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ABSTRACT

A class of hybrid (topologically) massive off-shell supergravities coupled to an on-shell

matter scalar multiplet was recently constructed. The auxiliary field in the off-shell mul-

tiplet is dynamical for generic values of the eight parameters. We find that by choosing

the parameters appropriately, it remains non-dynamical. We perform linearized analysis

around the supersymmetric AdS3 vacuum and its Minkowski limit. The ghost-free condi-

tion for the Minkowski vacuum is explored. For the AdS3 vacuum, we obtain the criticality

condition and find that at the critical points, one of the two massive gravitons becomes

pure gauge and decouples from the bulk physics, whilst the other has positive energy. We

demonstrate that the mass of the BTZ black hole is non-negative at the critical points.

We also investigate general BPS solutions. For certain parameter choices, we obtain exact

solutions. In particular, we present the BPS string (domain-wall) solution that is dual to

certain two-dimensional quantum field theory with an ultra-violet conformal fixed point.
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1 Introduction

The foundation of Einstein’s theory of gravity is the principle of the general coordinate

transformation invariance. The Einstein-Hilbert action is the minimal dynamical theory

that incorporates this principle. Its successes in large scale physics notwithstanding, the

theory is non-renormalizable in the frame work of quantum mechanics. Insisting on this

principle, the Einstein-Hilbert action can only be modified by adding higher-derivative

terms, such as polynomial invariants constructed from the Riemann curvature tensor. While

indeed theories with a finite number of such higher-order terms can become renormalizable,

it is at the price of unitarity [1]. At the level of effective field theory, string provides an

infinite number of higher-order terms in such a specific way that the resulting theory is

expected to be both unitary and finite. However, this theory is too complicated to play

with.

Gravity in three dimensions is simple since the Einstein-Hilbert action provides no phys-

ical degrees of freedom. However, by adding higher derivative terms dynamics can be

generated. The resulting theory becomes non-trivial but simpler than Einstein gravity in

four dimensions, thus provides a non-trivial toy model for studying quantum gravity. The

best known example is topologically massive gravity which is constructed by adding the

Lorentz-Chern-Simons term to the Einstein-Hilbert action. Consequently, a massive gravi-

ton emerges [2, 3]. The theory is not unitary with the standard Einstein-Hilbert action,

but can be made so by reversing the sign of the action. However, when coupled to a cosmo-

logical constant [4], the negative sign of the Einstein-Hilbert action implies that the BTZ

black hole, which is an excited state in the theory, has negative mass. In [5], cosmological

topologically massive gravity with the standard Einstein-Hilbert action was revisited. It is

argued that the ghost-like massive graviton decouples at certain critical point of the param-

eter space. The critical theory is then conjectured to be self-consistent quantum gravity via

the AdS/CFT correspondence.

Subsequently, new massive three-dimensional gravity (NMG) with quadratic Riemann

curvature invariants were constructed and shown to be unitary [6]. This inspires later con-

structions of a plethora of (topologically) massive (super)gravities [7, 8] in three dimensions,

as well as the higher dimensional generalizations [9]. (See also a recent review [10].) All

these theories involve only the metric (or the supergravity multipet), and the most general

construction has seven parameters [8]. Recently, an eight-parameter N = 1 supergravity

with a matter scalar multiplet was constructed [11]. The theory is of particular interest

since it is hybrid in that the supergravity multiplet is off-shell with higher derivative terms
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in the action whilst the matter multiplet is on-shell with at most two derivatives.

An important feature of all these three-dimensional massive supergravities is that the

supersymmetry can be off-shell. The consequence is that such a theory can be complete

in terms of supersymmetry by adding just any finite number of higher-derivative super

invariants. This is very different from string theory or M-theory whose supersymmetry

is on-shell. The completeness of the supersymmetry alone requires an infinite number of

higher-order terms once just one term beyond the second derivative is introduced. (See

for example [12].) Furthermore, the existence of the hybrid theory [11] demonstrates that

in three dimensions even if higher-derivative terms in gravity sector are inevitable in a

quantum theory, the matter sector can still be minimally coupled. This is desirable since

the matter sector such as the Standard Model is indeed renormalizable without having to

go beyond two derivatives. These features make three dimensions an attractive starting

point to study quantum gravity.

