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We clarify the behavior of curvature perturbations in a nonlinear theory in case the inflaton tem-
porarily stops during inflation. We focus on the evolution of curvature perturbation on superhorizon
scales by adopting the spatial gradient expansion and show that the nonlinear theory, called the be-
yond δN-formalism for a general single scalar field as the next-leading order in the expansion. Both
the leading-order in the expansion (δN-formalism) and our nonlinear theory include the solutions
of full-nonlinear orders in the standard perturbative expansion. Additionally, in our formalism, we
can deal with the time evolution in contrast to δN-formalism, where curvature perturbations remain
just constant, and show decaying modes do not couple with growing modes as similar to the case
with linear theory. We can conclude that although the decaying mode diverges when φ̇ vanishes,
there appears no trouble for both the linear and nonlinear theory since these modes will vanish at
late times.

PACS numbers: 98.80.-k, 98.90.Cq

I. INTRODUCTION

Recent observations of the cosmic microwave back-
ground anisotropy [1] show very good agreement of the
observational data with the prediction of standard infla-
tionary cosmology, that is, adiabatic Gaussian random
primordial fluctuations with an almost scale-invariant
spectrum generated from quantum fluctuations of an in-
flaton field during inflation [2–8]. The amplitude of cur-
vature perturbation on a comoving slicing, Rc, is given
by the formula Rc ≈ H2/|φ̇| evaluated at time of hori-
zon crossing t = tk when the wavenumber k satisfying
k = aH , where φ and H are the inflaton and the Hubble
parameter during inflation, respectively. The reason why
it gives an almost scale-invariant spectrum is that both
H and φ̇ change very slowly during slow-roll inflaton.

The main purpose of this paper is to clarify what hap-
pens when the inflaton stops during that, namely, φ̇ ≈ 0,
using a nonlinear perturbation theory. Such a situation
naturally occurs in oscillating inflation or the chaotic new
inflation models [9–11]. For example, it has been shown
by Damour and Mukhanov that oscillating inflation is
realized as the inflaton oscillates around a minimum of
a nonconvex potential [9]. In another example of chaotic
new inflation [11], it has been pointed that the inflaton
changes its direction of motion if model parameters are
approximately chosen.

In both examples, if we use the above formula for
the amplitude of primordial curvature perturbation, it
apparently diverges when φ̇ vanishes. However, Seto,
Yokoyama and Kodama [12] have shown that even in
the case that slow-roll conditions are violated, if a new
formula is applied to this case, the amplitude has still
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finite value, where the time derivative of the scalar field
is replaced by the potential gradient given as Rc ∝
3H3/V ′(φ) at t = tk. In this study, they have inves-
tigated the evolution of curvature perturbations in the
linear theory and shown a decaying mode can diverge at
and around temporary stopping of the inflaton [12, 13].
However, since the decaying mode vanishes at sufficient
late times, there appears no trouble in the linear pertur-
bation theory.

When we take nonlinear effects into account, the de-
caying modes can couple with the growing modes in gen-
eral to convert into growing modes through such effects.
Therefore the ill-behavior of the decaying mode may leave
an observable trace if nonlinear perturbation is incorpo-
rated. The purpose of this paper is to clarify the behavior
of curvature perturbations in a nonlinear theory in case
the inflaton temporarily stops during inflation.

In order to incorporate nonlinearity of curvature per-
turbation, we focus on the evolution on superhorizon
scales and consider a nonlinear cosmological perturbation
theory by adopting a gradient expansion approach [14].
As for the leading-order in the expansion, δN -formalism
[15–18] is a powerful tool to calculate the nonlinearity
of primordial curvature perturbations (recently much at-
tention to as their non-Gaussianity [19]) since it includes
the solutions of full-nonlinear orders in the standard per-
turbative expansion, but this is just a lowest-order and
in this formalism, we should ignore all decaying modes.
Therefore, we have to use the next-leading order in the
expansion, which was recently formulated by one of us,
the so-called beyond δN -formalism [20]. In our formal-
ism, which we will briefly review in the following section,
there exists decaying and growing modes, having their
time-dependences and they lead to time variations of su-
perhorizon curvature perturbations. We will show such
decaying mode also diverges, but they will vanish due to
inflationary expansion in the same way as in the linear
theory, when φ̇ vanishes.

