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Magneto-elastic torsional oscillations of magnetars
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Abstract. We extend a general-relativistic ideal magneto-hydrodynamical code to include
the effects of elasticity. Using this numerical tool we analyse the magneto-elastic oscillations
of highly magnetised neutron stars (magnetars). In simulations without magnetic field we are
able to recover the purely crustal shear oscillations within an accuracy of about a few per cent.
For dipole magnetic fields between 5 x 10'% and 10'® G the Alfvén oscillations become modified
substantially by the presence of the crust. Those quasi-periodic oscillations (QPOs) split into
three families: Lower QPOs near the equator, Edge QPOs related to the last open field line
and Upper QPOs at larger distance from the equator. Edge QPOs are called so because they
are related to an edge in the corresponding Alfvén continuum. The Upper QPOs are of the
same kind, while the Lower QPOs are turning-point QPOs, related to a turning point in the
continuous spectrum.

1. Introduction

The theoretical framework of relativistic elasticity has been developed recently in a series of
papers by [1l 2 B, [4]. One natural application of this theory is the crust of a neutron star,
where the structure of the matter is crystalline and it is able to support shearing motions.
When calculating the oscillatory modes supported by the crust, one has to include the effects of
gravitation, which influence the theoretically obtained frequencies for isolated neutron stars
significantly. Candidates for observations to test theoretical models basing on relativistic
elasticity can be found in the decaying tail of a giant burst of a soft-gamma repeater (SGR). In
the giant flares of two such objects, SGR 1900414 and SGR 1806-20, a number of long-lasting,
quasi-periodic oscillations (QPOs) have been observed (see [5] and [6] for recent reviews).

The first attempts to explain those QPOs are based on models of purely crustal shear
oscillations of an isolated neutron star (see e.g. [7, 8, 9 10, 1T, 12]). However, SGRs are
believed to posses ultra strong magnetic fields B ~ 10'° G, and it is necessary to construct
self-consistent models including the interaction of the Alfvén oscillation with the crustal shear
modes ([13] [14], [15] 16 17]). A second approach to understand these QPOs is therefore based on
purely Alfvén oscillations without a crust (see e.g. [I8, 19, 20]). In those studies two families of
QPOs were found. They are related to the open field lines near the pole and to the closed field
lines near the equator. That Alfvén QPO model is very attractive, because it reproduces the
near-integer-ratios of the observed 30, 92 and 150 Hz frequencies in SGR. 1806-20. The results
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of the numerical simulation agree with a semi-analytic model based on standing waves in the
short-wavelength limit [19].

Naturally any realistic model has to include both contributions, the crust and the magnetised
core. In first simplified models, it was shown that the effect of the coupling between crust and
core may lead to an absorption of shear modes into a MHD continuum of Alfvén oscillations [15].
Additionally long-lived QPOs may still appear at the turning points or edges of the continuum.

Here we extend a previous model of [19] to simulate coupled, magneto-elastic oscillations in
a general-relativistic framework. We use a dipolar magnetic field and a tabulated equation of
state (EOS) for dense matter. The numerical simulations are based on state-of-the-art Riemann
solver methods for both the interior MHD fluid and the crust.

We use units where ¢ = G = 1 with ¢ and G being the speed of light and the gravitational
constant, respectively. Latin (Greek) indices run from 1 to 3 (0 to 3).

2. Theoretical model
Following the analysis by [19], who considered purely Alfvén oscillations of magnetars with a
two-dimensional, general-relativistic, ideal magnetohydrodynamic code called MCoCoA [21], we
extend this code by including the effects of the crust in general relativity. As in [22] this can be
done by including an additional term Te/f;s in the stress-energy tensor
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where p is the rest-mass density, h the specific enthalpy, P the isotropic fluid pressure, u* the
4-velocity of the fluid, b* the magnetic field measured by a co-moving observer (with b? := b b)),
># the shear tensor, and ug the shear modulus, respectively. The latter is obtained according
o [10]. As in the previous work we apply a number of simplifications: (i) a zero temperature
EOS, (ii) axisymmetry, (iii) a purely poloidal magnetic field configuration, (iv) the Cowling
approximation, (v) a spherically symmetric background and (vi) small amplitude oscillations.
Assumptions (ii) and (iii) lead in the linear approximation to the decoupling of polar oscillations
from axial ones. We further assume a conformally flat metric

ds® = —a’dt* + ¢* (dr® + r?d6* + r* sin 2d?) | (2)

where « is the lapse function and ¢ the conformal factor. Employing the induction equation for
the magnetic field, the equations of the conservation of energy and momentum can be cast into
a conservation law of the following form
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where g and ~ are the determinants of the 4-metric and 3-metric, respectively. The two-
component state and flux vectors are given by
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where B® are the magnetic field components as measured by an Eulerian observer [23], and
W = au! is the Lorentz factor. The shear tensor X% = 1/ Qg”ffl- contains the spatial derivatives