We begin our discussion in section 2 by reviewing hybrid topologically massive su-

pergravity. We give the bosonic action, the equations of motion and the supersymmetry

transformation rules. As in typical off-shell supergravity, the auxiliary field can acquire

dynamics when higher-order super invariants are added to the action. This makes the anal-

ysis much more complicated. In section 3, we find that by choosing the eight parameters

appropriately, the auxiliary scalar field S stays non-dynamical. This simplifies the theory

significantly, but it is non-trivial with five parameters left. Interestingly, it turns out that

the ratio of the coefficients of the R2 and RµνRµν terms is −3/8, the number needed for

the new massive gravity [6] to be unitary. We also present analogous four-parameter pure

massive supergravity without the matter multiplet.

We consider the limit of the five-parameter hybrid theory for which its supersymmetric

vacuum becomes Minkowski space-time and then perform a linearized analysis around this

vacuum. The spectrum consists of one massless scalar mode and two massive graviton

modes. The consequence of the inclusion of the scalar multiplet is that the theory in general

becomes non-unitary regardless of the sign of the Einstein-Hilbert action. However, we find

that there exists a special point of parameter space for which the on-shell Hamiltonian for

the two massive graviton modes vanish identically, signalling that the linearized analysis

breaks down and a possibility that the theory may become unitary.

We also perform linearized analysis around the supersymmetric AdS3 vacuum. Some

aspects of the linear analysis for the tensorial and scalar modes for general parameters were

given in [11]. Specializing to our choice of parameters, we find that the theory in general has
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one scalar mode and two massive graviton modes. Since the matter scalar mode cannot be

gauged away, we have to restrict parameters so that the scalar mode is not ghost like. This

can be achieved by requiring that the super invariant in the action involving the Einstein-

Hilbert term has to have positive coefficient. Then one of the massive gravitons becomes

inevitably ghost. We obtain the critical points for which the ghost massive graviton becomes

pure gauge and decouples from the bulk physics, and then verify that the remaining massive

graviton indeed has positive energy. This result applies also to four-parameter pure massive

supergravity. Owing to the complexity arising from the dynamical nature of the auxiliary

field S for generic parameters, no conclusion was made in [11] about the stability of the

scalar mode. For our specialized theory where S is non-dynamical, we demonstrate that

the scalar mode is stable at the critical points satisfying the Breitlohner-Freedman bound.

This suggests that the theory may be well-defined at these critical points.

In section 4, we obtain the mass and angular momentum for the BTZ black hole that

is asymptotic to the supersymmetric AdS3 vacuum. We demonstrate that at the critical

points, the mass is non-negative and always greater or equal to the angular momentum.

We also verify that the first law of thermodynamics holds.

In section 5, we obtain BPS string (domain-wall) solutions of the eight-parameter super-

gravity. The equations reduce to one third-order ordinary non-linear differential equation.

For certain parameter choices, including the five-parameter theory, the solutions can be

obtained explicitly. These solutions are asymptotic to AdS3 and are expected to be dual to

certain two-dimensional field theory with an ultra-violet conformal fixed point. We discuss

the characteristics of the spectrum using the standard free-scalar approach.

In section 6, we investigate general BPS solutions. We find that for general parameters,

equations can be reduced to two differential equations. For some special choices of parame-

ters, we are able to obtain the exact solutions. In particular we derive solutions that arise at

the critical points of the five-parameter theory discussed in section 3. The paper concludes

in section 7.

2 The theory

HybridN = 1 topologically massive supergravity involves an off-shell supergravity multiplet

(eaµ, ψµ, S) and an on-shell scalar matter multiplet (φ,ψ). The full action up to quartic

fermion were given in [11]. For our purpose, we are concerned with the bosonic sector,
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namely

I =
1

κ2

∫

d3x
√−g

[

σe−2φ[R+ 4(∂φ)2 + 4m2 + 2S2] + 4m̃S − 2a(RS + 2S3)

+1
4α(4RµνR

µν −R2 − 8(∂S)2 + 12S4 + 4RS2) + c(3RS2 + 10S4)

+b(R2 − 16(∂S)2 + 12RS2 + 36S4)
]

+ 2βmLLCS , (2.1)

where

LLCS = 1
2ǫ

λµνΓρ
λσ

(

∂µΓ
σ
ρν +

2
3Γ

σ
µτΓ

τ
νρ

)

. (2.2)

