom into

light (mℓ ≪ mσ) and heavy (mh ≫ mσ) species as Nχ = Nχℓ +Nχh and Nψ = Nψℓ +Nψh by

assuming flavor symmetry broken into two pieces. For scalars, the loop process [Eq. (31)]
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becomes faster than the tree-level processes if

Γs(σ → 2Aµ)

Γ(σ → χ+χ−)
≃ α2(6Nχℓ +Nχh)

2

144π2Nχℓ

> 1; (40)

Nχh & 120
1

α

(

Nχℓ

10

)1/2

if Nχh ≫ Nχℓ , (41)

Nχℓ & 40
1

α2
if Nχh ≪ Nχℓ . (42)

Similarly for fermions, the loop process [Eq. (30)] becomes faster than the tree-level

processes if

Γf(σ → 2Aµ)

Γ(σ → ψ̄ψ)
≃

α2m2
σN

2
ψh

72π2m2
ψℓ
Nψℓ

> 1; (43)

Nψh & 270
mψℓ

αmσ

(

Nψℓ

100

)1/2

, (44)

which can be satisfied more easily than bosonic processes since m2
σ ≫ m2

ψℓ
. Therefore, the

large number of heavy fermions may affect the reheating process significantly.

In more general cases,

Γ(σ → 2Aµ)

Γtree
≃ α2

144π2

(6Nχℓ +Nχh + 2Nψh)
2

Nχℓ + 2
m2

ψℓ

m2
σ
Nψℓ

. (45)

If there are many charged heavy species at the reheating, gauge fields can be generated ef-

ficiently via trace anomaly. Moreover if the reheating process is dominated by this channel,

one can constrain the number of heavy species by the reheating temperature as in the argu-

ment of [19]; too high reheating temperature would produce unwanted relics, e.g. topological

defects in the grand unified theory.

Finally, let us mention the gravitational decay in Higgs inflation model [31]. The Higgs-

inflaton directly couples to the matter with the gauge and Yukawa interactions. Since the

vev of the Higgs field is small compared to the Planck scale in any sensible gauge theories,

the gravitationally induced couplings are set to be small:7 ĝχ ≃ ξvm2
σ/(4M

2
P l) ≪ gm2

χ/mV

and ĝψ ≃ ξvmψ/(2M
2
P l) ≪ y ≃ gmψ/mV . O(1), where mσ and mV are masses of the

Higgs and massive gauge boson in the Einstein frame, respectively. Also, g and y denote

gauge and Yukawa coupling strengths, and are not much smaller than O(1). For simplicity,

we compare perturbative decay rates for fermions; Γtree
gauge/Γ

tree
grav ∼ y2ℓM

4
P l/(ξ

2v2mσmψℓ) ∼

7 On the contrary, the vev of the gauge-singlet-inflaton is a free parameter, which can be ∼MPl.
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g2mψℓM
4
P l/(ξ

2v2mσm
2
V ) ≫ O(1).8 If the process is kinematically forbidden, the one-loop

effect takes place instead; Γone−loop
gauge /Γone−loop

grav ∼ y2hM
4
P l/(ξ

2v2m2
ψh
) ∼ g2M4

P l/(ξ
2v2m2

V ) ≫
O(1). In both cases the ratios exhibit the hierarchy between gauge force and gravity. The

main energy transfer, therefore, unlikely go through gravitational decays unless quantum

gravity becomes important. Note that the cutoff scale is given by Λ ∼ MP l/(
√
Nξ), where

N is the number of species.

So far the analysis was limited to renormalizable operators and a few of dimension-

5 operators, such as ξvσ(∂χ)2 and ξvσF 2. The smallness of v made those decay channels

inefficient in the standard model. In fact, the Higgs inflation model contains up to dimension-

6 operators induced by non-minimal gravitational coupling, and we did not exhausted all of

them. The operators, such as ξσ2χ2, ξσ2ψ̄ψ, ξσ2(∂χ)2, ξσ2F 2, do not include small Higgs vev

in the induced couplings, and thus might dominate over the decays from operators considered

in this work. The gravitational pair annihilation rate to scalars by the dimension-6 operators

was calculated in [20].

V. CONCLUSION

We have studied the gravitational inflaton decays in f(φ)R gravity with the renormal-

izable QED-like matter sector. The model does not require any direct couplings between

the inflaton and matter fields. We showed that the inflaton must decay into massless gauge

fields via the trace anomaly process with the rate of Eq. (32). The decay channel is inter-

esting because its amplitude is sensitive to the contribution of all the charged species in the

theory including very massive ones. Especially if the theory includes the large number of

heavy charged species, they do not appear as main compositions of the primordial radiation

plasma but play a role of the shadow Cabinet enhancing the gravitational decay into gauge

fields enormously.

