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The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-
Lemâıtre-Robertson-Walker cosmology leads to small corrections to the background value of the
expansion rate, which could be important for measuring the Hubble constant from local observations.
It also predicts an intrinsic variance associated with the finite scale of any measurement of H0, the
Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition
of the Hubble rate and the spatial surface on which the average is performed. We quantitatively
study different definitions of the averaged Hubble rate encountered in the literature by consistently
calculating the backreaction effect at second order in perturbation theory, and compare the results.
We employ for the first time a recently developed gauge-invariant definition of an averaged scalar.
We also give the value of the variance of the Hubble rate for the different definitions.

I. INTRODUCTION

The late time Universe is not perfectly homogeneous
and isotropic, and the overdensities and voids that de-
velop via gravitational collapse make it significantly in-
homogeneous. As a result, the notion of a background,
maximally symmetric, geometry, that is at the core of the
standard concordance model needs to be addressed care-
fully. Specifically, one would like to construct such an
averaged model, suitable to describe the Universe on suf-
ficiently large scales, as a coarse-grained version of the ac-
tual distribution of matter and energy in the Universe. In
the last decade, this issue has attracted considerable at-
tention in cosmology, in particular through the so-called
averaging problem (see [1] and references therein), mostly
because it is sometimes believed that it could provide an
answer to the Dark Energy problem (see e.g. [2–5]). Even
though it has not been shown to be the case, the physics
of averaging are still be worth investigating; the param-
eters for cosmological concordance are quite sensitive to
the backreaction effect – important in the era of precision
cosmology.
One method for evaluating this backreaction lies

within the standard cosmological model. That is, one can
evaluate the backreaction from the perturbations which
describe structure formation. At second-order in per-
turbation theory, this gives rise to corrections to the lo-
cal Hubble flow. This idea was first investigated in an
Einstein-de Sitter model in [3], and followed up in more
detail in [6–8]. This was extended to include the case
of a cosmological constant in [9–12] . On the face of it
there appears to be some discrepancy between these re-
sults: While [6–8] found an important effect from back-
reaction, [9–12] found much smaller changes to the value
ofH0 . Our aim in this paper is to reconcile these results,
and present them in a unified framework. Bearing this
idea in mind, in this paper, we will be using the aver-
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aging formalism as developed in [12–14] in order to es-
timate the corrections to the averaged local Hubble flow
induced by the small scale inhomogeneities in the matter
distribution. Such studies have been performed in the
past, [6–10, 12], with different definitions for the Hub-
ble rate, different slicing for averaging, and/or different
approaches to perturbation theory. Specifically, on the
one hand, [9, 10] defined the averaged Hubble flow in
the longitudinal gauge by following the expansion of the
coordinate grid adapted to the gauge; this is the expan-
sion associated with the gravitational potential [12]. In
[10] they applied the same formalism, based on the ex-
pansion of the coordinated grids in various gauges. On
the other hand, [6–8, 12] looked at the expansion of the
matter fluid in the comoving synchronous gauge [6–8]
and in the longitudinal gauge [12]. The results and the
claims inferred from these results appear to differ from
one analysis to the other approach. To clarify the issue
and evaluate precisely the corrections to the concordance
model due to the backreaction effect, we propose to com-
pare quantitatively the different definitions and results.
We will discuss how a consistent second order treatment
of the backreaction effect in perturbation theory changes
in the value of the Hubble rate. We will also analyse the
intrinsic variance created by the fluctuations that could
affect the measurements of H0.

The paper is organized as follows: In Sections II and
III, we briefly recall the averaging formalism we employ,
and discuss the definition of the averaged Hubble rate in
this context. We will see that there exists two class of
definitions. In this section, we also use the gauge invari-
ant formalism of [15, 16] to calculate in the (tilted) lon-
gitudinal gauge, the average Hubble rate defined in the
fluid frame. To our knowledge, it is the first practical
calculation making use of of this gauge invariant formal-
ism. In Section IV we discuss our results and present a
fitting formula for the variance of the Hubble rate. We
also show that the two class of definitions can be clearly
separated and we comment on their relevance. Finally, in
Section V, we draw some conclusions and discuss future
works. The Appendix presents the detailed expressions
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of the various Hubble rates considered in this paper, at
second oder in perturbation theory.

II. EQUATIONS OF MOTION

Buchert’s averaging formalism [13, 17] and its gener-
alization to arbitrary coordinate systems [10, 11, 14, 18]
rely on Einstein equations written in the Arnowitt-Deser-
Misner form. Within this formalism, one considers a set
of observers defined at each point of the spacetime mani-
fold, and characterized by a unit 4-velocity field na that is
everywhere timelike and future directed, i.e. nana = −1,
with zero vorticity. This 4-velocity field induces a nat-
ural foliation of spacetime by a continuous set of space-
like hypersurfaces locally orthogonal to na. The projec-
tion tensor field onto these hypersurfaces is defined as
hab = gab + nanb. The line element can then be written,
with respect to this foliation:

ds2 = −(N2 −NiN
i)dt2 + 2Nidtdx

i + hijdx
idxj , (1)

where we have introduced respectively the lapse function
N(xa) and the shift 3-vector N i(xa) such that the com-
ponents of the 4-velocity read: na = 1

N (1,−N i) , na =
N(−1, 0, 0, 0) .The intrinsic curvature of the hypersur-
faces orthogonal to na is given by R ≡ habRab, where
Rab is the 3-Ricci curvature of the hypersurfaces and
the extrinsic curvature (or second fundamental form):
Kab ≡ −hc

ah
d
bnc;d. Here we will consider only the Hamil-

tonian constraint (for the complete set of ADM decom-
posed Einstein equations see [14])

(∂t − LΣt
)hij = −2NKij (2)

R+K2 −KijK
ij = 16πǫ (3)

where ǫ = nanbTab and Tab is the energy momentum
tensor defined to include the cosmological constant as
Tab = (ρ + p)uaub + (p + Λ/(8πG))gab . ua is time-like
4-velocity uaua = −1 for the matter field, it is related to
the na through

ua = γ(na + va) where γ =
1√

1− vava
, (4)

va is spacelike and it is orthogonal to na (vana = 0). We
have defined two different 4-velocities, which according to
standard 1+3 decomposition of a covariant derivative of
4-vector, will imply defining respectively two expansion
rates.