http://arxiv.org/abs/1011.4566v2
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mailto:yokoyama_at_resceu.s.u-tokyo.ac.jp


2

The rest of the paper is organized as follows. In Sec.
II, we review the full-nonlinear cosmological perturbation
theory of superhorizon curvature perturbations. Then
we discuss the growing and decaying modes in both the
linear and nonlinear theories in Sec. III and discuss what
happens on temporary stopping of the inflaton in Sec. IV.
Section V is devoted to the conclusion.

II. BEYOND δN-FORMALISM

In this section, we will briefly review the nonlinear the-
ory of cosmological perturbations valid up to O(ǫ2) in the
spatial gradient expansion and follow the previous works
[20, 21], where ǫ is the ratio of the Hubble length scale
1/H to the characteristic length scale of perturbations L,
used as a small expansion parameter, ǫ ≡ 1/(HL), of the
superhorizon scales. First of all, we show the main result
in our formula for the nonlinear curvature perturbation,
RNL

c ,

RNL
c

′′
+ 2

z′

z
RNL

c

′
+

c2s
4
K(2)[RNL

c ] = O(ǫ4) , (2.1)

which shows two full-nonlinear effects;

1. Nonlinear variable: RNL
c including full-nonlinear

curvature perturbation, δN

2. Source term: K(2)[RNL
c ] is a nonlinear function of

curvature perturbations.

In (2.1), the prime denotes conformal time derivative and
z is a well-known Mukhanov-Sasaki variable which will
be seen later as (2.24). The explicit forms of both the
definition of RNL

c and the source term K(2)[X ], that is
the Ricci scalar of the metric X , will be also seen later, in
(2.23) and in (2.30), respectively. Of course, in the linear
limit, it can be reduced to the well-known equation for
the curvature perturbation on comoving hypersurfaces
[22],

RLin
c

′′
+ 2

z′

z
RLin

c

′ − c2s ∆[RLin
c ] = 0 . (2.2)

We will briefly summarize our formula and show the
above results in the following. Throughout this paper we
consider a minimally-coupled single scalar field described
by an action of the form

I =

∫

d4x
√−gP (X,φ), (2.3)

where X = −gµν∂µφ∂νφ. Note that we do not assume
the explicit forms of both kinetic term and its potential,
that can be given as arbitrary function of P (X,φ).
We adopt the ADM decomposition and employ the gra-

dient expansion. In the ADM decomposition, the metric
is expressed as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (2.4)

where α is the lapse function, βi is the shift vector and
Latin indices run over 1, 2, 3. The equations of motion
corresponding to α and βi lead to constraint equations.
Components of the spatial metric γij are dynamical vari-
ables and the corresponding equations of motion are re-
duced to a set of first-order differential equations with
respect to the time t. We introduce the extrinsic curva-
ture Kij defined by

Kij = − 1

2α
(∂tγij −Diβj −Djβi) , (2.5)

where D is the covariant derivative compatible with the
spatial metric γij . As a result, the basic equations are re-
duced to the first-order equations for the dynamical vari-
ables (γij ,Kij), with the two constraint equations (the
so-called Hamiltonian and Momentum constraint). We
further decompose the spatial metric and the extrinsic
curvature as

γij = a2e2ζ γ̃ij ,

Kij = a2e2ζ
(

1

3
Kγ̃ij + Ãij

)

, (2.6)

where a(t) is the scale factor of the background FRW
universe and detγ̃ij = 1.
Next, we will employ the gradient expansion. In this

approach we introduce a flat FRW universe (a(t), φ0(t))
as a background. As discussed in the first part of this
section, we consider the perturbations on superhorizon
scales, that is, L is longer than the Hubble length scale
1/H of the background, i.e. HL ≫ 1. Therefore, we
consider ǫ ≡ 1/(HL) as a small expansion parameter and
systematically expand our equations by ǫ, considering a
spatial derivative acted on perturbations is of order O(ǫ).
We assume the condition for the gradient expansion:

∂tγ̃ij = O(ǫ2). (2.7)

This corresponds to assuming the absence of any decay-
ing modes at the leading-order in the expansion, namely,
the absence of spatially homogeneous anisotropy. This
is justified in most of the inflationary models in which
the number of e-folds of inflation N is much larger than
the number required to solve the horizon and flatness
problem, N ≫ 60. This assumption is sufficient to allow
us discuss behavior of decaying modes when the inflaton
stops, since all time dependent solutions at the leading
order are reduced to just decaying modes and there exists
no observable trace at late times.
When we focus on a contribution arising from the

scalar-type perturbations, we may choose the gauge in
which γ̃ij approaches the flat metric,

γ̃ij (t → ∞) = δij , (2.8)

where in reality the limit t → ∞ may be reasonably
interpreted as an epoch close to the end of inflation. We
take the comoving slicing, time-orthogonal gauge:

δφc(t, x
i) = βi

c(t, x
i) = O(ǫ3), (2.9)
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where δφ ≡ φ−φ0 denotes a fluctuation of a scalar field.
The subscript c denotes this gauge throughout this paper.
Now we turn to the problem of properly defining a non-

linear curvature perturbation to O(ǫ2) accuracy. Here-
after we will use the expression Rc on comoving slices to
denote it. Let us consider the linear curvature perturba-
tion which is given as

RLin =

(

HLin
L +

HLin
T

3

)

Y, (2.10)

where, following the notation in [23], the spatial metric
in the linear limit is expressed as

γij = a2(δij + 2HLin
L Y δij + 2HLin

T Yij) , (2.11)

with Y being scalar harmonics with eigenvalue k2 in
Fourier space satisfying

(∆ + k2)Y = 0 , (2.12)

and

Yij = k−2

[

∂i∂j −
1

3
δij∆

]

Y . (2.13)

These expressions in the linear theory correspond to the
metric components in our notation as

ζ = HLin
L Y, γ̃ij = δij + 2HLin

T Yij . (2.14)

Notice that the variable ζc reduces to RLin
c at leading-

order in the gradient expansion, but not at second-order
as (2.10) and it will be also similar to the nonlinear the-
ory.
Thus to define a nonlinear generalization of the linear

curvature perturbation (2.10), we need nonlinear gener-
alizations of HLY and HTY . Our nonlinear ζ is an ap-
parent natural generalization of HLin

L Y ,

HLY = ζ . (2.15)

As forHTY , however, the generalization is non-trivial. It
corresponds to the O(ǫ2) part of γ̃ij and we have obtained
a general solution of the dynamical equation for γ̃ij as a
first-order differential equation in [20, 21] and the time-
dependent part includes the following solution;

γ̃ij(t) ∋ C
(2)
ij

∫

dt′

a3(t′)
, (2.16)

with the Momentum constraint:

e3ℓ
(0)

∂iC
(2) = 6f jk

(0)∂j

[

e3ℓ
(0)

C
(2)
ki

]

. (2.17)

The explicit forms of solutions can be seen in [21]. Here
we attach the superscript (m) to a quantity of O(ǫm),

and both ℓ(0) and f
(0)
ij will be denoted as the leading-

order metric in (2.19) and (2.20). Our aim is to derive the

scalar-type solution C(2) from the tensor C
(2)
ij in (2.16)

by using (2.17). As shown in [20], it can be done by in-
troducing the inverse Laplacian operator ∆−1 on the flat
background and we defined the nonlinear generalization
of HTY as

HTY = E ≡ −3

4
∆−1

[

∂ie−3ℓ(0)∂je3ℓ
(0)

(ln γ̃)ij

]

.(2.18)

