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ABSTRACT
We study the imprints of anisotropic inflation on the CMB temperature fluctuations
and polarizations. The statistical anisotropy stems not only from the direction de-
pendence of curvature and tensor perturbations, but also from the cross correlation
between curvature and tensor perturbations, and the linear polarization of tensor
perturbations. We show that off-diagonal TB and EB spectrum as well as on- and
off-diagonal TT,EE,BB, TE spectrum are induced from anisotropic inflation. We
emphasize that the off-diagonal spectrum induced by the cross correlation could be a
characteristic signature of anisotropic inflation.

Key words: cosmology: inflation – cosmic background radiation

1 INTRODUCTION

Precise observations of the cosmic microwave background
radiation (CMB) enable us to test the fundamental predic-
tions of inflation on primordial fluctuations such as scale
independence and Gaussianity. The statistical isotropy has
been a robust prediction protected by the cosmic no-hair
conjecture which claims that the inflation wash out clas-
sical anisotropy. Recently, however, its apparent violation
has been reported and its origins including systematic
effects have been widely discussed.(Armendariz-Picon
2006; Pullen & Kamionkowski 2007; Dvorkin et al. 2008;
Hanson & Lewis 2009; Armendariz-Picon & Pekowsky
2009; Groeneboom et al. 2010; Hanson et al. 2010;
Pontzen & Peiris 2010; Bennett et al. 2010)

The statistical anisotropy in primordial power spectrum
of curvature fluctuations has been discussed so far. While,
tensor perturbations (primordial gravitational waves) have
not been taken into account. However, since the statistical
anisotropy could be a relic of the breaking the rotational
symmetry in the early universe, we can naturally expect that
there exists cross correlation between curvature and tensor
fluctuations since they used to interact with each other at
that time. Its effects on the CMB would be relevant. In fact,
an anisotropic inflation proposed by us exhibits such features
(Watanabe et al. 2009).

We can test the statistical anisotropy in tensor per-
turbations with CMB B-mode polarization including cross
correlation with temperature fluctuation and E-mode po-
larization. In the conventional cosmology, B-mode polariza-
tion is supposed to have no two-point cross correlation with
temperature or E-mode. This results from the two assump-
tions: statistical isotropy and parity invariance. The former
one obliges the correlations to be diagonal 〈aX

lmaX′

l′m′〉 =

CXX′

l δll′δmm′ , while aT,E
lm and aB

lm have parity (−1)l and

(−1)l+1 respectively, hence correlations CTB,EB
l have odd

parity and vanish due to the latter assumption. In the pres-
ence of statistical anisotropy, off-diagonal (l 6= l′) correla-
tions arise and therefore TB,EB correlations can appear
even if the parity is conserved. These signals may be useful
to distinguish the origins of apparent violation of statistical
isotropy.

In this paper, we discuss statistical anisotropy from
anisotropic inflation including tensor perturbations and
show how they are imprinted in the two-point correlations of
the CMB temperature fluctuation and polarizations. Then
we compare signals of the primordial anisotropy induced by
tensor perturbations with that induced purely by scalar per-
turbations, and see what we can expect as a signal peculiar
to anisotropic inflation. In the next section, we define the
statistical anisotropy which we deal with. In section 3, an-
gular power spectrum are evaluated. The final section is de-
voted to the discussion.

2 PRIMORDIAL STATISTICAL ANISOTROPY

In the anisotropic inflation model, we have four kind of
anisotropy: (i) direction dependence in primordial power
spectrum of scalar (curvature) perturbations, (ii) that in
tensor perturbations, (iii) cross correlation between curva-
ture perturbations and a linear polarization mode of tensor
perturbations, and (iv) linear polarization of tensor pertur-
bations.