II.1. Decomposition of velocities

The covariant derivatives of the two 4−velocities ua

and na, as well as the spacelike relative velocity va, may
be invariantly decomposed with respect to the coordinate
frame na (this corrects the decomposition presented in
[14]; however the expression for the Hubble rate is not

affected):

∇anb = −naṅb +
1

3
ξhab +Σab

∇aub = −γvc
(

γ2v̇c + ṅc

)

nanb

−γ

(

γ2vc∇̃avc +
1

3
ξva +Σacv

c

)

nb

+γna

(

γ2vcv̇cvb + ṅ〈b〉 + v̇〈b〉
)

+
1

3
θhab + σab + ωab

∇avb = −ṅcv
c nanb − nav̇〈b〉 +

(

1

3
ξva +Σacv

c

)

nb

+
1

3
κhab + βab +Wab

(5)

where:

ξ ≡ hab∇anb Σab ≡ hc
ah

d
b∇(cnd) −

1

3
ξhab ,

θ ≡ hab∇aub , σab ≡ hc
ah

d
b∇(cud) −

1

3
θhab ,

ωab ≡ hc
ah

d
b∇[cud] , κ ≡ hab∇avb ,

βab ≡ hc
ah

d
b∇(cvd) −

1

3
κhab , Wab ≡ hc

ah
d
b∇[cvd] .

Here we have used the notation Ȧa···b = nc∇cAa···b, an-
gle brackets denote symmetric, trace free, and projected
with respect to na. ∇̃ denotes the spatial derivative with
respect to na.
Here ξ and θ are the expansion rates, while κ is the

divergence of the 3-velocity va; Σab, σab and βab are the
shear, while ωab and Wab are the vorticity in the respec-
tive definitions. Note that:

θ − γξ = γκ

(

1 +
1

3
γ2v2

)

+ γ3vavbβab. (6)

The decomposition of the matter 4-velocity is quite un-
usual, since it is with respect to na. One can calculate
directly the normal acceleration, vorticity and shear and
so on; for us the intrinsic expansion rate is important:

Θ = ∇au
a

= θ + γva
(

γ2v̇a + ṅa

)

. (7)

III. AVERAGED HUBBLE RATES

In general, the average of a scalar quantity S(t, x) may
be defined as:

〈S(t, x)〉D ≡
∫

d3xJS(t, x)
∫

d3xJ
, (8)

where J =
√
h is the determinant of the metric on the

hypersurface orthogonal to na. The time derivative of
Eq. (8) leads to a commutation relation [14]

[∂t·, 〈·〉D]S(t, xi) = 〈NξS〉D − 〈Nξ〉D 〈S〉D , (9)
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as is usual in the averaging context.
There have been different definitions of the averaged

Hubble parameter HD in the literature, and we would
like to be able to compare them in the context of the
standard model, up to second-order in perturbation the-
ory. We shall employ the longitudinal gauge below in
order to calculate averages in the concordance model,
which fixes our coordinate frame na. In the longitudinal
gauge the magnetic part of the Weyl tensor vanishes, and
the electric part is a pure potential field in the absence
of anisotropic stress [12] (see also Appendix A), making
this the rest-frame of the gravitational field, or Newto-
nian frame. In this sense, both na and ua are physically
well defined reference frames.
There are different local expansion rates:

• ξ: the expansion of the coordinate observers. In
the longitudinal gauge we employ below, this is the
rest-frame of the gravitational field.

• Θ: The expansion of the fluid, as observed in the
fluid rest-frame.

• θ: The expansion of the fluid, as observed in the
gravitational rest-frame.

When performing averaging, there are two spatial hyper-
surfaces of interest:

• 〈 〉D: Averaging in the gravitational frame.

• 〈 〉F : Averaging in the rest frame of the fluid.

Finally, when averaging expansion rates associated with
the gravitational field, there is the issue of the time coor-
dinate to use: we can associate the time coordinate t with
the proper time of the ‘averaged observers’, which, when
using na requires an extra factor of N in the expansion
rate [12].
Definitions based on

As argued in [9, 16], one can consider the evolution of
the metric of the hypersurface:

∂thij =
2

3
Nhijξ + 2NΣij +DiNj +DjNi (10)

and also assume that the dimensionless domain scale fac-

tor can be defined as aD =
(

VD

VD

)1/3

where VD is the vol-

ume of the domain. It is easy to show from equation (10),
that

3HD =
∂tVD

VD
=

1

VD

∫

D

(

Nξ +DkN
k
)
√
hd3x

=
〈

Nξ +DkN
k
〉

D
. (11)

This definition describes the average expansion of the co-
ordinate grid and says nothing about the matter field in
general. In this sense it is not necessarily physical, but it
has been used in the recent literature for calculations in
the longitudinal gauge [9, 10, 16], in which case it can be
interpreted as the expansion rate of the gravitational rest

frame. We will find that these definitions exhibit an un-
natural feature, namely a scale independence of backreac-
tion effects, but they capture the correct behaviour when
averaging on Hubble scales (as performed in [9, 10]).
With this definition, the averaged Hamiltonian con-

straint ( 3) becomes:

6H2
D = 16πG

〈

N2γ2
(

ρ+ v2p
)〉

D
+ 2

〈

N2Λ
〉

D

−
〈

N2R
〉

D
−Q+ P (12)

Q ≡ 2

3

〈

N2ξ2
〉

D
− 2

3
〈Nξ〉2D − 2

〈

N2Σ2
〉

D

P ≡ 4

3
〈Nξ〉D

〈

DkN
k
〉

D
+

2

3

〈

DkN
k
〉

D
(13)

This definition was used in [9, 10, 16]. One can also
choose to define the Hubble factor without the lapse
function as 3HD = 〈ξ〉Dand the corresponding averaged
Hamiltonian constraint becomes

6H2
D = 16πG

〈

γ2
(

ρ+ v2p
)〉

D
+ 2 〈Λ〉D − 〈R〉D

−QD (14)

QD ≡ 2

3

〈

ξ2
〉

D
− 2

3
〈ξ〉2D − 2

〈

Σ2
〉

D
. (15)

Definitions based on Θ
Assuming all types of matter follow the same 4-

velocity, the local expansion of the matter is given by
Θ. If we average this on spatial surfaces orthogonal to
ua, we have 3HD = 〈Θ〉F . This definition is equivalent
to that studied in [7, 8, 19], and is the same as the ex-
pansion of the coordinates if we choose the synchronous
gauge. The equations in that case are well known and
presented in [1].
Definitions based on θ
A final definition of the expansion we consider is given

by θ: the derivative of the matter observers worldline
projected into the rest-space of the gravitational frame.
This was introduced in [12, 14] as a way of recognising
the fact the rest-frame of the matter before and after
averaging are not the same. Hence, a useful definition
of the average Hubble factor is: 3HD = 〈Nθ〉D .This will
lead to the following averaged Friedmann’s equation:

6H2
D = 16πG

(〈

γ4N2ρ
〉

D
+
〈

γ2(γ2 − 1)N2p
〉

D

)

+2Λ
〈

N2γ2
〉

D
−
〈

γ2N2R
〉

D
−QD + LD ,(16)

QD ≡ 2

3

(

〈

(Nθ)2
〉

D
− 〈Nθ〉2D

)

− 2
〈

N2σ2
〉

D
,

LD ≡ 2
〈

N2σ2
B

〉

D
− 2

3

〈

(NθB)
2
〉

D
− 4

3

〈

N2θθB
〉

D

In the same vein, we can also consider a definition of
average Hubble factor without scaling with lapse function
as 3HD = 〈θ〉D, in this case the averaged Friedmann’s
equation becomes

6H2
D = 16πG

(〈

γ4ρ
〉

D
+
〈

γ2(γ2 − 1)p
〉

D

)

+ 2Λ
〈

γ2
〉

D

−
〈

γ2R
〉

D
−QD + LD (17)

QD ≡ 2

3

(

〈

(θ)2
〉

D
− 〈θ〉2D

)

− 2
〈

σ2
〉

D
,

LD ≡ 2
〈

σ2
B

〉

D
− 2

3

〈

(θB)
2
〉

D
− 4

3
〈θθB〉D
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Notice that the Friedman part of the Buchert equations
averaged on the comoving hypersurface may be recovered
from the last two definitions in the limit where vi → 0,
γ → 1 and 〈θ〉D → 〈Θ〉F [1].

III.1. Spatial averaging of a perturbed FLRW

model

The equations derived in Sec. II are not closed, but
physical information can be extracted from them if we
suppose that the Universe is well described by a per-
turbed FLRW background. We shall consider pertur-
bations in the longitudinal (Poisson) gauge, where the
metric may be written as

ds2 = − (1 + 2Φ + Φ2) dt
2 + a2 (1− 2Φ−Ψ2) δijdx

idxj .
(18)

Here, the coordinates are chosen to coincide with the na

frame such that na = −N∂at where the lapse function is
N =

(

1 + Φ+ 1
2Φ2 − 1

2Φ
2
)

. We have used the trace-free
part of the momentum constraint to set: Ψ1 = Φ1 = Φ
(that is, there is no anisotropic stress at first-order). The
peculiar velocity vi can be expanded to second order and
is given by:

vi =
1

2a
∂i(2v1 + v2).

As usual, the background Friedmann’s equation and the
deceleration parameter are given by:

H(z)2 = H2
0

[

Ω0(1 + z)3 + 1− Ω0

]

,

q(z) = − 1

H2

ä

a
= −1 +

1 + z

H(z)

dH

dz
= −1 +

3

2
Ωm(z)

respectively, where

Ωm(z) =
Ω0(1 + z)3

[Ω0(1 + z)3 + 1− Ω0]
1/2

and the first order peculiar velocity given in terms Φ
reads:

v(1) = − 2

3aH2Ωm

(

Φ̇ +HΦ
)

. (19)

For details about the solution to the first and the sec-
ond order equations used in this work, see Appendix A.
In this framework, the average quantities on the hy-

persurface orthogonal to na can easily be expanded to
second order in perturbation theory, so that one would
rather evaluate Euclidean integrals instead of a Riemann
integrals [3]:

〈S〉D = S0+〈S1〉+〈S2〉+
1

J0
〈S1J1〉−

1

J0
〈S1〉 〈J1〉 . (20)

where J0 and J1 respectively stand for the background
and the first order piece of the determinant of the metric√
h. while S0, S1 and S2 is the background, first or-

der and the second order component of any perturbed
scalar on the hypersurface orthogonal to na. Note the
important terms of the form 〈 〉 〈 〉 which appear due to
the Riemann average – such terms do not appear if we
average perturbations on the background only.