It is easy to see that E ∋ C(2) which we expected.
At leading-order, the only non-trivial quantities for the

spatial metric, ζ and γ̃ij , are given by

ζ = ℓ(0)(xk) +O(ǫ2), (2.19)

and

γ̃ij = f
(0)
ij (xk) +O(ǫ2), (2.20)

where ℓ(0)(xk) is an arbitrary function of the spatial co-

ordinates {xk} (k = 1, 2, 3) and f
(0)
ij (xk) is a (3 × 3)-

matrix function of the spatial coordinates with a unit
determinant, respectively. Throughout this paper, this
leading-order of spatial metric can be chosen as

f
(0)
ij = δij , (2.21)

consistent with the gauge condition of (2.8). On the
other hand, ℓ(0) represents a conserved comoving cur-
vature perturbation, equivalent to a fluctuation of the
number of e-folds, which is denoted by the so-called δN
term from some final uniform density (or comoving) hy-
persurface to the initial flat hypersurface at t = t∗,

ℓ(0) = δN(t∗, x
i) . (2.22)

With these definitions ofHLY andHTY , we can define
the nonlinear curvature perturbation valid up through
O(ǫ2) as

RNL
c ≡ ζc +

Ec

3
. (2.23)

It is easy to show that this nonlinear quantity can be re-
duced to (2.10) in the linear limit. As clear from (2.18),
findingHTY generally requires a spatially non-local oper-
ation, however, in the comoving slicing, time-orthogonal
gauge with the asymptotic condition on the spatial coor-
dinates (2.8), we find it is possible to obtain the explicit
form of HTY without any non-local operation as seen in
[20].
Next, we can derive a nonlinear second-order differ-

ential equation that RNL
c (2.23) satisfies at O(ǫ2) ac-

curacy by introducing the conformal time η, defined by
dη = dt/a(t) and the Mukhanov-Sasaki variable [22],

z =
a

H

(

ρ+ P

c2s

)
1
2

, (2.24)

where notice that cs is the speed of sound for the gauge
invariant scalar perturbation in the linear theory [24],
given by

c2s =
PX

PX + 2PXXX
, (2.25)
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where the subscript X represents derivative with respect
to X . The result can be reduced to a simple equation of
the form (2.1) as a natural extension of the linear ver-
sion (2.2). We also obtain the solution of the nonlinear
equation (2.1) as

RNL
c (η) = ℓ(0) +

1

4

[

F (η)− F∗

]

K(2)

+
[

D(η)−D∗

]

C(2) +O(ǫ4), (2.26)

where

D(η) = 3H∗

∫ 0

η

z2(η∗)

z2(η′)
dη′ ,

F (η) =

∫ 0

η

dη′

z2(η′)

∫ η′

η∗

z2c2s(η
′′)dη′′ . (2.27)

Here D∗ = D(η∗), F∗ = F (η∗) and H∗ denotes the con-
formal Hubble parameter H = d ln a/dη at η = η∗ which
we take the time as some after the horizon crossing. Note
that t → ∞ corresponds to η → 0 in the conformal time.
Thus the functionsD and F vanish asymptotically at late
times, D(0) = F (0) = 0. Deviation of the solution (2.26)
can be easily understood as follows. The second-order
differential equation (2.1) contains two solutions (even
though its independent relation appears only for the lin-
ear theory), i.e. decaying mode and growing mode. We
can find that the function D(η) satisfies

D′′ + 2
z′

z
D′ = 0 , (2.28)

in the long-wavelength limit, i.e. no source term in (2.1).
It will be seen that it corresponds to the decaying mode
in the linear theory in the next section. On the other
hand, the function F (η) corresponds to the source term
in (2.1), satisfying

F ′′ + 2
z′

z
F ′ + c2s = 0 , (2.29)

as the O(ǫ2) correction to a constant mode at the leading-
order, i.e. as the growingmode in the linear theory, which
is taken the form 1 + F (η)K(2) +O(ǫ4).
Moreover the equation (2.1) includes two ’constants’ of

integration, or arbitrary spatial functions, which in gen-
eral appear as the initial conditions, namely, the initial
value and its time derivative. Let us consider the spa-
tial functions, which we have introduced as ℓ(0), C(2) and
K(2). Here the last one is related to the Ricci scalar of
the 0th-order spatial metric as

K(2)[ℓ(0)] =R
[

e2ℓ
(0)

δij

]

=−2(2∆ℓ(0) + δij∂iℓ
(0)∂jℓ

(0))e−2ℓ(0) , (2.30)

where we have used f
(0)
ij = δij from (2.21). Then we have

the two arbitrary spatial functions: ℓ(0) and C(2), which
are related to the number of physical degrees of freedom

for the initial conditions. Therefore ℓ(0) and C(2) corre-
spond to the initial conditions determined by matching a
solution of n-th order perturbation solved inside the hori-
zon to this superhorizon solution at η = η∗. Notice that
ℓ(0) represents δN term as seen in (2.22) and C(2) orig-
inally comes from the decaying mode of the fluctuation
of the scalar field [20].

