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The implications for the Dilaton stabilization problem are investigated when the effective potential
for this field is generated by the existence of a massive fermion. The previously evaluated two loop
correction for this quantity indicates that the Dilaton field tends to be fixed at a high value close
to the Planck scale, in accord with the needs for predicting Einstein gravity from string theory.
Moreover, the mass of the Dilaton is evaluated to be close to the Planck mass, which assures the
absence of Dilaton scalar signals in modern cosmological observations. These properties arise when
the fermion mass is chosen to be either at a lower bound corresponding to the top quark mass, or
alternatively, at a very much higher value assumed to be in the grand unification energy range. The
renormalization scale µ is chosen to be given by the Z particle mass. We also consider the case when
µ is a dynamical parameter fixed by minimization of the effective potential. The results rest on the
basic assumption that the higher three or more loop calculations do not drastically affect the two
loop potential. Higher loop sample calculations are expected to be considered elsewhere in order to
give full ground to the conclusions.

PACS numbers: 47.27.-i,05.20.-y

I. INTRODUCTION

The Dilaton is an essential ingredient of superstring theory, and constitutes a scalar field partner of the graviton
[1]. Therefore, the background fields associated with the vacuum state of superstring theory should involve this
field in common with the metric in the basic action. This is referred to as Dilaton gravity [2, 3]. To the lowest
level of approximation the Dilaton is a free and massless scalar field with a special kind of coupling to the matter
fields. As a consequence of this coupling, a time varying Dilaton field determines time-dependent coupling constants.
In order to overcome this difficulty the Dilaton should remain constant during the present stage of evolution of the
Universe. Moreover, unless the Dilaton turns out to be very massive, its existence could lead to an observable “Fifth
force” similar to the ones which are currently associated to the observations of the Dark Matter. The constraints
posed by current experimental observations determine the lower bound on the mass of the Dilaton to be of the order
m < 10−12GeV [4] (but see [5] for an attempt to make a running Dilaton consistent with late time cosmology).
The Dilaton stabilization problem has been at the center of an intense research activity in recent times because

of its physical relevance. It should be emphasized that the Dilaton is one of various scalar fields appearing in the
formulation of superstring theory in the low-energy limit. The sizes and shapes of the extra spatial dimensions
associated with superstring theory are also leading to additional scalar fields, called “moduli fields”. The stabilization
of such moduli fields has been the object of recent attention particularly in connection with Type IIB superstring
theory. The introduction of fluxes within the compactification spaces has made it possible to stabilize various moduli
fields [7]. Also, gaugino condensation [8] has been employed to stabilize the Dilaton field in the context of heterotic
superstring theory [9] and in string gas cosmology [10].
It should be remarked that, since Dilaton stabilization has special relevance for late time cosmology, there is

motivation for finding mechanisms which do not directly rest on the concrete assumptions defining the nature of the
extra dimensions. An additional motivation to search for alternative Dilaton stabilization mechanisms comes from
String Gas Cosmology (SGC). The SGC [11, 12] is a model of early universe cosmology which employs new degrees of
freedom and symmetries of string theory, and couples these elements with gravity and Dilaton fields into a classical
action background model. The Universe is considered to start as a compact space containing a gas of strings. Since in
string theory there is a maximal temperature for a gas of closed strings, the initial state of the cosmological evolution
in SGC will be a phase of almost constant temperature, the so called “Hagedorn phase”. The SGC is able to define
a non-singular cosmology in which there is no starting Big Bang explosion. It has been noted that the thermal
fluctuations in a gas of closed strings in the Hagedorn phase can justify the scale-invariant spectrum of cosmological
fluctuations observed in Nature [13, 14], with a particular prediction of a slight blue tilt for gravitational waves [15].
However, the consistency of the picture requires that the Dilaton field be fixed during the Hagedorn phase. Therefore,
in the SGC theory the Dilaton needs to be fixed at very early times and at very late times.
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Thus, clarifying the mechanisms of Dilaton field stabilization is an important question in particle physics today. It
is worth noting that the universal type of coupling of the Dilaton to the matter fields not only leads to an unwanted
effect as the time-dependence of the coupling constants but it also furnishes the possibility that quantum effects due
to the interaction of the Dilaton with matter might generate interesting contributions to the effective potential of
the Dilaton. In a previous work published in Ref. [16], we started to explore this question. The work considered
the cosmological periods when the additional spatial dimensions of superstring theory were already stabilized and the
study was done in the framework of a four-dimensional field theory. The objective of study was then the interaction
of the Dilaton with massive fermions. Such masses can be defined by fluxes about internal manifolds. In late time
cosmology, the masses could had been generated after supersymmetry breaking. In an alternative early universe
cosmology, one may consider thermally generated fermion masses. Henceforth, in Ref. [16] we started to investigate
the possibility that the appearance of fermion masses could stabilize the Dilaton and also generate its mass.
In Ref. [16] we considered a simple form for the Dilaton gravity action in which a massive Dirac fermion term was