III.1.1. Frame switching

In other to perform spatial averages on the hypersur-
face comoving with the matter fluid, i.e. on the hypersur-
face orthogonal to ua, while using the coordinate system
of the longitudinal gauge presented in Eq. (18) we em-
ploy the technique developed in [15]. This will allow us
to perform an average in a frame which is titled with
respect to the coordinates. We do this because the lon-
gitudinal gauge is well defined at second-order, and the
solutions up to second-order are known in the case where
the cosmological constant is non-zero.
Before applying the formalism of [15] to the particular

case of interest here, we summarise it and generalise it
for our purposes. When defining the average of a space-
time scalar there is considerable freedom in the definition,
and this freedom can be used to switch from an average
defined in one frame to that in another ([15] used it to
define gauge-invariant averages). Consider defining the
average of a quantity using a spacetime window function
WΩ:

〈S〉A0,r0 =

∫

M4

d4x
√−g SWΩ(x)

∫

M4

d4x
√−gWΩ(x)

, (21)

where a a suitable window function might be:

WΩ(x) = δ(A(x) −A0)H(r0 −B(x)) . (22)

In this definition of the window function, H is the Heav-
iside step function and B(x) is a positive function of the
coordinates with space-like gradient, ∇aB, and A is a
suitable scalar field with time-like gradient, ∇aA, such
that it takes on a constant value A0 on the hyper-surface
of interest. The scalar field A then defines the folia-
tion of spacetime for averaging. The range of integration
across the hyper-surface is specified by inserting a step-
like definition of the spatial boundary using the function
B(x), which is then bounded by a constant positive value
r0 > 0.
It was argued in [15, 16] that one can consistently in-

tegrate out the coordinate time to define an average of
the scalar field S on the hypersurface of constant A by
performing a suitable change of coordinates that trans-
forms the integration variable from t 7→ t̃. This can be
achieved by defining t = f(t̃, x), where the function f
is chosen to ensure that the scalar field S transforms
as S(f(t̃, x), x) = S̃(t̃, x). By the use of the Jacobian
factor ∂t/∂t̃, the 3-metric is also transformed from hij

into another metric h̃ij . The function f ensures that
the scalar field A(x, t) is homogeneous in the tilde frame:

A(f(t̃, x), x) = Ã(t̃, x) ≡ A(0)(t̃) (see [15] for details).
Inserting this into Eq. (21), one finds:

〈S〉A0
=

∫

ΣA0

d3xJ̃ S̃(t0, x)
∫

ΣA0

d3xJ̃
, (23)

where the tilde quantities are evaluated in the new coor-
dinate system. According to [15], this represents a gauge
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invariant prescription for the average of a scalar object
S on the hypersurface ΣA0

of constant A = A0.
In cosmological perturbation theory, the determinant

of the metric J̃ and the scalar fields S̃ can be expanded to
second order in perturbation theory to give the average
of a scalar field in the new coordinate system:

〈S〉A0
= S0 +

〈

S̃1

〉

+
〈

S̃2

〉

+
1

J̃0

〈

S̃1

〉

− 1

J̃0

〈

S̃1

〉〈

J̃1

〉

.

(24)

where J̃0 =
√

h̃0 and J̃1 =
√

h̃1 are the background and
the first order piece of the determinant of the metric h̃
respectively. By making a gauge transformation [20] back
to the original coordinates, we obtain:

〈S〉A0
= S0 + 〈S1〉+ 〈S2〉+

1

J0
〈J1S1〉 −

1

J0
〈S1〉 〈J1〉

− Ṡ0

Ȧ0

[

〈A1〉+
1

J0
〈J1A1〉+ 〈A2〉

]

+2
Ṡ0

Ȧ2
0

〈

A1Ȧ1

〉

− 1

Ȧ0

[〈

A1Ṡ1

〉

+
〈

S1Ȧ1

〉]

+
1

2

[

S̈0

Ȧ2
0

− 3
Ä0Ṡ0

Ȧ3
0

+ 2
∂t (ln J0) Ṡ0

Ȧ2
0

Ṡ0

]

〈

A2
1

〉

+

[

Ä0

Ȧ2
0

− ∂t (ln J0)

Ȧ0

]

〈S1A1〉+ 2
Ṡ0

J0Ȧ0

〈A1〉 〈J1〉

−
[

Ä0

Ȧ2
0

− ∂t (ln J0)

Ȧ0

]

〈S1〉 〈A1〉

−
[

Ṡ0Ä0

Ȧ3
0

+
∂t (ln J0) Ṡ0

Ȧ2
0

]

〈A1〉2

− Ṡ0

Ȧ2
0

〈A1〉
〈

Ȧ1

〉

+
1

Ȧ0

〈S1〉
〈

Ȧ1

〉

(25)

Once the scalar variable A is chosen to specify the av-
eraging hypersurface, the above averaging prescription
can easily be applied. Eq. (25) was first derived in [15],
but the authors set the spatial average of a first order
scalar quantity 〈S1〉 to zero (see Eq. (3.10) in [15]) before
performing the gauge transformation, thereby neglecting

the terms of the form 〈S1〉 〈A1〉, 〈S1〉
〈

Ȧ1

〉

, etc, which

are non-zero and are explicitly scale dependent at sec-
ond order [12]. We have inserted them as they play an
important role in the average of the Hubble rate.
To fix the definition of A in terms of the quantities

of the perturbed FLRW background and at the same
time fix the foliation of interest, we employ the technique
used in [3]. This involves relating the scalar field A to
the time, τ , measured by the average observers with 4-
velocity ua comoving with the fluid: u0∂0+ui∂i = ∂τ .The
scalar field A can be expanded to second order in per-
turbation theory, subject to the condition Ã(t, x) =
A0(t)+A1(t, x)+A2(t, x) ≡ τ [15] to give (using ua∇aτ):

(1− Φ− 1

2
Φ2 +

3

2
Φ2 + vk1v1k)∂tÃ(t, x) (26)

+
1

a2
(vi1 + vi2)∂iÃ(t, x) = 1 .