It is convenient to express the primordial power spectra
in the following way:

〈Rs(k)Rs′(k′)∗〉 = P ss′(k)δ3(k− k′), (1)
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where Rs denotes primordial scalar perturbations for R0 and
right- and left-handed circular polarizations of tensor per-
turbations for R+2 and R−2 respectively, and the delta func-
tion results from an assumption of statistical homogeneity
(translational invariance). In the conventional isotropic in-

flation, where rotational invariance is conserved, P ss′(k) is
proportional to δss′ and is a function dependent only on |s|
and |k|. When we consider (iii) cross correlation and (iv) lin-
ear polarization, we need to take into account off-diagonal
(s 6= s′) components.

Note that, unlike diagonal ones, these components
change their values with the rotation of the polarization
bases, hence the bases have to be specified. The simplest
choice is to make use of spherical coordinates with a certain
fixed preferred direction, i.e.

√
2e±2

ij = edij ± ie×ij ,
√
2edij =

eθ
i e

θ
j−eφ

i e
φ
j ,

√
2e×ij = eθ

ie
φ
j +eφ

i e
θ
j , here θ and φ are polar and

azimuthal angles. This convention is adopted throughout
this paper. The power spectra in linear polarization modes√
2Rd = R+2 + R−2,

√
2R× = i(R+2 − R−2) are similarly

defined by 〈Rα(k)Rβ∗(k′)〉 = Pαβ(k)δ3(k−k′), where α, β
denote 0, d or ×. Then, the power spectra of helicity bases
are expressed by those of linear bases as

P 0±2 = (P 0d ± iP 0×)/
√
2, P±20 = (P d0 ∓ iP×0)/

√
2,

P+2+2 = P−2−2 = (P dd + P××)/2 ≡ P unp
t

P+2−2 = P−2+2 = (P dd − P××)/2 ≡ P pol
t , (2)

We hereafter neglect circular polarization of the tensor
modes in this study.

We consider anisotropic inflation models we proposed in
Watanabe et al. (2009). This model assumes a vector field
coupled to the inflaton field φ through a kinetic term of the
form Lvec = −1/4f(φ)2FµνF

µν . The anisotropic inflation
predicts the following modification to primordial power spec-
tra (Dulaney & Gresham 2010; Gumrukcuoglu et al. 2010;
Watanabe et al. 2010):

i) P 00(k) = Ps(k)[1 + g sin2 θ],

ii) P unp
t (k) = Pt(k)[1 + gh sin2 θ],

iii) P pol
t (k) = Pt(k)gl sin

4 θ,

iv) P 0d(k) = P d0(k) =
√

Ps(k)Pt(k)gc sin
2 θ, (3)

where Ps(k), Pt(k) are isotropic parts of scalar and tensor
power spectra, the θ is the angle between k̂ and a certain
privileged direction, and k ≡ |k|. For simplicity, here we
neglected the scale dependence of g, gh, gl, gc which is not
significant for the scales relevant to the CMB. The model
predicts the consistency relation gh = 1

4
ǫg, gc =

√
ǫg, where

ǫ is a slow-roll parameter, in addition to the usual relation
for tensor-to-scalar ratio r = 2Pt(k)/Ps(k) = 16ǫ, and the
linear polarization is relatively small gl ∼ O(g2h) and there is
no cross correlation between scalar perturbations and cross
mode tensor perturbations P×0 = P 0× = 0.

3 ANGULAR POWER SPECTRUM

In this section, we evaluate the following angular power spec-
trum:

CXX′

ll′mm′ ≡ 〈aX
lmaX′∗

l′m′〉,

aX
lm(ηo,xo) =

∫

dΩp̂X(p̂, ηo,xo)Y
∗
lm(p̂). (4)

where ∗ denotes complex conjugate, Ylm is a spherical har-
monics, and X = T, E,B designates fluctuations in temper-
ature and polarization modes of the CMB.