added [17]. The action was chosen in the Einstein frame, which does not show any Dilaton field dependence in the
kinetic terms for the fermions. On the other hand, the fermion mass becomes a function of the Dilaton, involving a
universal exponential factor in Dilaton gravity [2, 3]. The chosen action described the low energy effective interaction
of Super-Yang-Mills fermions with the Dilaton field in superstring theory [16]. The effective potential for the Dilaton
field was evaluated up to two loop corrections in the small Dilaton field limit. A fixed value of the cosmological scale
factor was assumed. The outcome of the work was, thanks to the appearing of logarithms in the loop calculations,
that the Dilaton field appeared in the result in quadratic powers multiplied by the exponential factors of the field.
This structure led to the possible existence of stabilizing minima of the potential in a finite range of the parameters.
Motivated by these results in Ref. [16], we here investigate some of the physical consequences of the two loop

evaluation of the effective potential for the Dilaton field. The main issues are the stabilizing effect of the existence
of massive matter on the mean value of the Dilaton field, and the magnitude of its mass. The potential found in
Ref. [16] was a function of two parameters: the mass m of the fermion field and the dimensional regularization scale
parameter µ. For the mass m two alternatives will be considered. We choose first the highest mass already manifested
by a particle: the top quark mass at nearly 172 GeV. The second choice is a mass value at the GUT scale in the range
of 1016 GeV. For each fermion mass value, two values for the µ scale parameter are selected: firstly, the scale of the
mass of the Z particle (close to 91 GeV). The second selection explores the idea that the scale parameter could be
dynamically defined by the string theory as one further coupling constant of the low energy theory. This assumption
is motivated in the present view by that the coupling constants in string theory behave as dynamical fields. The
existence of minima in the two loop action evaluated in Ref. [16] as a function of µ allows this possibility in the
system under consideration. Accordingly, we first search for a value of µ determining an extremum in the effective
potential for any value of the Dilaton mean field, and then substitute it into the effective action. Next, the mean
Dilaton field is determined by finding the extremum in this modified action.
The results obtained indicate a surprising effect: in all the considered cases the mean value of the Dilaton field

tends to be stabilized at the scale of the Planck mass. Moreover, in all cases the mass of the Dilaton field also comes
out to be of the order of the Planck mass. Therefore, the results suggest that the appearance of mass for matter in
the course of the evolution of the Universe can generate a strong stabilizing action on the vacuum expectation value
of the Dilaton field. This action tends to stop the time evolution of the mean value, which consequently leads it to
relax at high values, at the Planck scale. Further, the Dilaton mean value becomes strongly bound to the value at
the minimum potential, due to the resulting large mass of the order of the Planck mass.
The paper proceeds as follows: In Section II, we rewrite the expressions for the two loop effective potential for the

Dilaton, as calculated in Ref. [16]. Definitions of the parameters and the units in which the analysis is done, are
given here. In Section III we present our evaluation of the effective potential and the Dilaton masses for the case in
which the mass of the fermions are assumed either to have the mass of the top quark mtop ≃ 172 GeV or a mass at
the high GUT unification scale mGUT = 1016 GeV. The mtop value was selected to represent a lower bound for the
yet unknown fermion masses, and mGUT representing the possible existence of fermion matter fields of the order of
the unification scale. In both cases the renormalization scale is chosen to be µ ≃ 91 GeV, as is usual in the Standard
Model. In Section IV we assume that µ in fact is a dynamical variable to be defined by the minimum of the low
energy effective action of the underlying string theory. Again the Dilaton mean fields and their masses are evaluated
at the two energy scales. In the concluding Section V the results are resumed and commented.