The theory contains eight parameters, including seven continuous ones (m, m̃, α, β, a, b, c)

and one discrete σ which takes values of 0,±1. We do not count the three dimensional κ

as a non-trivial parameter. The supersymmetric transformation rules are given by [11]

δeaµ = 1
2 ǭγ

aψµ , δψµ = Dµǫ+
1
2γµSǫ , δS = 1

4 ǭγ
µνDµψν − 1

4 ǭγ
µψµS ;

δψ = 1
4e

5
4
φ(γµ∂µφ+ S +m)ǫ , δφ = e−

5
4φǭψ . (2.3)

The first three transformations are self contained and close off-shell; the last two transfor-

mations close on-shell. As discussed in [11], one cannot truncate out the scalar multiplet

to obtain the seven-parameter theory. The supersymmetry transformation rules imply that

setting (φ,ψ) zero, the auxiliary field S is fixed and the whole theory reduces to standard

cosmological topologically massive supergravity.

The equation of motion associated with variation of the dilaton is given by

4�φ− 4(∂φ)2 +R+ 2S2 + 4m2 = 0 . (2.4)

The equation of motion for the auxiliary field S is given by

(α+8b)�S+σe−2φS+m̃− 1
2a(R+6S2)+(3α+36b+10c)S3+ 1

2(α+12b+3c)RS = 0 . (2.5)

The Einstein’s equations are more complicated, given by

σe−2φ(Rµν + 2∇µ∇νφ)− 2m̃Sgµν

+α
[

�Rµν − 1
2∇µ∇νR− 4Rµ

λRλν +
5
2RRµν +

3
2gµν(RρσR

ρσ − 7
12R

2)

−3
2S

4gµν +GµνS
2 − (∇µ∇ν − gµν�)S2 − 2∂µS∂νS + (∂S)2gµν

]

−2βmCµν + 2a
[

S3gµν −GµνS + (∇µ∇ν − gµν�)S
]

−b
[

(∇µ∇ν − gµν�)F − FRµν + 16∂µS∂νS + 1
2gµν(R

2 − 16(∂S)2 + 12RS2 + 36S4)
]

+c
[

3S2Rµν − 3(∇µ∇ν − gµν�)S2 − 1
2gµν(3RS

2 + 10S4)
]

= 0 , (2.6)

where

Gµν = Rµν − 1
2Rgµν ,
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Cµν = ǫµ
ρσ∇ρ(Rσν − 1

4gσνR) ,

F = 2(R + 6S2) . (2.7)

Note that the supergravity multiplet involves up to four derivatives whilst the matter scalar

φ involves at most two derivatives.

3 Super-NMG with scalar multiplet and CS terms

As we can see in the previous section, the auxiliary field S in the generalized topologically

massive gravity acquires dynamical terms when higher-order off-shell super invariants are

involved. However, for some specific choice of parameters, we find that the S field remains

non-dynamical. This corresponds to set

α = 6c , a = 0 , b = −3
4c . (3.1)

The reduced theory has five parameters, and the action is given by

I =
1

κ2

∫

d3x
√−g

[

σe−2φ(R+ 4(∂φ)2 + 4m2 + 2S2) + 4m̃S +
1

6ν2
S4

+
1

ν2
(RµνR

µν − 3
8R

2)
]

+
1

µ
LLCS . (3.2)

Note that here we have renamed two parameters, namely ν2 = 1/(6c) and µ = 1/(2βm).

The parameters (m, m̃, µ, ν) all have the same dimension [length]−1. The parameter ν is

chosen for the convenience of dimensional analysis and it is understood that ν2 can be

negative as well.

The equation of motion for S now becomes purely algebraic, namely

σSe−2φ + m̃+
1

6ν2
S3 = 0 . (3.3)

As in the general case, the supersymmetric vacuum is an AdS3 [11], but now with

Rµν = −2m2gµν , S = −m, φ = 0 , m̃ = −σm− m3

6ν2
. (3.4)

Note that in this paper, we shall take a convention that φ = 0 for the AdS3 vacuum. This

can always be achieved if we let the parameter σ to be continuous. When m = 0 = m̃, the

vacuum becomes Minkowski space-time.

It is interesting to note that the −3
8 factor of ghost-free new massive gravity [6] also

arises in our case. Thus the theory is a hybrid generalization of the pure super-NMG. It

is worth pointing out that all the off-shell super invariants in (2.1) that decouple from the
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dilaton φ are the exactly the same as those in pure massive supergravity constructed in [8].