We can now calculate the higher order A in terms of Φ1

and Φ2 of the perturbed FLRW background. This gives:

A0(t) = t (27)

A1(t, x) =

∫ t

0

Φ1dt (28)

A2(t, x) =
1

2

∫ t

0

Φ2dt−
1

2

∫ t

0

Φ2
1dt−

∫ t

0

vk1v1kdt

−
∫ t

0

1

a2
vi1∂iA1dt . (29)

The average Hubble factor calculated using this prescrip-
tion is given in the Appendix B.

III.2. The ensemble average and the variance

With the tools developed in Sec. III, we have per-
formed a consistent second order perturbative expansion
of the Riemann average defined in Sec. III to obtain a
corresponding Euclidean average. Given a specific real-
isation of a cosmology, we could now calculate spatial
averages directly. Alternatively, we can calculate the en-
semble average of a given spatial average which will tell
us the expectation values of spatially averaged quanti-
ties. The ensemble-variance tell us how much we expect
that to vary from one domain to another.
The ensemble average of a spatial average may be writ-

ten as:

〈X(x)〉 = 1

V

∫

d3xW (x/RD)X(x) (30)

where the overbar denotes an ensemble average. We have
specified the domain though the window function W .
The Euclidean volume of the spatial domain of averag-
ing D is then given by: V =

∫

d3xW (x/RD) which in
the case of a Gaussian window function which we mostly
employ is V = 4πR3

D

∫∞

0 y2W (y)dy = (2π)3/2R3
D for any

RD. The inverse Fourier transform of this window func-
tion reads: W (kRD) = 1

V

∫

d3xW (x/RD) e
−ik·x . The

Fourier and the inverse Fourier transforms of any scalar
quantity Φ are given as

Φ(x) =
1

(2π)3/2

∫

d3kΦ(k)eik·x, (31)

Φ(k) =
1

(2π)3/2

∫

d3xΦ(x)e−ik·x. (32)

For statistically homogenous Gaussian random variables,
we have: Φ(k) = 0, and the power spectrum of Φ is
defined by

Φ(k)Φ(k′) =
2π2

k3
PΦ(k)δ(k + k′). (33)

Assuming scale-invariant initial conditions from inflation,
this is given by

PΦ(z, k) =

(

3∆R

5g∞

)2

g(z)2T (k)2 (34)
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where T (k) is the normalised transfer function, ∆2
R is

the primordial power of the curvature perturbation [21],
with ∆2

R ≈ 2.41× 10−9 at a scale kCMB = 0.002Mpc−1.
It is not difficult to notice from the equations displayed

in the appendix that most of the terms we are dealing
with are scalars which schematically appear in the form
∂mΦ(x)∂nΦ(x) where m and n represent the number of
derivatives (not indices), such that m+n is even so that
there are no free indices. (For example, ∂iΦ∂

2∂iΦ has
m = 1 and n = 3.) Then from the results of [12], the
ensemble average of these kind of terms, if a Gaussian
window function is assumed, is given by:

〈∂mΦ(x)∂nΦ(x)〉 = (−1)(m+3n)/2

2π2

∫

dk km+n−1k3PΦ(k).

(35)
Using Φ = g(t)Φ0(x), g(t) being the growth suppres-

sion factor and Φ0(x) the spatial dependent initial con-
dition (see the Appendix), the terms that appear with a
time derivative of the gravitational potential can be re-
written to pull out the time component before evaluating
the ensemble average:

Φ̇(t, x) = − (1 + z)H
d ln g

dz
Φ(t, x). (36)

For the details of the calculation of the ensemble aver-
age of the inverse laplacian appearing the second order
Bardeen potential refer to [12].
The ensemble variance in the Hubble factor is given by

Var[HX ] = H2
X −H

2

X , (37)

where HX can be any definition of averaged expansion
rate we are studying. With this definition, it is easy to
see that pure second order contributions drop out of the
variance, so that only terms that are quadratic in first
order quantities remain.

IV. RESULTS AND DISCUSSION

We shall now investigate the expectation values of the
different average Hubble rates, along with their variances.
For this we will consider an Einstein-de Sitter model, and
a standard concordance model. We shall use length scales
intrinsic to the model as reference points for averaging:
the equality scale, k−1

eq , and the Hubble scale, k−1
H :

keq ≈ 7.46× 10−2Ω0h
2Mpc−1, (38)

kH ≈ h

3000
Mpc−1,

where Ωb and Ω0 are the baryon and total matter con-
tributions today and H0 = 100 h kms−1Mpc−1. We
shall use two models for comparison: Einstein-de Sit-
ter with h = 0.7 and 5% baryon fraction (WMAP [21]
estimates Ωb ≈ 0.046). This has k−1

eq ≃ 27.9Mpc. The
other model we shall use is a concordance model with
Ω0 = 0.26, h = 0.7, fbaryon = 0.175 (this is the WMAP
best fit [22]). The key length scales in this model is

k−1
eq ≃ 107.2Mpc. Both models have the Hubble scale

k−1
H ≃ 4.3Gpc. To calculate the integrals we use trans-

fer functions presented in [23]. All lengths shown are in
Mpc. As some of the integrals have a logarithmic IR
divergence, all k-integrals have an IR cut-off set at ten
times the Hubble scale, it did not appear explicitly in
any of our calculations.
We show the ensemble averages of some of the second-

order terms which appear in the Hubble rates in Fig. 1.
Note that we also show the result of

〈

∂2Φ∂2Φ
〉

for com-
parison.