Since the gravitational couplings are induced by breaking of conformal invariance, it af-

fects all of non-conformal fields that exist at the reheating. We have considered implications

of the anomaly induced decay for the physics of reheating in a simple case, where the matter

particles are either light (mi ≪ mσ) or heavy (mi ≫ mσ) compared to the inflaton. The

8 In the standard model, in fact, the decay proceeds non-perturbatively due to violation of the adiabaticity

condition, and is more efficient than perturbative one [38, 39].
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χ+

χ−
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ψ̄
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FIG. 5: Naive diagrams at tree level are forbidden.

fermion loop process depends only on the number of heavy species while the scalar loop pro-

cess depends on that of both light and heavy species. This new decay channel may rescue

some inflation models that fail to reheat sufficiently. If an inflation model requires many

degrees of freedom beyond the standard model, the gravitational decay via trace anomaly

would contribute substantially. Our argument would help to constrain the non-minimal

particle physics of reheating.
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Appendix A: Calculation of T-matrix amplitude for fermionic one-loop

We use the dimensional regularization scheme, and then the amplitude of the fermionic

triangle diagram is finite. The transition matrix (T-matrix) amplitude for σ → 2Aµ via the

fermionic 1-loop is

〈A(k)A(k′)|T |σ(q)〉 = (2π)4δ4(q − k − k′)M,

M = M1 +M2

= ig2gfNf ǫ
∗
µ(k)ǫ

∗
ν(k

′)×
∫

d4s

(2π)4
Tr [(/s+m)γµ(/s+ /k +m)γν(/s+ /q +m)]

(s2 −m2 + iǫ)((s + k)2 −m2 + iǫ)((s + q)2 −m2 + iǫ)
+ (k ↔ k′)

= ig2gfNf [ǫ
∗
µ(k)ǫ

∗
ν(k

′)Iµν(k, k′) + ǫ∗µ(k
′)ǫ∗ν(k)I

µν(k′, k)], (A1)

Iµν ≡
∫

d4s

(2π)4
Nµν

D
,

where the second term inM represents the triangle diagram with the opposite charge current

(or internal momentum) direction, gf is a gravitationally induced coupling constant between

σ and an intermediate fermion particle, andm ≡ mf is the mass of the intermediate particle.

We have used the Feynman slash notation for 4-momentum, /q ≡ γµqµ.

To carry out loop momentum integration we need to combine propagators. Using the

Feynman parameter trick, we rewrite the denominator as

1

D
≡ 1

(s2 −m2 + iǫ)((s+ k)2 −m2 + iǫ)((s+ q)2 −m2 + iǫ)

= 2

∫ 1

0

dx

∫ 1

0

dyx{(1− x)(s2 −m2 + iǫ) + xy((s+ k)2 −m2 + iǫ)

+x(1− y)((s+ q)2 −m2 + iǫ)}−3

= 2

∫ 1

0

dx

∫ 1

0

dyx{ℓ2 − Λ2 + iǫ}−3, (A2)

where

ℓµ ≡ sµ + kµx+ k′
µ
x(1− y), Λ2 ≡ m2 − µ2x(1− x)(1− y). (A3)

Here we have used qµ = kµ + k′µ and on-mass shell conditions; k2 = k′2 = 0, q2 ≡ µ2

(µ2 = m2
σ in the rest frame of the inflaton). The numerator in the loop integral is

Nµν ≡ Tr(/s+m)γµ(/s+ /k +m)γν(/s+ /q +m)

= 4m[4sµsν + 2(sµkν + kµsν + sµqν) + kµqν + qµkν

+(−2s · k − k · q − s2 +m2)gµν ], (A4)
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where we have used the γ-matrix algebra

Tr(odd# γ) = 0, (A5)

Tr(γµγν) = 4gµν , (A6)

Tr(γµγνγαγβ) = 4(gµνgαβ − gµαgνβ + gµβgνα). (A7)

Shifting loop momentum by Eq. (A3), one can rewrite the numerator as

Nµν = 4m[4ℓµℓν + 4(kµx+ k′
µ
x(1− y))(kνx+ k′

ν
x(1 − y))