This fluctuation X can be associated to the primordial
fluctuations in the following way:

X(p̂, ηo,xo) =

∫

d3k

(2π)3

∑

L

2
∑

s=−2

Rs(k)YLs(p̂; k̂)

×∆X
Ls(k, ηo)e

ik·xo . (5)

where s = 0,±2 denotes contributions from 3d-scalar, tensor
mode respectively. The vector modes are hereafter neglected
for simplicity. Note that YLs(p̂; k̂) explicitly indicates that
the polar angle of the spherical harmonics is measured from
the direction k̂ while the azimuthal angle is assumed to be
defined by the polarization bases of Rs. And the transfer
functions ∆ satisfy the relations

∆M
L,−s = ∆M

L,s, ∆E
L,−s = ∆E

L,s, ∆B
L,−s = −∆B

L,s. (6)

Substituting Eq.(5) into Eq.(4) and using the following
formula

Ylm(p̂; k̂) =

√

4π

2l + 1

∑

m′

Ylm′(p̂; e) −mY ∗
lm′(k̂; e) , (7)

we have

CXX′

ll′mm′ =

∫

k2dk

(2π)6

∑

s,s′

∆̃X
l,s(k, ηo)∆̃

X′

l′,s′(k, ηo)

×
∫

dΩk̂P
ss′(k) −sY

∗
lm(k̂) −s′Yl′m′(k̂), (8)

where we defined ∆̃X
l,s(k, ηo) ≡

√

4π
2l+1

∆X
l,s(k, ηo). Then

P ss′ is associated to the linear polarizations and scalar-
tensor correlation via Eq.(2) and the property of trans-
fer function Eq.(6) helps to simplify the expression. We
see that in the conventional cosmology the assumption
P ss′(k) = δss′P

|s|(k) (i.e. statistically isotropic, no cross
correlation between scalar and tensor, no circular polariza-
tion), together with the relation ∆B

l,−s = −∆B
l,s results in

CTB
ll′mm′ = CEB

ll′mm′ = 0
Now, we can see the imprints of statistical anisotropy

on the CMB.

3.1 (i) anisotropy in scalar perturbations

We can calculate TT,TE,EE spectrum in the following way:

C
XX′(i)

ll′mm′ =

∫

k2dk

(2π)6
∆̃X

l,0∆̃
X′

l′,0I
(i)

ll′mm′ ,

I
(i)

ll′mm′ ≡
∫

dΩk̂P
00(k) Y ∗

lm(k̂) Yl′m′(k̂), (9)

This can be evaluated by expanding the spectrum into
spherical harmonics P 00(k) =

∑

LM
a00
LM (k)YLM (k̂) where

a00
LM (k) = 0 for odd L. Then using the relation

∫

dΩ YLM −sY
∗
lm −sYl′m′
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=

√

(2L+ 1)(2l′ + 1)

4π(2l + 1)
Clm
LMl′m′Cls

L0l′s, (10)

we have

I
(i)

ll′mm′ =
∑

LM

a00
LM

√

(2L+ 1)(2l′ + 1)

4π(2l + 1)
Clm
LMl′m′Cl0

L0l′0 . (11)

As L is even, this is only non-zero for even l − l′. The
statistical anisotropy is characterized by the component
a00
20 = − 4

3

√

π
5
gPs(k) and hence we have

I
(i)

ll′mm′ = −2

3
gPs(k)

√

2l′ + 1

2l + 1
Clm
20l′m′Cl0

20l′0 , (12)

where C denotes Clebsch-Gordan coefficient. This has m de-
pendent contribution for l′ = l, l± 2. The correlation is pro-
portional to δmm′ due to the axisymmetry of the system and
the fact that we have chosen a specific coordinate in decom-
posing into spherical harmonic coefficients. For the general
coordinate system, modes with different m are cross corre-
lated. Similar analyses are made in Ackerman et al. (2007);
Gumrukcuoglu et al. (2007)

3.2 (ii) anisotropy in tensor perturbations

The induced spectrum is

C
XX′(ii)

ll′mm′ =

∫

k2dk

(2π)6
∆̃X

l,2∆̃
X′

l′,2I
(ii)±

ll′mm′ ,

I
(ii)±

ll′mm′ =

∫

dΩk̂P
unp
t (k)