III. GROWING AND DECAYING MODES

In this section, firstly, let us consider the growing and
decaying modes in the linear theory. In the linear theory,
the curvature perturbation on comoving hypersurfaces
follows (2.2). As usual, we consider it in Fourier space,

RLin
c

′′
+ 2

z′

z
RLin

c

′
+ c2sk

2 RLin
c = 0 . (3.1)

Real space expressions (2.2) will be recovered by the re-
placement k2 → −∆. This equation has two independent
solutions, conventionally called a growing mode and a de-
caying mode.
The growing mode is a constant at the leading-order

in the long-wavelength approximation or equivalently the
spatial gradient expansion. Then in terms of the growing
mode solution u, the decaying mode solution v can be
given as [25]

v(η) = u(η)
D̃(η)

D̃(η∗)
, D̃(η) = 3H∗

∫ 0

η

dη′
z2(η∗)u

2(η∗)

z2(η′)u2(η′)
.(3.2)

Note that this expression is correct for any order in the
gradient expansion in the linear theory.
The general solution of a curvature perturbation is

written in terms of their linear combinations as

RLin
c (η) = αLinu(η) + βLinv(η) , (3.3)

where the coefficients αLin and βLin may be assumed to
satisfy αLin + βLin = 1 without loss of generality. Note
that the assumption of the gradient expansion (2.7) cor-
responds to the condition,

βLin = 1− αLin = O(ǫ2) . (3.4)

This means, as mentioned before, that the decaying mode
at leading-order in the gradient expansion has already
decayed after horizon crossing.
Therefore the decaying mode solutions can be auto-

matically obtained as following (3.2), if we obtain the
growing mode solutions. Let us solve for the growing
mode solution. In accordance with the gradient expan-
sion, we set

u(η) =

∞
∑

n=0

un(η)k
2n . (3.5)

At the leading-order in the gradient expansion, the grow-
ing mode solution u(0) is just a constant. Then inserting
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the above expansion with u(0) =const. to the equation
of motion (3.1) gives iteratively

u′′
n+1 + 2

z′

z
u′
n+1 = −c2sun . (3.6)

As shown in [25], O(k2) corrections to u(0) can be written
as

u(2) = u(0)
[

C
(2)
1 + C

(2)
2 D(η) + k2F (η)

]

, (3.7)

where the integrals D(η) and F (η) have been given
in (2.27), satisfying (2.28) and (2.29), respectively, as

similar to the nonlinear theory, and C
(2)
1 and C

(2)
2 are

constants of integration. We fix the two constants as

C
(2)
1 = C

(2)
2 = 0 so that u(2) is proportional to the inte-

gral F (η) at O(k2) accuracy 1. Hence we find

u(2)(η) = k2u(0)F (η) . (3.8)

As for the decaying mode, because of (3.4) we only

need the leading-order solution. Since we may replace D̃
with D in (3.2), we immediately find

v(0) = u(0)D(η)

D∗

. (3.9)

Thus from (3.8) and (3.9), the general linear solution
valid up through O(ǫ2) is obtained as linear combination
of constant u(0), growing mode u(2) and decaying mode
v(0), which are proportional to F (η) and D(η), respec-
tively.
As for the nonlinear theory of cosmological perturba-

tions, the solution of (2.26) is also shown as growing and
decaying modes, respectively. We can find that the func-
tion D(η) and F (η) satisfy (2.28) and (2.29), respectively
and they take the same forms, respectively as in the linear
theory. Therefore we can interpret that they correspond
to the decaying mode in the long-wavelength limit, and
the growing mode taken the form 1 + k2F (η) + O(k4),
where F (η) is the k2 correction to the growing (i.e., con-
stant) mode, respectively. In our nonlinear theory, note
that time derivative takes the same form as shown in (2.1)
and (2.2), hence the decaying mode can not couple with
the growing mode as similar to the linear theory because
of the method of gradient expansion (i.e. time deriva-
tive takes as a linear operator). The difference from the
linear theory is the source term , i.e. the Ricci scalar of
the leading order metric K(2), which can be reduced to
k2RLin

c in Fourier space as the source term in the linear
theory (3.1).