IV.1. Comparison between the different definitions

We can now turn to estimating and comparing the
Hubble rates as well as their intrinsic variances as defined
above consistently up to second order in perturbation
theory. When determining the ensemble average of the
Hubble rate, we shall consider two alternatives: a kine-
matical ensemble average given by HD, and a dynamical
one, which arrises from taking the ensemble average of

the Friedman equation:

√

H2
D. We shall find that the dif-

ference between these two is large because the variance
is large.
Fig. 2 presents the evolution as functions of redshift of

the different definitions for the Hubble rate in a ΛCDM
and an EdS scenarios. Fig. 3 depicts the values of the
same Hubbles rates at z = 0 as functions of the averaging
scale RD, and Fig. 4 shows the scaling of their variances
with the averaging scale RD.
It is clear that the two types of Hubble rates defined

in this paper, i.e. those of the gravitational frame, and
the ones defined in terms of the physical matter flow can
be distinguished as far as their value and their variance
are concerned.
First, the ones defined through the local expansion of

the observers’ worldlines, 〈ξ〉 and 〈Nξ〉 present a correc-
tion to the FLRW background Hubble rate that is very
small, of order 10−5 for ΛCDM and 10−4 for an EdS
scenario. Moreover, they don’t exhibit any scale depen-
dence. Finally, their variance is also scale independent.
Let us emphasize that this scale independence is very
unrealistic, since one would expect the dispersion around
the average value of the expansion rate to depend on the
scale, illustrating at least the finite volume effect arising
in any sampling of a random process.
Second, the Hubble rates defined through the local ex-

pansion of the matter worldlines systematically present
corrections to the background Hubble rate two orders of
magnitude bigger than the previous ones, and are indis-
tinguishable from each other, except when the averaging
scale is much larger than the equality scale. Their val-
ues as well as their variances are scale dependent. This
scale dependence can be traced back to the presence of
significant non-connected terms like 〈Φ〉

〈

∂2Φ
〉

in their
development. It is interesting to note that both the val-
ues of these Hubble rates and their variances are indis-
tinguishable up to scales of averaging of order >100 Mpc,
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FIG. 1. The amplitude of the ensemble averages of various
second-order terms which appear in the Hubble rate.
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FIG. 2. Fractional change to the background Hubble rate
as a function of redshift for the different definitions of av-
eraged Hubble rates under study. Here we have averaged
at the equality scale. Here, ∆H = (HD − H0)/H0, and

δH = (

√

H2

D
−H0)/H0.

terpreted in a previous work [12] as naturally defining
the scale of statistical homogeneity of the universe (note
that this is the case even for EdS; so it is not simply
the equality scale). Around the same scale the expansion
rate of the gravitational frame becomes comparable with
the others because the peculiar velocity tends to zero.
Finally, let us note that the results are consistent, for

a pure CDM Universe, with those found on small scales
in [7, 8]. This can be seen on Fig. 5.
This analysis shows that the averaged Hubble rates

defined through the expansion of the Newtonian-like or
gravitational frame, as in [9, 10], is not a good tracer
of the expansion of the cosmic fluid, except beyond the
homogeneity scale. The fluid frame is more relevant for
local measurements since it is attached to the matter
component of the Universe. The ‘gravitational frame’, as
we have referred to it here, seems useful on much larger
scales, which is the situation in [9, 10] in which it was
first evaluated – their domain was the Hubble scale.

IV.2. Fluctuations in the measurement of H0

We would like to finish this paper by addressing the
following questions:

• What is the physical relevance of the averaged Hub-
ble rate and its variance?

• Can there be any signature of backreaction in the
observations leading to the measurement of H0?

First, let us note that on sufficiently small scales, such
as scales smaller than ∼ 100 Mpc, which are the stan-
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FIG. 5. Dynamical Hubble rate 〈Θ〉
F

today, plus/minus the
variance as a function of the averaging scale (normalized to
the background Hubble rate), where we have used a top-hat
window function to define our domain for comparison with [7,
8]. The blue curve represents the variance calculated in [7, 8];
differences for small domains are a consequence of the different
transfer functions used here.

a statistically homogeneous and isotropic Universe, spa-
tial averages are expected to be a good approximation of
what happens along the past lightcone on which observa-
tions are made. Along the past lightcone the monopole
contribution to the Hubble rate, which is the one that
remains once a full sky average has been performed, is
exactly the covariant quantity Θ = ∇au

a [24].
Hence, our estimate of HD on a scale RD can be inter-

preted as the average Hubble rate in a patch of the local
Universe of size RD as long as this size remains suffi-
ciently small compared with the Hubble scale. Moreover
the variance we calculated is the intrinsic dispersion on
the measurement of H0 that comes from the fluctuations
in the peculiar velocity of the sources and gravitational
potential. In a concordance cosmology, this dispersion
appears small, of order 1% at a scale of 100 Mpc, and
even less on larger scales, as can be seen on Fig. 5.
This is consistent with previous estimates that were

based on an estimate of the first order velocity power
spectrum [19, 25]. It is due to the fact that the pure sec-
ond order terms cancel out consistently at second order
in our expression of the variance, allowing only contri-
butions of squares of first order quantities. As noted be-
fore, this is a similar effect to that found in [7, 8], where
the calculations were made in the comoving synchronous
gauge, for a pure CDMUniverse. Our calculation of 〈Θ〉F
using the gauge-invariant approach of [15] corresponds to
a gauge-invariant version of the average expansion rate
in the synchronous gauge.
To quantify the backreaction effect on the variance for

a large class of cosmological models, we provide a fitting
formula for the variance of the Hubble rate (defined via



9

the flow of matter), V ar[H ], that is accurate to a few
percents across the scales of interest:

lnV ar[H ] = −43.61 + 46.0Ω0.0293
m − 0.7969f0.0347

b

+λRα + γ exp(−βR2) (39)

where

λ = 10.32− 9.084Ω0.0469
m − 3.611/f0.00497

b (40)

γ = 1.309− 2.355Ω0.055
m − 1.073f2.1778

b

β = −1.805 + 3.260Ω0.0279
m − 0.7180f0.665

b

α = 1.222 + 0.0334Ω3.635
m + 0.0591f0.3944

b .