This implies that the specialization we obtain in our hybrid theory also exists in the pure

supergravity theory. It is given by

I =
1

κ2

∫

d3x
√−g

[

σ(R− 2S2) + 4m̃S +
1

6ν2
S4

+
1

ν2
(RµνR

µν − 3
8R

2)
]

+
1

µ
LLCS . (3.5)

The theory has four non-trivial parameters. The fermionic action can be read off from [8].

The off-shell supersymmetric transformation rule is given by

δeaµ = 1
2 ǭγ

aψµ , δψµ = Dµǫ+
1
2γµSǫ , δS = 1

4 ǭγ
µνDµψν − 1

4 ǭγ
µψµS . (3.6)

It should be emphasized that this pure supergravity cannot be obtained by truncating out

the the scalar multiplet from (3.2).

Although our primary focus is on the hybrid theory (3.2), many of the results can

also apply to the pure gravity theory (3.5). This is because, as we shall discuss later, for

appropriate gauge choice, the linear analysis of the tensorial modes is exact the same for

both theories.

3.1 The Minkowski limit

Let us first set m = 0 = m̃ so that the supersymmetric vacuum is three-dimensional

Minkowski space-time. We consider linearized excitations around the vacuum

gµν = ηµν + hµν , S = S̄ + s , φ→ φ̄+ φ , (3.7)

where S̄ = 0 = φ̄. We may adopt the following gauge for the metric [7, 14]

hij = −εikεjl∂k∂l∇2
ϕ , h0i = −εij 1

∇2
∂jξ , h00 =

1

∇2
(N +�ϕ) . (3.8)

This gauge choice amounts to

∂ihij = 0 , ∂ih0i = 0 . (3.9)

It should be emphasized that in this special gauge, (ϕ, ξ,N) are exactly the three gauge-

invariant quantities constructed from the metric.

The quadratic action for perturbations around the vacuum is given by

I(2) =

∫

d3x
{

− σ
(

1
2 (Nϕ+ ϕ�ϕ− ξ2) + 4φ�φ+ 2φN + 4φ�ϕ

)

− 1

2µ
Nξ +

1

2ν2
ξ�ξ +

1

8ν2
N2

}

. (3.10)
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The equation of motion for N is purely algebraic and can be solved explicitly, given by

N = 4ν2(
1

2µ
ξ + 2σφ+ 1

2σϕ) . (3.11)

Sustituting this into (3.10), we have

I(2) =

∫

d3x(T − V ) ,

T = −σ(12ϕ�ϕ+ 4φ�φ+ 4φ�ϕ) +
1

2ν2
ξ�ξ ,

V = −1
2σξ

2 + 2ν2(
1

2µ
ξ + 2σφ+ 1

2σϕ)
2 . (3.12)

It is clear that if we diagonalize the kinetic terms of (φ,ϕ), there is a ghost field regardless

the sign of the parameter σ. Since the kinetic terms always involve both ghost and non-

ghost fields, we cannot diagonalize the kinetic and mass terms simultaneously. Nevertheless

we can analyze its spectrum by examining the equations of motion. They are given by

2�φ+�ϕ+ 2ν2
( 1

2ν
ξ + 2σφ+ 1

2σϕ
)

= 0 ,

4�φ+�ϕ+ 2ν2
( 1

2ν
ξ + 2σφ+ 1

2σϕ
)

= 0 ,

1

ν2
�ξ + (σ − ν2

µ2
)ξ − 2ν2σ

µ
(2σφ+ 1

2ϕ) = 0 . (3.13)

In the momentum space

ϕ =

∫

d3~p(ϕpe
−ipx+ c.c) , φ =

∫

d3~p(φpe
−ipx+ c.c) , ξ =

∫

d3~p(ξpe
−ipx + c.c) , (3.14)

the equations of motion become

M2(2φp + ϕp) + 2ν2(
1

2µ
ξp + 2σφp +

1
2σϕp) = 0 ,

M2(ϕp + 4φp) + 2ν2(
1

2µ
ξp + 2σφp +

1
2σϕp) = 0 ,

(
M2

ν2
+ σ − ν2

µ2
)ξp −

2ν2σ

µ
(2φp +

1
2ϕp) = 0 . (3.15)

whereM2 ≡ (p0)2−~p·~p is the mass-squared parameter. There are three non-trivial solutions.