(

−2Y
∗
lm(k̂) −2Yl′m′(k̂)

± +2Y
∗
lm(k̂) +2Yl′m′(k̂)

)

, (13)

where the upper / lower sign appears in TT,EE,TE,BB
/ TB,EB correlations. We decompose it as: P unp(k) =
∑

LM
aunp
LM (k)YLM (k̂) where aunp

LM (k) = 0 for odd L. Then,
we have

I
(ii)±

ll′mm′ =
∑

LM

aunp
LM

√

(2L+ 1)(2l′ + 1)

4π(2l + 1)

×Clm
LMl′m′

(

Cl2
L0l′2 ± Cl(−2)

L0l′(−2)

)

. (14)

From the symmetry of Clebsch-Gordan coefficient Ccγ
aαbβ =

(−1)a+b−cCc−γ

a−αb−β, we have following relations: I
(ii)+

ll′mm′ = 0

for odd l − l′, and I
(ii)−

ll′mm′ = 0 for even l − l′. This
is a manifestation of parity symmetry of the system.
In the case of anisotropic inflation, we have a compo-
nent aunp

20 = − 4
3

√

π
5
ghPt(k), which give rise to non-zero

TT,EE,BB, TE correlations for l′ = l, l ± 2 and TB,EB
correlations for l′ = l ± 1.

3.3 (iii) cross correlation

We have TT,EE,TE spectrum induced by the cross correla-
tion of scalar perturbations and plus mode tensor perturba-
tions:

C
XX′(iii)

ll′mm′ =
1√
2

∫

k2dk

(2π)6

[

∆̃X
l0∆̃

X′

l′2I
(iii)+

ll′mm′

+(−1)l+l′+m+m′

∆̃X
l2∆̃

X′

l′0I
(iii)+

l′,l,−m′,−m

]

, (15)

and TB,EB spectrum:

C
XB(iii)

ll′mm′ =
1√
2

∫

k2dk

(2π)6
∆̃X

l0∆̃
B
l′2I

(iii)−

ll′mm′ . (16)

Here, we have defined

I
(iii)±

ll′mm′ =

∫

dΩk̂P
0d(k) Y ∗

lm(k̂)

×
(

−2Yl′m′(k̂)±+2 Yl′m′(k̂)
)

, (17)

To derive these relations we used the property P d0(k) =
P 0d(−k) and sY

∗
lm(k) = (−1)l+m

−sYl,−m(−k).
The direction dependence of cross correlation is sin2 θ.

Hence, TT,EE,TE spectrum can be evaluated as:

I
(iii)+

ll′mm′ = 2
(

α−2
l+2,mδl′,l+2 + α0

l,mδl′,l + α+2
l−2,mδl′,l−2

)

×δmm′gc
√

Ps(k)Pt(k),

I
(iii)−

ll′mm′ = 2
(

β−1
l+1,mδl′,l+1 + β+1

l−1,mδl′,l−1

)

×δmm′gc
√

Ps(k)Pt(k) , (18)

where the coefficients are given by:

α+2
l,m ≡

√

l(l − 1)(l +m+ 1)(l −m+ 1)(l +m+ 2)(l −m+ 2)

(l + 1)(l + 2)(2l + 1)(2l + 3)2(2l + 5)
,

α−2
l,m ≡

√

(l + 1)(l + 2)(l +m)(l −m)(l +m− 1)(l −m− 1)

(l − 1)l(2l − 3)(2l − 1)2(2l + 1)
,

α0
l,m ≡

2
{

3m2 − l(l + 1)
}

(2l − 1)(2l + 3)

√

(l − 1)(l + 2)

l(l + 1)
,

β+1
l,m ≡ 2m

√

(l − 1)(l +m+ 1)(l −m+ 1)

l(l + 1)(l + 2)(2l + 1)(2l + 3)
,

β−1
l,m ≡ −2m

√

(l + 2)(l +m)(l −m)

(l − 1)l(l + 1)(2l + 1)(2l − 1)
. (19)

The derivation is given in Appendix A.