II. THE TWO LOOP EXPRESSION FOR THE DILATON POTENTIAL

In this section we will rewrite the result of a two loop calculation of the Dilaton potential which is determined by
the vacuum fluctuations of a fermion field of mass m. This reproduces the evaluation already done in Ref. [16]. Since
the result is expected to be larger for larger values of the masses, the most interesting values of m should be those
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corresponding to the largest masses in Nature. Recall the notation and basic conditions in the starting action in Ref.
[16]:

S =

∫

d4x
√

−g(x)

(

−
1

2κ2
gµν(x)∂µφ(x)∂νφ(x) + Ψ(x)(i

gµνγµ
←→
∂ ν

2
− exp(α∗ φ)m)Ψ(x)

)

, (1)

xµ = (x0, x1, x2, x3),
←→
∂ =

−→
∂ −

←−
∂ , {γµ, γν} = 2gµν(x), (2)

gµν(x) =







1
−1
−1
−1






,
√

−g(x) = 1. (3)

Note that we considered the standard Dilaton Gravity interacting with a massive fermion action in the Einstein frame
in which the metric gµν was approximated by the Minkowski metric in order to simplify the evaluation. Differently
from the choice in Ref. [16], the gravitational constant is here explicitly introduced, and natural units are employed
for the distances and mass. The parameter defining the Dilaton field dependent exponential, the Planck length κ =
lP and mass mP are defined by the expressions

α∗ = −
3

4
, (4)

κ2 =
8πGh

c3
, (5)

κ = lP =
1

mP

= 8.10009× 10−33 cm, (6)

G = 6.67× 10−8 cm3 g−1 s−2, (7)

~ = 1.05457× 10−27 cm2 g s−1, (8)

c = 2.9979245800× 1010 cm s−1. (9)

In the above expression for the action, the coordinates and times are measured in cm, the masses m in the natural
unit cm−1 and the Dilaton field is dimensionless.
Starting from the classical action, we evaluated in Ref. [16] a two loop correction to the effective action, assuming

a homogenous and time independent value of the Dilaton mean field φ as

Γ[φ]

V (4)
= −V eff (φ), (10)

where V (4) is the four dimensional volume. In this work we shall also be interested in estimating the masses of the
Dilaton field. For this reason we shall consider an approximation in which a classical effective action for the Dilaton
field Seff is defined as the classical (tree) kinetic part of the action including the two loop evaluated effective potential
for homogeneous mean fields (as evaluated in inhomogeneous field values φ(x)). For homogeneous field values this
action coincides with the negative of the two loop effective potential and thus its minima define the equilibrium values
of the Dilaton field. In order to eliminate the explicit appearance of the gravitational constant from the expression of
the action, we will absorb it by redefining the Dilaton field value and the α constant as

ϕ = φ/κ, (11)

α = α∗κ = −
3

4
κ. (12)

After these changes, the effective action Seff can be expressed as follows

Seff [ϕ,m, µ] =

∫

d4x

(

−
1

2
gµν∂µϕ(x)∂νϕ(x) − V eff (ϕ)

)

, (13)

V eff (ϕ,m, µ) ≡ V eff (ϕ,m, µ) = V (1)(ϕ,m, µ) + V (2)(ϕ,m, µ), (14)

where the one and two loop corrections to the potential are explicitly given by [16]
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V (1)(ϕ,m, µ) = (
m2

4π
)2 exp(4αϕ)(

3

2
− γ − log(

m2

4πµ2
)− 2αϕ), (15)

V (2)(ϕ,m, µ) =
1

512π4
α2m6 exp(6αϕ)[4( log(

m2

µ2
) + 2αϕ)× (16)

(3(log(
m2

µ2
) + 2αϕ)− 2(5 + log(64) + 3 log π) + 6γ)

+2(25 + 8 log(2)(5 + log(8)) + log(π)× (20 + 6 log(16π)))−

8γ (5 + log(64) + 3 log(π)) + π2 + 12γ2],

γ = 0.57721. (17)