The first has vanishing M with

ϕp = −4φp , ξp = 0 . (3.16)

The corresponding on-shell Hamiltonian is given by

H = 4σ

∫

d3x(φ̇2 + (∇φ)2), (3.17)

Thus σ = −1 gives rise to a massless ghost scalar. The absence of such a ghost requires

that σ ≥ 0.
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The other two solutions are given by

M2
± =

ν2

2

[ν2

µ2
− 2σ ±

√

ν2

µ2
(
ν2

µ2
− 4σ)

]

, φp = 0 , ξp = − µ

ν2
(M2

± + σν2)ϕp . (3.18)

The absence of tachyon modes is guaranteed by

σ > 0 , ν2 ∈ (−∞, 0) ∪ (4σµ2,+∞) or σ < 0 , ν2 ∈ (−∞, 4σµ2) ∪ (0,+∞) .

(3.19)

In the limit ν → ∞, M+ becomes infinity and the corresponding mode decouples. In

addition, M− → (σµ)2 and hence the corresponding mode is exactly the massive graviton

discussed in [2]. At the first sight, the massive modes are scalars, but a careful study of

the supersymmetry transformation rules shows that they are in fact spin-2 particles [7, 8].

Thus the spectrum consists of one massless scalar modes and two massive graviton modes.

The on-shell Hamiltonian for the massive gravitons are given by

H± = 1
2

(µ2

ν6
(M2

± + σν2)2 − σ
)

(ϕ̇2 + (∇ϕ)2)

+
(M4

±

2ν2
− σµ2

2ν4
(M2

± + σν2)2
)

ϕ2 . (3.20)

It is easy to see that for σ < 0, both kinetic terms are non-negative. The theory has one

ghost-like massless scalar and two ghost-free massive gravitons. For σ > 0, the kinetic term

in H− is negative, and the theory has a well-defined massless scalar, but one of the two

gravitons is ghost like. Note that for pure new massive supergravity with no matter scalar

multiplet, the theory is ghost free when σ < 0.

When the condition (3.19) is saturated, namely

ν2 = 4σµ2 , (3.21)

both Hamiltonian H± vanish, signaling that the linearized analysis breaks down and sug-

gesting a possibility that the theory might become ghost free. Of course, to determine this

definitively, higher-order interactions become non-negligible and a non-perturbative analysis

may be necessary. We shall not proceed in this direction here.

3.2 Linearization around the AdS3

The linear analysis in Minkowski space-time demosntrates that there is at least one ghost-

like field in the spectrum. It is then of interest to study the linear perturbation in the

supersymmetric AdS3 to investigate whether there exists a critical point where this ghost

field decouples from the bulk physics, as in chiral gravity proposed in [5]. Since the matter
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scalar φ has the standard dynamics, there can be no critical points associated with the

scalar and its physical degree of freedom cannot be gauged way. It is thus necessary to

require that σ > 0. This is consistent with the positive-energy requirement for the BTZ

black hole. This is not surprising since black holes are constructed from matter fields. As

we see in the flat space-time analysis, the choice of σ > 0 implies that one of the two massive

gravitons is ghost like. We are interested in finding critical points to gauge away this ghost

graviton, but still to keep the other one so that bulk gravity is non-trivial.

The linear perturbation of the eight-parameter theory (2.1) was analyzed in [11]. Owing

to the complexity of the theory and the dynamical nature of the auxiliary field S, there was

not a concrete conclusion for the scalar perturbation. The situation becomes much simpler

for the reduced action (3.2) for which the auxiliary field S is non-dynamical.

As in [11], we expand the metric around the supersymmetric AdS3 background (3.4) as

gµν = ḡµν + hµν and impose the gauge condition

∇µ(hµν − 1
3 ḡµνh) = 0 , where h ≡ ḡµνhµν . (3.22)

The scalar fields (S, φ) are expanded around the symmetric solution S̄ = −m and φ̄ = 0,

and we denote the fluctuation fields by s and φ, respectively. Setting m = 1 for simplicity,

the equations for the scalar modes are given by

6�φ− (�− 3)h− 6s = 0 ,

(σ +
1

2ν2
)s+ 2σφ = 0 ,

(
1

2ν2
− σ)(� − 3)h+ 12σ(� − 3)φ = 0 . (3.23)

Note that the parameter µ does not enter the equations of the scalar modes. Depending on

the relation between the parameters σ and ν, four classes of solutions may emerge.