3.4 (iv)linear polarization

For this case, we have

C
XX′(iv)

ll′mm′ =

∫

k2dk

(2π)6
∆̃X

l,2∆̃
X′

l′,2I
(iv)±

ll′mm′ ,

I
(iv)±

ll′mm′ =

∫

dΩk̂P
pol
t (k)

(

−2Y
∗
lm(k̂)+2Yl′m′(k̂)

±+2Y
∗
lm(k̂)−2Yl′m′(k̂)

)

, (20)

where upper and lower sign correspond to TT, EE, BB,
TE and TB, EB spectrum, respectively. In the case of
anisotropic inflation, where direction dependence is propor-
tional to sin4 θ we can evaluate them as:

1

2
I
(iv)+

ll′mm′

=
[

α+2
lmα−2

l+4,mδl′,l+4

+
(

α+2
lmα0

l+2,m + α0
l,mα−2

l+2,m − β+1
lmβ−1

l+2,m

)

δl′,l+2

+
(

(α+2
lm)2 + (α0

lm)2 + (α−2
lm)2 − (β−1

lm )2 − (β+1
lm )2

)

δl′l

+
(

α0
lmα+2

l−2,m + α−2
lmα0

l−2,m − β−1
lmβ+1

l−2,m

)

δl′,l−2
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Figure 1. The TT spectra induced by (i) anisotropy in scalar
perturbations, (ii) that in tensor perturbations, (iii) cross corre-
lation, and (iv) linear polarization of tensor perturbations. The
parameters are chosen as g = 0.3, r = 0.3.

+α−2
lmα+2

l−4,mδl′,l−4

]

δmm′glPt(k) (21)

and

1

2
I
(iv)−

ll′mm′

=
[

(β+1
lmα−2

l+3,m − α+2
lmβ−1

l+3,m)δl′,l+3

+(β+1
lmα0

l+1,m + β−1
lmα−2

l+1,m − α+2
lmβ+1

l+1,m

−α0
lmβ−1

l+1,m)δl′,l+1

+(β+1
lmα+2

l−1,m + β−1
lmα0

l−1,m − α0
lmβ+1

l−1,m

−α−2
lmβ−1

l−1,m)δl′,l−1

+(β−1
lmα+2

l−3,m − α−2
lmβ+1

l−3,m)δl′,l−3

]

δmm′glPt(k). (22)

4 DISCUSSION

In the previous section, we have shown that anisotropy
related to tensor perturbations generally induces off-
diagonal TB,EB spectra as well as on- and off-diagonal
TT,EE,BB, TE spectrum. Here we discuss its significance.

First, we compare the amplitude of signals induced
by the four components of anisotropy. In Fig 1, we
have depicted contributions of each component to an off-
diagonal TT correlation l(l+1)

2π
|CTT

l,l+2,0,0|. Here we chose
the anisotropy in scalar perturbations g = 0.3 which
is the magnitude reported as a tentative detection in
Groeneboom et al. (2010) in addition to the tensor-to-scalar
ratio of r = 0.3. The other quantities are determined by the
consistency relations of this model: r = 16ǫ, gh = 1

4
ǫg, gc =√

ǫg, gl ∼ g2h.
We see that the contributions of tensor perturbations

(ii),(iii) and (iv) are suppressed in comparison to that of
(i) anisotropy in scalar perturbations and that (iii) cross

Figure 2. The TB and EB spectrum induced by (iii) cross cor-
relation. As a reference of magnitude, the conventional BB spec-
trum l(l + 1)CBB

llmm
/2π induced by isotropic part of the tensor

perturbations is plotted with a dotted line. The parameters are
chosen as g = 0.3, r = 0.3.

correlation has the largest contribution next to (i). This re-
flects the hierarchy of rgh = O(g ǫ2),

√
rgc = O(g ǫ), rgl =

O(g2 ǫ3) and is also true of EE and TE spectra. The ratio
of (i), (ii) and (iii) are given by the slow-roll parameter ǫ (or
tensor-to-scalar ratio r) and are not dependent on the value
of g.