−2x(3kµkν + kµk′
ν
)− 2x(1− y)(2k′

µ
kν + kµk′

ν
+ k′

µ
k′
ν
)

+2kµkν + kµk′
ν
+ k′

µ
kν

+(2x(1− y)µ2 − µ2/2− ℓ2 − x2(1− y)µ2 +m2)gµν ]

= 4m[2(1− x)(1− 2x)kµkν − 2x(1− y)(1− 2x(1− y))k′
µ
k′
ν

+(1− 2x)(1− 2x(1− y))kµk′
ν

+(1− 4x(1− x)(1− y))k′
µ
kν

−(1 − 4x(1− x)(1− y) + 2x2(1− y))µ2gµν/2 +m2gµν ], (A8)

where the expression is valid inside the loop integral, and we have used 4-dimensional inte-

grals in Minkowski space
∫

d4ℓ

(2π)4
4ℓµℓν

{ℓ2 − Λ2 + iǫ}3 =

∫

d4ℓ

(2π)4
ℓ2gµν

{ℓ2 − Λ2 + iǫ}3 , (A9)

∫

d4ℓ

(2π)4
ℓµ

{ℓ2 − Λ2 + iǫ}3 = 0. (A10)

Since the integrals converge, one can set d = 4 from the start. Thus, we have evaluated the

γ-matrices and loop integrations in 4-dimension.

The invariant matrix amplitude must be gauge invariant in a given order of perturbation

theory. The Ward identity implies

kµMµν = k′νMµν = 0, (A11)

kµMµν
1 = −kµMµν

2 , k′νMµν
1 = −k′νMµν

2 . (A12)

The invariant matrix amplitude, therefore, becomes

M1 = ig2gfNf ǫ
∗
µ(k, λ)ǫ

∗
ν(k

′, λ′)Iµν1 , (A13)

Iµν1 =
−i

(2π)2m

(

k′µkν − µ2

2
gµν
)

I

(

µ2

m2

)

,
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where we have explicitly shown polarization of gauge fields, λ, and have used
∫

d4ℓ

(2π)4
1

{ℓ2 − Λ2 + iǫ}3 =
−i

2(4π)2Λ2
. (A14)

A function, Ii(µ
2/m2

i ), represents mass or energy dependence of an intermediate particle.

For fermionic 1-loop,

If (ξ) ≡
∫ 1

0

dx

∫ 1

0

dyx
1− 4x(1− x)(1− y)

1− ξx(1− x)(1− y)

=

∫ 1

0

dx

∫ 1−x

0

dy
1− 4xy

1− ξxy

=















2
ξ

[

1 +
(

1− 4
ξ

)

arcsin2
(√

ξ
2

)]

if ξ ≤ 4

2
ξ

[

1− 1
4

(

1− 4
ξ

)

[

ln

(

1+
√

1−4/ξ

1−
√

1−4/ξ

)

− iπ

]2
]

if ξ > 4
(A15)

This result agrees with [45–49]. The closed form formulae are first presented in [46].

Similarly for scalar 1-loop, (cf. [45, 46])

Is(ξ) ≡
∫ 1

0

dx

∫ 1−x

0

dy
4xy

1− ξxy

=















−2
ξ

[

1− 4
ξ
arcsin2

(√
ξ
2

)]

if ξ ≤ 4

−2
ξ

[

1 + 1
ξ

[

ln

(

1+
√

1−4/ξ

1−
√

1−4/ξ

)

− iπ

]2
]

if ξ > 4
(A16)

The decay rate of φ→ 2Aµ can be calculated as

Γ(φ→ 2Aµ) =
1

(2π)2
1

2µ

1

2

∫

d3k

2ωk

∫

d3k′

2ωk′
δ(4)(q − k − k′)

∑

λλ′

|M|2

=
α2µ3

64π3

∣

∣

∣

∣

∣

∣

Nψ
∑

f=1

ĝf
mf

If

(

µ2

m2
f

)

+

Nχ
∑

s=1

ĝs
m2
s

Is

(

µ2

m2
s

)

∣

∣

∣

∣

∣

∣

2

, (A17)

where α ≡ g2/(4π). Note that in the heavy intermediate particle limit, we have If (ξ → 0) =

1/3 and Is(ξ → 0) = 1/6, and in the light intermediate particle limit, If(ξ → ∞) = Is(ξ →
∞) = 0. One can evaluate massive vector loop diagrams similarly; the rate should be of the

same order of magnitude as the fermion and scalar loop diagrams.
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