1 If we fix the two arbitrary constants as C
(2)
1 = 0 and C

(2)
2 =

−k2F∗/D∗ so that u(η∗) = u(0) holds at O(k2) accuracy, it is the
case of [25] in which they discussed an enhancement of curvature
perturbation on superhorizon scales due to suddenly change of
the inflaton potential’s slope, and its nonlinear effect also can be
studied by matching the linear solution of [25] to our nonlinear
solution in [20]

IV. CROSSING OF φ̇ = 0

We consider the case when φ̇ (or z) crosses zero in
our nonlinear theory. The gradient expansion allows us
to discuss in a similar way as the linear theory [12, 25].
For simplicity, we assume that z changes the sign only
once at η = η0. Hereafter, we consider a canonical single
scalar field, however, the same discussion can be done
in the case of a non-canonical single scalar field, when
PXX ≈ 0.

In the vicinity of η = η0, z can be expressed as

z = z′0(η − η0), (4.1)

where z′0 = z′(η0). Hence the equation for RNL
c becomes

[

d2

dη2
+

2

η − η0

d

dη

]

RNL
c =

−1

4
K(2)[RNL

c ] +O(ǫ4). (4.2)

The two independent solutions in the linear theory (not
guaranteed in the nonlinear theory) can be found as

u ≈ ℓ(0)
(

1− 1

6
K(2)[RNL

c ](η − η0)
2 + · · ·

)

, (4.3)

v ≈C(2)

(

1

η − η0
− 1

2
K(2)[RNL

c ](η − η0) + · · ·
)

. (4.4)

We consider u and v should be chosen as the growing
mode and decaying mode, respectively, and u remains
constant across the epoch η = η0. The second term in
(4.3) can be obtained by the integral F (η), which in this
case is given by

F (η) ∝ lim
η→η0

(η − η0)
2, (4.5)

and shown to be still well defined in the crossing of φ̇ = 0.
The final value of the growing (or non-decaying) mode at
late times will take a constant ℓ(0) (i.e. δN term).

The singularity will appear in the first term in (4.4),
arising from the integral D(η). It can be expressed as in
the case of linear theory and for η > η0, we obtain as

D(η) ∝
∫ 0

η

dη′

z2
≈ 1

z′0
2(η − η0)

. (4.6)

We conclude that this term diverges in the limit η →
η0+0, however, this is just a decaying mode, then it will
vanish definitely at late times as

D(η) ∝ a−3 → 0, with η → 0. (4.7)

Hence we can see that no problem will occur for both the
linear and nonlinear theory.
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V. CONCLUDING REMARKS

We clarify what happens when the inflaton stops dur-
ing inflation for nonlinear cosmological perturbation the-
ory. We focus on the evolution on the superhorizon scales
and review our nonlinear theory, called the beyond δN -
formalism for a general single scalar field as the next-
leading order in the gradient expansion. In our nonlinear
theory, we can deal with the time evolution in contrast
to δN -formalism where curvature perturbations remain
just constant.
As a summary of our formula, note that time derivative

takes the same form as shown in (2.1) and (2.2), hence
the decaying mode can not couple with the growing mode
as similar to the linear theory because of the method of
gradient expansion, i.e. time derivative takes as a linear

operator. The difference from the linear theory is the
source term , i.e. the Ricci scalar of the leading-order
metric K(2), which can be reduced to k2RLin

c in Fourier
space as the source term in the linear theory (3.1).

We can conclude that although the decaying mode di-
verges in the limit of time when φ̇ vanishes, there appears
no trouble for both the linear and nonlinear theory since
this mode will vanish definitely at late times.
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