Next we consider peculiar signals of anisotropic infla-
tion. The components (ii), (iii), (iv) induce B mode polar-
ization, and its largest correlation is induced by (iii) cross
correlation. In Fig 2, we have depicted examples of TB
and EB correlations l(l+1)

2π
|CTB

l,l+1,l,l|, l(l+1)
2π

|CEB
l,l+1,l,l|. The

parameters are again r = 0.3, g = 0.3. As a reference of
magnitude, the conventional BB spectrum induced by the
isotropic part of tensor perturbations l(l+1)

2π
CBB

llmm (indepen-
dent of m) is also plotted with a dotted line.

The ratio of the isotropic BB correlation and TB cor-
relation induced by cross correlation is not dependent on ǫ
(or r) for a fixed value of g in this model of anisotropic infla-
tion, and for g ∼ 0.3 their amplitudes become comparable.
Although the detailed detectability needs to be discussed,
off-diagonal TB correlation can be a potential target of fu-
ture CMB observations. This will be a smoking-gun signal
of existence of cross correlation and anisotropic inflation.

It should be emphasized that both figures vanish for
statistically isotropic fluctuations.

The correlation induced by (iv) linear polarization of
tensor perturbations is highly suppressed and lacks any
distinctive signature in contrast to circular polarization of
tensor perturbations, which predicts odd-parity correlations
(Lue et al. 1999; Saito et al. 2007) in the CMB.

The predicted correlations are m dependent (coordinate
dependent) and hence simple summation over m doesn’t
make sense in constructing the observables which presents
the characteristics of statistical anisotropy. Instead bipo-
lar power spectrum (Hajian & Souradeep 2003) can be ex-
tended to include these signature and used as a spectroscopic
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tool to distinguish it from other origins of (apparent) statis-
tical anisotropy.
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APPENDIX A: DEFINITION OF α±2,0
LM , β±1

LM

In this appendix we present a tool for evaluating I
(iii)±

ll′mm′ and

I
(iv)±

ll′mm′ in a case of anisotropic inflation, where the direction
dependence in cross correlation and linear polarization are

given by P 0d ∝ sin2 θ, P pol
t ∝ sin4 θ. First, spin weighted

spherical harmonics is associated to spherical harmonics as:

±2Ylm = (Â± iB̂)Ylm

Â =
− cos θ sin θ∂θ + sin2 θ∂2

θ − ∂2
φ

sin2 θ
√

(l − 1)l(l + 1)(l + 2)
,

B̂ =
2(sin θ∂θ − cos θ)∂φ

sin2 θ
√

(l − 1)l(l + 1)(l + 2)
. (A1)

Using ∂φYlm = imYlm and the recursion relations:

sin θ∂θYlm = l

√

(l + 1)2 −m2

(2l + 1)(2l + 3)
Yl+1,m

−(l + 1)

√

l2 −m2

(2l + 1)(2l − 1)
Yl−1,m,

cos θYlm =

√

(l + 1)2 −m2

(2l + 1)(2l + 3)
Yl+1,m

+

√

l2 −m2

(2l + 1)(2l − 1)
Yl−1,m ,

we obtain the relations:

sin2 θÂYlm = α+2
lmYl+2,m + α0

lmYlm + α−2
lmYl−2,m,

sin2 θB̂Ylm = iβ+1
lmYl+1,m + iβ−1

lmYl−1,m. (A2)

The coefficients α, β are given in Eq.(19). Then the or-
thonormality of spherical harmonics leads to Eq.(18) and
Eq.(22).
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