Firstly, when σ = −1/(2ν2), the equations in (3.23) can be reduced to

(�− 3)h = 0 , φ = 0 , s = 0. (3.24)

This is exactly the same as the scalar perturbation of the pure AdS3 gravity, and hence it

can be easily shown to be a pure gauge. Secondly, for σ = 1/(2ν2), (3.23) reduces to

(� − 3)h+ 24φ = 0 , (�− 3)φ = 0 . (3.25)

The third class corresponds to (� − 3)h = 0 and (� − 3)φ = 0. This requires that σ =

−3/(10ν2) and s = 3φ. Although h is pure gauge in this case, the free scalar φ is non-trivial.
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The remaining fourth class corresponds to generic values of σ and µ. Since we are looking

for solutions where h is non-trivial, the last equation in (3.23) implies that

h =
24σν2

2σν2 − 1
φ . (3.26)

We then find
(

�− 8σν2(1 + 4σν2)

(1 + 2σν2)2

)

φ = 0 , s =
−4σν2

2σν2 + 1
φ . (3.27)

Tne Breitlonhner-Freedman bound in 3-dimensions gives

8σν2(1 + 4σν2)

(1 + 2σν2)2
≥ −1 =⇒ ν2(σ + 3σ2ν2) ≥ − 1

12
. (3.28)

The equations for the tensor modes are determined by the tracelss part of the Einstein

equations. It was shown in [11] that these equations are the same as the seven-parameter

pure gravity theory constructed in [8]. Thus we shall just present the result here, but

specializing to our specific choice of parameters. For those interested in a detailed analysis,

we refer to a recent paper [10]. In the case of γ ≡ σ − 1/(2ν2) 6= 0, the transverse traceless

massive graviton modes satisfy

D(η±)hµν = 0 , D(η) ν
µ = δ ν

µ + ηε αν
µ ∇̄α , (3.29)

with

η± = γ−1
( 1

2µ
±

√

1

4µ2
− γ

ν2

)

. (3.30)

Note that in the limit of µ2 → ∞, corresponding to turning off the Lorentz-Chern-Simons

term, we need require that γ/ν2 < 0. In the limit of ν2 → ∞, we have

η± =
1 + µ/|µ|

2µσ
= 0 , or

1

σµ
. (3.31)

As we shall see later, the mode with η = 0 becomes infinitely massive and decouples from

the spectrum. The unitarity of the dual CFT requires that

|η±| ≤ 1 . (3.32)

The theory becomes critical when we have |η+| = 1 or |η−| = 1. This can be achieved by

σ = − 1

2ν2
+

1

µ
or σ = − 1

2ν2
− 1

µ
. (3.33)

The central charges for the right-handed and left-handed Virasoro algebra of the boundary

CFT can be obtained [15]-[21], given by

CL,R =
3

2G3
(σ +

1

2ν2
∓ 1

µ
) . (3.34)
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Thus we see that the either CL or CR vanishes at the critical points. To be specific, we

summarize the four critical points as follows:

case 1 : σ =
1

µ
− 1

2ν2
, µ > 0 , ν2 ≥ 2µ ,

η+ = 1 , 0 ≤ η− =
µ

ν2 − µ
≤ 1 , CL = 0 , CR =

2

µ
;

case 2 : σ =
1

µ
− 1

2ν2
, µ > 0 , ν2 < 0 ,

η+ = 1 , −1 < η− =
µ

ν2 − µ
≤ 0 , CL = 0 , CR =

2

µ
;

case 3 : σ = − 1

µ
− 1

2ν2
, µ < 0 , ν2 < 0 ,

0 ≤ η+ =
µ

ν2 + µ
< 1 , η− = −1 , CL = − 2

µ
, CR = 0 ,

case 4 : σ = − 1

µ
− 1

2ν2
, µ < 0 , ν2 ≥ −2µ , (3.35)

−1 ≤ η+ =
µ

ν2 + µ
≤ 0 , η− = −1 , CL = − 2

µ
, CR = 0 .

In all the above four critical points, the Breitlohner-Freedman condition (3.28) for the scalar

modes and the CFT unitarity conditions (3.32) are satisfied. Furthermore, the σ in all these

cases are positive definite implying that the matter scalar φ is ghost free.