(denoted by a comma) of the fluid displacement ¥ due to the oscillations, which are related to
the fluid 4-velocity according to §‘ft = av? = u¥/ul, where v¥ is the p-component of the fluid
3-velocity.

The boundary conditions at the surface %, = 0 is a consequence of the continuous traction
condition and vanishing currents at the surface of the star. At the crust-core interface the
continuous traction condition together with condition of continuous parallel electric field (and
so continuous &,) imply Eore,r = (1 +0) €4 s, With & = ps/(b,0") .

The equilibrium models for our simulations are constructed using the LORENE library
(www.lorene.obspm.fr).

As an additional tool for the analysis of the coupled magneto-elastic oscillations of the neutron
star, we extend the semi-analytic model of [19] by including a description of crust-core coupling.
That provides a comparison aiding the interpretation of our numerical results. In the linear
regime and in the limit of short wave lengths an Alfvén wave travels along the magnetic field
line corresponding to p

X
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where v, is the Alfvén velocity. Assuming standing waves along the magnetic field lines one can
derive the following dispersion relation

K

- 27Tttot ’ (8)
where tio; is twice the total travel time of an Alfvén wave travelling along a magnetic field line
starting from the equatorial plane and ending at the surface or another point at the equatorial
plane. At this point the frequency of the oscillations is completely determined by the magnetic
field topology and the boundary conditions. Each field line is oscillating independent from
the others with its own frequency. Therefore the collective of all lines forms a continuum of
frequencies.

This model may be modified in the presence of the crust in two limiting cases. One may
assume that the standing wave gets reflected at the crust-core interface, meaning that tiot
describes twice the total travel time up to the crust-core interface instead of the surface of
the star. Simultaneously the boundary condition at the crust-core interface changes to zero
amplitude in the crust. This possibility should be valid for low magnetic fields.

In the second case one may integrate up to the surface of the neutron star, but additionally
take the shear velocity in the crust v into account. The resulting travel time is then obtained

from
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This is only an approximation because we are dealing with isotropic shear and so there is no
preferred direction in contrast to the case with only magnetic field. Nevertheless it is expected
to be valid approximately when the magnetic field dominates in the above equation.

3. Results

To check the reliability of our method we first compare the frequencies of the purely shear
oscillations obtained in our simulations with those available in the Literature [10]. The numerical
grid for the simulations consisted of 60 points in # direction between 0 and /2 and 120 in radial
direction from 0 to the surface of the star, corresponding to about 20 points in the crust. The
comparison can be found in table[ll Despite the different methods, i.e. eigenmode calculation
in [10] and Fourier analysis of the numerical evolution in this work, we are able to recover the
frequencies of the crustal shear modes with very good accuracy of at least a few per cent.



Table 1. Crustal shear frequencies of different equilibrium models described in [10]. The values
in parenthesis are reference values given in [10].

Model | frequency in Hz for mode
n=0 (+1Hz) n=1
1=2 1=3 1=4 | +20Hz

APR+DH 1.6 | 23.5 (23.4) 37.1 (37.0) 49.8 (49.6) | 880 (860)
APR+DH 2.0 | 21.9 (21.3) 35.1 (33.6) 46.8 (45.1) | 1070 (1083)

L+DH 1.6 20.5 (20.6) 32.5 (32.5) 43.8 (43.7) | 590 (586)

L+DH 2.0 19.0 (18.9) 30.2 (29.9) 40.5 (40.2) | 720 (713)
WFF3+DH 1.6 | 25.2 (25.2) 39.8 (39.9) 53.4 (53.5) | 1130 (1101)

For the remainder of this section we will present results which refer to the specific stellar
model with 1.4 Mg and circumferential radius of about 12.26 km. The employed equation of
state of the core APR is described by [24] and is matched to the one of DH [25] for the crust.
In any case we do not obtain qualitatively different results for different EOS or the same EOS
but different masses of the model.