The action Seff can be also expressed in dimensionless coordinates and parameters after defining the Dilaton field,
coordinates x, mass m and scale parameter µ in terms of their dimensionless corresponding counterparts (σ, z,m∗, µ∗),
as follows

σ(z) = |α|ϕ(x), (18)

zµ = m xµ, (19)

m∗ = |α| m, (20)

µ∗ = |α| µ, (21)

which allows to write for Seff

Seff [σ,m∗, µ∗] =
1

α2m2

∫

d4z

(

−
1

2
gµν

∂

∂zµ
σ(z)

∂

∂zν
σ(z)−

α2

m2
V eff (

σ

|α|
,m, µ)

)

=
1

m∗2

∫

d4z

(

−
1

2
gµν

∂

∂zµ
σ(z)

∂

∂zν
σ(z)− V eff

z (σ,m∗, µ∗)

)

, (22)

V eff
z (σ,m∗, µ∗) ≡

α2

m2
V eff (

σ

|α|
,m, µ). (23)

In the following sections we shall investigate what properties the above expressions for the effective action predict
for the vacuum values of the mean Dilaton field and its excitations.

III. DILATON STABILIZATION FOR µ = MZ

Let us now investigate the extremal values of the effective potential V eff
z as a function of the homogeneous values

of the Dilaton field σ for the important case in which the renormalization scale µ is fixed to the mass of the Z boson

mZ = 91.1876± 0.0021 GeV = 4.6211× 1015 cm−1.

We shall search for the minima for two limiting values of the masses: that the largest fermion mass in Nature is at
least of the order of the mass of the top quark

mtop = 172.0± 0.9 GeV = 8.7164× 1015 cm−1,

or at most of the order of the GUT scale

mGUT = 5.06773× 1029cm−1

≡ 1016 GeV.

For this study it is helpful to express the potential in (14) in terms of the Dilaton field σ, and the new parameters
M∗ and X as

M∗ =
m∗

µ∗
, (24)

X = log

(

(m∗)2

(µ∗)2

)

= log
(

(M∗)2
)

. (25)
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With these changes the potential V eff
z becomes

V eff
z (σ,M∗, X, µ∗) = V eff

z (σ,m∗, µ∗)

= µ∗2 (M
∗)2

(4π)2
exp(−4σ)(a1 + log(4π)−X + 2σ)

+µ∗4 (M
∗)4

512π4
exp(−6σ)[4(X − 2σ)(3(X − 2σ) + a2) + a3], (26)

a1 =
3

2
− γ,

a2 = −2(5 + log(64) + 3 log π ) + 6γ,

a3 = +2(25 + 8 log(2)(5 + log(8)) + log(π)× (20 + 6 log(16π)))−

8γ(5 + log(64) + 3 log(π)) + π2 + 12γ2.

Above, the renormalization scale is set at the mass of the Z boson, µ = 91.1876±0.0021 GeV= 4.6211×1015 cm−1,
and the mass of the fermion is fixed at the known lower bound of the mass for the matter field, that is, the top quark
mass mtop = 172± 0.9GeV = 8.7164× 1015 cm−1. Then, the parameter M∗ takes the value

M∗ =
mtop

µ
.

After employing the equivalence factor: 1GeV ≡ 1.6021765× 10−3 cm2g s−2, between the energy expressed in GeV
and in cgs units, the values of the parameters µ∗ and m∗ are

µ∗ = |α| µ =
3

4
κ µ

= 2.8073× 10−17, (27)

m∗ = |α| m =
3

4
κ m (28)

= 5.2958× 10−17. (29)

We plot the potential V eff
z as a function of the value of the Dilaton field σ in Figure 1.
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FIG. 1: The effective potential V (σ) defined by Eq. (26) as a function of the dimensionless Dilaton field σ. The fermion
mass was fixed to correspond to the top quark mass mtop and the renormalization scale µ is chosen to be the Z boson mass.
The minimum of the potential is near the value σ = −36.7765, which indicates that field is stabilized at a high value near the
Planck scale. The high values of the potential also show that the Dilaton mass takes large values near the Planck mass.