It is clear that at the critical points, one of the massive graviton modes, corresponding

to either η+ = 1 or η− = −1 and with vanishing associated central charge, becomes pure

gauge and decouples from the bulk physics. This feature is the same as chiral gravity [5].

However, there is an important difference that a non-trivial massive graviton mode still

survives in our theory at the critical points. It is thus necessary to verify that this mode

has positive energy. To compute the energy of the pure graviton mode, we set φ = s = 0,

and also h = 0. We obtain the quadratic action for the transverse traceless graviton. After

integrating by parts, we have

I(2) =
1

2κ2

∫

d3x
√−ḡ{ 1

2ν2
∇̄2hµν∇̄2hµν − 1

2 (σ +
9m2

2ν2
)∇̄λhµν∇̄λhµν

+(σ +
5m2

2ν2
)m2hµνhµν −

1

µ
ε αβ
µ (12∇̄αh

µν∇̄2hβν +m2∇̄αh
µνhβν)} (3.36)

Note that we restore the parameter m to keep track the dimensions of various terms. In

the global coordinates, the metric of AdS3 vacuum takes the form

ds2 = l2(− cosh2 ρdτ2 + sinh2 ρdφ2 + dρ2) (3.37)

where the radius is related to m by

l2 = m−2. (3.38)
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It is clear that in this coordinate system, the above action has τ translational invariance,

the corresponding Noether charge is given by

H =

∫

d2x(π(1)µν ḣµν + π(2)µν∇̄0ḣµν − L(2)) , (3.39)

where

π(1)µν =

√−ḡ
2κ2

[∇̄0(−(σ +
9m2

2ν2
)hµν +

1

2µ
εβα(µ∇̄αh

ν)
β − ν−2∇̄2hµν)

− 1

µ
ε0β(µ(12∇̄2h

ν)
β +m2h

ν)
β )] ,

π(2)µν =

√−ḡ
2κ2

g00[ν−2∇̄2hµν − 1

2µ
εβα(µ∇̄αh

ν)
β ] . (3.40)

Following [5], we identify the conserved charge as the energy of the graviton. Using equations

of motion, we find that the above quantities for massive gravitons become

π
(1)µν
M = −

√−ḡ
2κ2

[(2m2ν−2 +
1

2µη±
)∇̄0hµνM +

ν2

2µ
(σ +

m2

2ν2
− 1

µη±
)ε 0µ

β hβνM ] ,

π
(2)µν
M = −

√−ḡ
2κ2

g00(σ +
5m2

2ν2
− 1

2µη±
)hµνM . (3.41)

Specializing to the linearized graviton, upon utilizing their equations of motion, we have

the energies

HM = (σ +
m2

2ν2
− 1

µη±
)

∫

d2x

√−ḡ
2κ2

(∇̄0hµνM ḣMµν −
ν2

2µ
ε 0µ
β hβνM ḣMµν) . (3.42)

In the limit µ→ ∞, the energy formula reduces to the one obtained in [22] for new massive

gravity. The limit ν → ∞ is more subtle. As we see from (3.30) and (3.31), one of the

η’s vanishes in this limit, the corresponding energy (3.42) is infinite and hence its mode

decouples from the spectrum. For η = 1/(σµ), we need expand η to the next order in 1/ν2,

and the resulting energy is then precisely the one given in [5].

The solutions for (3.29) were obtained in [5]. The relevant one corresponding to the

primary state is given by the real or imaginary part of ψµν , where

ψµν =
e−ihu−ih̄v sinh2 ρ

(cosh ρ)h+h̄











1 1
2(h− h̄) 2i

sinh 2ρ

1
2(h− h̄) 1 i(h−h̄)

sinh 2ρ

2i
sinh 2ρ

i(h−h̄)
sinh 2ρ − 4

sinh2 2ρ











. (3.43)

Here u = τ +φ and v = τ −φ are the light-cone coordinates. The solution is parameterized

by the weights (h, h̄) of the left and right Virasoro algebra of the dual conformal field theory.

The weights are given by [5]

h =
3

2
± 1

2η
, h̄ = −1

2
± 1

2η
. (3.44)
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For η ∈ (0, 1], the plus sign is chosen; for η ∈ [−1, 0), the minus sign is chosen. Note that we

have set again m = 1. At the four critical points discussed earlier, one of the two massive

graviton becomes pure gauge, and its energy defined by (3.42) indeed vanishes identically.