This formula gives the variance on the measurement of
H0, normalised to the value of H0: Ωm is the CDM den-
sity parameter, fb the baryon fraction, and R the length
characteristic of the survey, i.e. the distance to the far-
thest object (in units of h−1Mpc). Note that this fitting
formula is valid for a Gaussian window function. Top-hat
window functions generically lead to a slight increase of
the variance.

V. CONCLUSION

In this work, we have first compared the different defi-
nitions of the averaged Hubble rate that can be found in
the literature, by calculating their behaviour in pertur-
bation theory consistently to second order. For the first
time we have calculated average of the expansion rate
using the formalism of [15]. We found that the physical
definitions that involve the flow of the dust matter com-
ponent are consistent with each other at second order,
but differ significantly on small scales from the quanti-
ties defined only in terms of the specific coordinate sys-
tem used to perform the calculations. In particular, we
find that, in terms of the ensemble averaged Hubble rate:

• On small scales all definitions which involve the
matter flow agree, and give a small sub-percent
change to the background Hubble rate.

• The ensemble average of the expansion rate of the
gravitational frame exhibits no scale dependence.

• On large scales (much larger than the equality
scale) all definitions become scale invariant once
their ensemble average is evaluated.

• The hypersurface used for averaging is important
only on large scales, and only makes a noticeable
difference in EdS models.

• Including N in the definition of the averaged ex-
pansion again only leaves a residual effect on large
scales, and tends to reduce the backreaction effect.

We have also derived the dispersion affecting the Hub-
ble rate and arising from the peculiar velocities of the
matter flow. We found a effect consistent with previous
estimates from backreaction in the literature [7, 8], and
our results are consistent with effects evaluated previ-
ously [12, 19].

We close with a comment on the origin of the scale
dependence of the various quantities. The scale depen-
dence we have found appearing after ensemble averaging
comes only from ‘non-connected’ terms such as 〈Φ〉

〈

∂2Φ
〉

since the domain size factors out of all other terms. Non-
connected terms only arise when we perform averages in
the spacetime itself, which many authors on backreac-
tion have stressed as important. It is interesting to note
that these terms do not appear if we treat perturbations
as fields propagating on the background, and calculate
average quantities only with respect to the background
geometry (i.e., if we perform a Euclidean average and not
a Riemannian one) [26].
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Appendix A: Second-order perturbation theory

The Poisson gauge is particularly elegant for scalar perturbations because with na defined orthogonal to the spatial
metric hij , the Weyl tensor becomes

E
(n)
ij =

1

2

(

h a
i h b

j − 1

3
hijh

ab

){

∇̃a∇̃b

[

Φ+Ψ− Φ2 −Ψ2 +
1

2

(

Φ(2) +Ψ(2)
)

]

+ ∇̃aΦ∇̃bΦ− ∇̃aΨ∇̃bΨ

}

(A1)

H
(n)
ij = 0. (A2)

In the rest frame na, then, the gravitational field is silent, and, with Ψ = Φ is a pure potential field. Hence, na

may be considered as the rest-frame of the gravitational field, or the Newtonian-like frame, and so defines natural
hypersurfaces with which to perform our averages. By contrast, in the frame ua the Weyl tensor has non-zeroHab [12].

The Einstein Equation for a single fluid with zero pressure and no anisotropic stress Ψ = Φ, and Φ obeys the
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Bardeen equation

Φ′′ + 3HΦ′ + a2ΛΦ = 0 = Φ̈ + 4HΦ̇ + ΛΦ . (A3)

and ′ = d/dη, and H = a′/a is the conformal Hubble rate. All first-order quantities can be derived from Φ. The
solution to the growing mode of the Bardeen equation may be written as

Φ(η, x) = g(η)Φ0(x) (A4)

where Φ0(x) is the Bardeen potential today (η = η0, z = 0) and g(η) is the growth suppression factor, which may be
approximated, in terms of redshift, as [27, 28]

g(z) =
5

2
g∞Ωm(z)

{

Ωm(z)4/7 − ΩΛ(z) +

[

1 +
1

2
Ωm(z)

] [

1 +
1

70
ΩΛ(z)

]}−1

. (A5)

and g∞ is chosen so that g(z = 0) = 1.
The second-order solutions for Ψ(2) and Φ(2) are given by [29]. We quote their results directly:

Ψ(2)(η, x) =

(

B1(η)− 2g(η)gm − 10

3
(anl − 1)g(η)gm

)

Φ2
0 +

(

B2(η)−
4

3
g(η)gm

)

[

∇−2
(

∂iΦ0∂iΦ0

)

− 3∇−4∂i∂
j
(

∂iΦ0∂jΦ0

)

]

+B3(η)∇−2∂i∂
j(∂iΦ0∂jΦ0) +B4(η)∂

iΦ0∂iΦ0 , (A6)

Φ(2)(η, x) =

(

B1(η) + 4g2(η) − 2g(η)gm − 10

3
(anl − 1)g(η)gm

)

Φ2
0 +

[

B2(η) +
4

3
g2(η)

(

e(η) +
3

2

)

− 4

3
g(η)gm

]

×
[

∇−2
(

∂iΦ0∂iΦ0

)

− 3∇−4∂i∂
j
(

∂iΦ0∂jΦ0

)

]

+B3(η)∇−2∂i∂
j(∂iΦ0∂jΦ0) +B4(η)∂

iΦ0∂iΦ0 , (A7)

where Bi(η) = H−2
0 (f0 + 3Ω0/2)