In the simulations we find three different regimes, depending on the relative strength between
the magnetic field and the shear terms of the crust. For low magnetic fields B < 5 x 10" G the
purely crustal shear modes are recovered as shown above. With increasing field strength, the
influence of the magnetic field increases and the crustal shear modes become damped [26]. For
larger magnetic fields B > 10'® G the magnetic field dominates the evolution and our results
approach those of [19].

Here we will focus on the intermediate regime, where the crust has a significant influence on
the long-term oscillations occurring in the core of the neutron star. For magnetic fields between
5 x 103 and 10" G the coupled magneto-elastic oscillations hardly reach the surface of the
star. Their largest oscillation amplitudes are located inside the liquid core of the star, see [26]
for more details. Further changes compared to the case without crust [19], can be studied in
figure [Il where we show the magnitude of the Fourier transformation averaged along individual
magnetic field lines denoted by their crossing point with the equatorial plane. The two panels
show simulations with either odd (left) or even (right) symmetry with respect to the equatorial
plane. The solid and dashed, red and green lines indicate the position of the Alfvén continuum
obtained with the semi-analytic model, if reflection at the crust-core interface is assumed. First

we note that the structure with the lowest frequency, the fundamental QPO U0(+), has even
parity. This is in contrast to the simulations without crust, where this particular QPO even did
not exist at all and the fundamental oscillation had odd parity. The local maximums in figure [II
denoted by U,si) are directly related to the continuum (red lines). We therefore interpret them
as similar to the Upper QPOs in [19] with the difference that in the presence of a crust they are
located significantly away from the polar axis. Probably the effects of the crust interfere in the
building of standing waves near the pole, such that no stable standing waves can be maintained
there. We indicate the corresponding region by the dashed lines in figure Il The second family,

called Lower QPOs Lgli) around the closed field lines is reproduced qualitatively as in the case
without crust. The only difference is that those QPO are in the present case confined to the field
lines which close inside the liquid core of the neutron star. This is not surprisingly, because the
crust is not expected to influence the oscillations along those magnetic field lines. In contrast to
[18, 9] we find a third family of QPOs related to the last magnetic field line, which just fails to
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Figure 1. The magnitude of the Fourier transformation averaged along individual field lines
denoted by their crossing point with the equatorial plane. left panel: simulation with odd
parity; right panel: simulation with even parity. The solid and dashed lines represent the
Alfvén continuum in the core, obtained with a semi-analytic model. Black points indicate the

locations of Upper QPOs U,(Li), Lower QPOs L%i) and Edge QPOs E,(L+). The color scale reaches
from white (minimum) to orange-red (maximum).

close inside the core. QPOs at similar locations have been found by [20] in simulations without
crust.

The different families can be interpreted according to [I5] in the following way: the Lower
QPOs are related to a turning point in the spectrum (green lines in figure [I} obtained with the
semi-analytic model), so they are turning-point QPOs; the Upper QPOs, which were related in
[19] to the turning point at the polar axis change their character and become edge QPOs located
at the edge of the continuum indicated by the end of the solid and the beginning of the dashed
lines; the new family of even QPOs may be related to those parts of the continuum of the open
field lines, which do not connect to that of the closed field lines. Since they are located at an

edge of the continuum (solid red lines), we call this new family Fdge QPO E,(L+).

4. Conclusions

At magnetic field strength below 5 x 102 G the torsional oscillations in magnetars are dominated
by the crustal shear modes. For very large fields B > 10'® G our results approach those of [19]
without crust. In the intermediate regime the crustal modes disappear quickly, but the presence
of the crust influences the magneto-elastic oscillations significantly in different ways: First, the
structure of the obtained Upper QPOs changes as a consequence of a reflection at the crust-core
boundary. Those QPOs are now located between the polar axis and the equator. Additionally
they have a minimum at the crust-core interface and vanishing amplitude inside the crust; second
a new family of Edge QPOs appears due to the coupling of the field lines which just fail to close
inside the liquid core; third the Lower QPOs are limited to the field lines closing inside the liquid
core.



To summarize the shear oscillations of the crust are damped efficiently and the magneto-
elastic QPOs have negligible amplitudes in the crust for magnetic field strengths in the range of
5 x 10'3 to 10 G. Therefore, our simulations favor magneto-elastic oscillations at field strength
> 10! G as a possible explanation for the observed magnetar QPOs.
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