The plot clearly shows that the minimum of the potential for the considered physical conditions, is close to the
value σmin = −36.7765. Therefore, the value of the Dilaton mean field at the minimum in natural units (cm−1) is
given by

ϕmin =
4

3

σmin

lP
. (30)

Thus, the Dilaton mean field is near values of the order of the Planck mass

mP = 1.23455× 1032 cm−1,
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assuming the existence of the top quark fluctuations in the physical vacuum.
The mass of the Dilaton, thanks to the approximate structure assumed for the classical effective action in (22), is

simply given as the squared root of the second derivative over σ of the curve depicted in Figure 1, at the point of the
minimum and the chosen values for m∗ and µ∗. Evaluating this quantity gives for the Dilaton mass in the present
case the value

mtop
Dilaton(Z) =

√

m2
d2

dσ2
[V eff

z (σ,m∗, µ∗)]σ=σmin

= 9.0408× 1030 cm−1.

We can then conclude that the presence of the top quark fluctuations in the physical vacuum, as reflected in the two
loop calculation, tends to stabilize the Dilaton field to a value tightly at the Planck mass scale. Furthermore, these
fluctuations also generate a large contribution to the Dilaton mass, which resulted in being close to the Planck mass.
Such results suggest that the observability of the Dilaton field in string theory may be strongly suppressed at the
late stages of the cosmological evolution, after the particles have been massified at their currently observed values.
Since the top quark is an experimentally observed particle, the total effective action of the Dilaton should include its
evaluated contribution. However, in High Energy Physics one may expect the existence and perhaps future detection
of much more massive fermion particles. Therefore, we consider performing a similar evaluation in which we choose
a mass at the Grand Unification scale

m
GUT

= 1016 GeV.

≃ 5.06773× 1029cm−1. (31)

The renormalization scale will be again fixed at the same Z boson mass. The effective potential curve for this case
is plotted in Figure 2. Obviously the mean field at the stable point σmin is lower in absolute value than at the top

-5.5 -5.0 -4.5 -4.0 -3.5 -3.0
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FIG. 2: The plot of the potential V (σ) defined by (26) but now evaluated at a larger fermion mass, at the grand unification
scale mGUT = 1016 GeV. The renormalization scale µ was taken as the value of the Z boson mass. Note that, as before, the
Dilaton field is stabilized at a somewhat lower value, σ = −5.08272, still close to the Planck scale. Similarly, the large values
of the potential show that the Dilaton mass will again be close to the Planck mass.

quark scale. However, the variation is not so large and the existence of massive fermions at the GUT scale also fixes
the Dilaton mean field value around the Planck scale. The second derivative of the potential determines a Dilaton
mass of the value

mGUT
Dilaton(Z) =

√

m2
d2

dσ2
[V eff

z (σ,m∗, µ∗)]σ=σmin

= 3.0206× 1030 cm−1.

Henceforth, the evaluations done in this section, suggest that whatever the values of the masses for the physical
fermions are, in the range from mtop to mGUT , the Dilaton mean field in the vacuum might be stabilized at the Planck
scale and moreover, show an experimentally inaccessible high value of its mass. It should be underlined, that the full
justification of this conclusion rests on the applicability of the evaluated two loop contribution to the effective action.
A factor that could help to support this conclusion is that the numerical coefficients in higher loop contributions are
expected to decrease with the order of the loop. Therefore, a direct evaluation of three loop corrections seems to be
the most appropriate way of checking the present two loop results.
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IV. ASSUMING µ AS A DYNAMICAL PARAMETER

Nowadays, there is a quite general belief that the physical coupling constants in the low energy effective theories of
string theory are in fact not constants, but dynamically fixed fields of the underlying superstring theory. Adopting this
view, after we had obtained the two loop terms for fermion contributions to the effective action of the Dilaton in Ref.
[16], we noticed that the potential can show minima with respect to the dimensional regularization scale parameter µ.
Therefore, the possibility appeared to explore the consequences of assuming the scale µ to be a dynamical quantity
so that scale variations would exhibit a minimum at an equilibrium vacuum state in the effective potential. For this
purpose let us consider V eff

z as given by (26) but as a function of the parameters (σ,m∗, X) in place of (σ,M∗, X) as
employed in the definition (26), now expressing M∗ as a function of m∗ through (24). Then one may note that the

dependence of the potential on the scale µ is exclusively through the parameter X defined in (25) as X = log( (m
∗)2

(µ∗)2 ).