−1
B̃i(η) with the following definitions

B̃1(η) =

∫ η

ηm

dη̃H2(η̃)(f(η̃)− 1)2C(η, η̃), B̃2(η) = 2

∫ η

ηm

dη̃H2(η̃)
[

2(f(η̃)− 1)2 − 3 + 3Ωm(η̃)
]

C(η, η̃) , (A8)

B̃3(η) =
4

3

∫ η

ηm

dη̃

(

e(η̃) +
3

2

)

C(η, η̃), B̃4(η) = −
∫ η

ηm

dη̃ C(η, η̃, ) (A9)

and

C(η, η̃) = g2(η̃)a(η̃)
[

g(η)H(η̃)− g(η̃)
a2(η̃)

a2(η)
H(η)

]

, (A10)

with e(η) = f2(η)/Ωm(η) and

f(η) = 1 +
g′(η)

Hg(η)
. (A11)

gm denotes the value of g(ηm), deep in the matter era before the cosmological constant was important. We also have
anl which denotes any primordial non-Gaussianity present. We set this to unity, representing a single field slow-roll
inflationary model. For details on how the spatial average of the second order Bardeen Potential may be evaluated
see [12]

Appendix B: Hubble rates

In this appendix, we present the different Hubble rates, consistently at second order. The superscript determines
the quantity that has been averaged to define the average Hubble rate.

HNξ
D = H −

〈

Φ̇
〉

− 3
〈

Φ̇
〉

〈Φ〉+
〈

ΦΦ̇
〉

− 1

2
〈Ψ2〉 (B1)

Hξ
D = H −

〈

Φ̇
〉

−H 〈Φ〉 − 3
〈

Φ̇
〉

〈Φ〉+ 2
〈

ΦΦ̇
〉

− 3H 〈Φ〉2 + 9

2

〈

Φ2
〉

− 1

2

〈

Ψ̇2

〉

− 1

2
H 〈Φ2〉 (B2)
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HNθ
D = H −

〈

Φ̇
〉

− 3
〈

Φ̇
〉

〈Φ〉+ 2
〈

Φ̇Φ
〉

− 1

2

〈

Ψ̇2

〉

+
(1 + z)

6
∂kv

k
2 − 2 (1 + z)

2

9ΩmH2

[〈

∂2Φ̇
〉

+H
〈

∂2Φ
〉

]

+
(1 + z)

2

Ω2
mH3

[

8

9
H

(

1 +
Ωm

2

)

〈

∂kΦ̇∂
kΦ

〉

+
4

9
H2 (1 + Ωm)

〈

∂kΦ∂
kΦ

〉

− 4

9

〈

∂kΦ̇∂
kΦ̇

〉

]

+
2 (1 + z)

2

3ΩmH2

[

2

3

〈

Φ∂2Φ̇
〉

+
2

3
H

〈

Φ∂2Φ
〉

−
〈

∂2Φ̇
〉

〈Φ〉 −H
〈

∂2Φ
〉

〈Φ〉
]

(B3)

Hθ
D = H −

〈

Φ̇
〉

−H 〈Φ〉 − 3
〈

Φ̇
〉

〈Φ〉+ 2
〈

ΦΦ̇
〉

− 3H 〈Φ〉2 + 9

2
H

〈

Φ2
〉

− 1

2

[〈

Ψ̇2

〉

+ 2H 〈Φ2〉
]

+
(1 + z)

6

〈

∂kv
k
〉

− 2 (1 + z)2

9ΩmH2

[〈

∂2Φ̇
〉

+H
〈

∂2Φ
〉

]

+
2 (1 + z)2

9Ω2
mH3

[〈

∂kΦ̇∂
kΦ̇

〉

+ 2H
〈

∂kΦ̇∂
kΦ

〉

×
(

1 +
3

2
Ωm

)

+H2
〈

∂kΦ∂
kΦ

〉

(1 + 3Ωm)

]

+
2 (1 + z)2

3ΩmH2

[〈

Φ∂2Φ̇
〉

−
〈

∂2Φ̇
〉

〈Φ〉

+ H
〈

Φ∂2Φ
〉

−H
〈

∂2Φ
〉

〈Φ〉
]

(B4)

HΘ
F = H −

〈

Φ̇
〉

+ 3
〈

ΦΦ̇
〉

− 1

2

[〈

Ψ̇2

〉

+H 〈Φ2〉+ 3ΩmH2 〈A2〉
]

− 〈Φ〉H
[

1− 3

2
ΩmHgI

]

−4
〈

Φ̇
〉

〈Φ〉
[

1 +
3

4
HgI

]

+

〈

Φ2
〉

H

4

[

22− 9HΩmgI

(

1 +
1

2
gIH

)]

− 7

2
H 〈Φ〉2

[

8

7

(

1 +
3

4
HgI

)

− 3ΩmHgI

(

1 +
3

7
HgI

)]

+
1

6
(1 + z)

〈

∂kv
k
2

〉

− 2(1 + z)2

9H2

[〈

∂2Φ̇
〉

+H
〈

∂2Φ
〉

]

+
2(1 + z)2

27H3Ω2
m

[

〈

∂kΦ̇∂
kΦ̇

〉

+ 2H
〈

∂kΦ̇∂
kΦ

〉

(

1 +
9

2
Ωm

)

+H2
〈

∂kΦ∂
kΦ

〉

(1 + 9Ωm)

]

+
2(1 + z)2

3ΩmH2

[

〈

∂2Φ̇
〉

〈Φ〉
(

HgI −
4

3

)

+H

(

HgI −
2

3

)

(〈

∂2Φ
〉

〈Φ〉 −
〈

Φ∂2Φ
〉)

+
2

3

〈

Φ∂2Φ̇
〉

]

(B5)

where gI = 1
g(t)

∫ t

0
g(t′)dt′.
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