Thus, an extremum of the action over µ becomes also an extremum over the parameter X . Imposing the vanishing
of the derivative over X of the potential,

d

dX
V eff
z (σ,m∗, X) = 0,

leads to an explicit expression of X in terms of the Dilaton fields as

X(σ) =
1

24

(

32π2

m∗2
exp(2σ) + 32σ − a2

)

. (32)

Substitution of this formula into the expression for the potential gives its dependence on σ, after the extremum
condition over X is already imposed

V eff
z (σ,m∗, X(σ)) =

m∗2

(4π)2
exp(−4σ)(a1 + log(4π)−X(σ) + 2σ ) +

+
(m∗)4

512π4
exp(−6σ) [4(X(σ)− 2σ) (3(X(σ)− 2σ) + a2 ) + a3 ]. (33)

The dependence of the potential on the Dilaton field σ is shown in Figures 3 and 4, each of them considered
respectively for the two representative values of the fermion masses mtop and mGUT .
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FIG. 3: The plot of the potential V (σ) defined by the formula (33). The fermion mass is chosen at the top quark mass
value and the renormalization scale is considered a dynamical quantity as defined by the extremum of the effective potential.
Therefore, the formula for X in (25), expressing the extremal condition for the renormalization scale µ has been substituted in
the effective potential. The results repeat the main indications of the previous section: the Dilaton field and its mass both get
values near the Planck scale.

The most relevant issue in these pictures is, that they show that the extremum value of the mean field is at the
Planck scale in both cases. That is, also in the situation when the renormalization scale parameter is assumed to
be dynamically fixed, the vacuum value of the Dilaton field receives high values consistent with the expectation that
this parameter is currently unobservable. The Dilaton mass can be found by calculating the second derivative of the
potential with respect to σ, but maintaining m∗ and X constant (note that this is not the second derivative of the
curve shown in Figure 3, since it assumes X to be dependent of σ for the plot). The results for the two fermion masses
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are

mtop
Dilaton(dyn.) =

√

m2
d2

dσ2
[V eff

z (σ,m∗, µ∗)]σ=σmin

≃ 5.84262× 1031 cm−1,

mGUT
Dilaton(dyn.) =

√

m2
d2

dσ2
[V eff

z (σ,m∗, µ∗)]σ=σmin

≃ 1.80502× 1032 cm−1.

As these numbers indicate, the Dilaton masses are also at the currently unobservable Planck scale.
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FIG. 4: A similar plot of the potential V (σ) defined by the formula (33), but in which the fermion mass is given by the
GUT unification value mGUT = 1016 GeV and the renormalization scale is considered as a dynamical quantity to be defined
by the extremum of the effective potential. Therefore, the formula for X in (25), expressing the extremal condition for the
regularization parameter µ has been substituted into the effective potential. The results repeat the main indications of the
previous section: the Dilaton field and its mass get values near the Planck scale.

V. CONCLUSIONS

The predictions for the Dilaton stability determined by the previously evaluated two loop corrections to the Dilaton
field interacting with a massive fermion field are investigated here. The fermion field mass values are considered in
two cases: the top quark mass representing the lower bound of all existing but yet unknown fermion masses in Nature,
and the energy scale of the grand unification theories of order 1016 GeV. The renormalization scale parameter was
also chosen in two options: a value coinciding with the Z boson mass, and alternatively a variable µ, a dynamical
quantity to be fixed at its value determining a minimum of the effective potential. In all the above described situations,
the results interestingly indicate that the Dilaton mean field results stabilize at the very high values required by its
role in allowing gravity to have its observed properties. Furthermore, the Dilaton field is also found to be strongly
stabilized around these mean values, by showing a large mass near the Planck mass. Therefore, this work identifies
a clear explanation for the lack of observable consequences of the Dilaton field in superstring theory. Moreover, one
understands its dynamical fixation to the high values required to predict the observable Einstein nature of gravity
predicted by the same theory. It should be remarked that the conclusions arising rest on the assumption that higher
than two loops contributions will not alter the results. The higher loop evaluations required for the verification of
this condition are expected to be addressed in further extensions of the work.
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