The energy for the remaining massive graviton, cataloged as in (3.35), is given by

Case 1 : HM (η−) ∝
2ν2(ν2 − 2µ)2(µ+ ν2)

µ3(2ν2 − µ)(ν2 − µ)
,

Case 2 : HM (η−) ∝
2(ν2 − 2µ)2(ν4 − ν2µ+ 2µ2)

µ3(3µ − 2ν2)(µ − ν2)
,

Case 3 : HM (η+) ∝
2(ν2 − µ)(ν2 + 2µ)3

µ3(ν2 + µ)(3µ + 2ν2)
,

Case 4 : HM (η+) ∝
2ν2(ν2 + 2µ)(ν4 + ν2µ+ 2µ2)

µ3(ν2 + µ)(µ+ 2ν2)
. (3.45)

Examining the range of the parameters (µ, ν2) listed in (3.35), we conclude that the energy

for both case 1 and case 2 are non-negative. For the energy of case 3 to be non-negative, a

condition ν2 ≥ µ must be further imposed. The energy of case 4 is always negative.

Since the analysis of the tensorial modes is the same as that for pure massive super-

gravities [11], our results also apply to the pure gravity theory (3.5).

Thus we have shown that there exist critical points of the parameters such that one

massive graviton becomes pure gauge whilst the other has positive energy and hence the

theory is ghost free. This strongly suggests that these critical theories may be well-defined

at the full quantum level.

4 Positivity of the BTZ black hole mass

In the previous section, we demonstrate that the hybrid theory with five parameters ob-

tained in section 2 has critical points for which one of the two massive graviton modes

becomes trivial and the other has positive energy. In this section, we investigate the energy

of the BTZ black hole that is asymptotic to the supersymmetric AdS3 vacuum. The proce-

dure of calculating the mass and angular momentum of such a black hole in a theory with

higher-derivative curvature terms was spelled out in detail in [23]. The modifications to the

energy and angular momentum of the BTZ black hole due to the Lorentz Chern-Simons

term were obtained in [24]. Here we shall present the formalism of the modifications due to

the ν term. For our purpose, we set φ = 0 and S = −m. We expand the BTZ black hole

around the AdS3 background as gµν = ḡµν + hµν , where

R̄µναβ = −ḡµαḡνβ + ḡµβ ḡνα , R̄µν = −2ḡµν , R̄ = −6 . (4.1)
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Note that we have set m = 1 for convenience. Expressing the Einstein equations of motion

as Eµν = 0, we can expand the equations around the background, giving

EL
µν ≡ κTµν , (4.2)

where L denotes the linear part of the Einstein equations. All the non-linear quantities

are lumped together and expressed as T µν . Because of the linearized Bianchi indentity

∇̄µE
Lµν = 0, Tµν is covariantly conserved with respect to the background metric. Therefore

jµ ≡ T µνξν is a conserved current, where ξµ is a Killing vector in the background metric.

The corresponding conserved charge is given by

Q(ξ) =
1

16πG3

∫

dΣµj
µ . (4.3)

Here Σ is a two-dimensional space-like hypersurface and dΣµ = nµ
√
γd2x where nµ is the

unit normal vector and γ is the determinant of the induced metric on Σ.

In our case with the σ and ν terms, we have

κTµν = EL
µν = (σ +

3

2ν2
)GL

µν +
1

4ν2
(ḡµν�̄− ∇̄µ∇̄ν − 2ḡµν)R

L (4.4)

+
1

ν2
(�̄GL

µν + ḡµνR
L) , (4.5)

where

RL = −�̄h+ ∇̄µ∇̄νh
µν + 2h , h = ḡµνhµν ,

RL
µν = 1

2 (−�̄hµν − ∇̄µ∇̄νh+ ∇̄ρ∇̄νhρµ + ∇̄ρ∇̄µhρν) ,

GL
µν = RL

µν − 1
2 ḡµνR

L + 2hµν . (4.6)

We find that jµ can be expressed as ∇νFµν , where

Fµν = (σ +
1

2ν2
){ξα∇̄µhνα − ξα∇̄νhµα + ξµ∇̄νh− ξν∇̄µh+ hµα∇̄νξα − hνα∇̄µξα

+ξν∇̄αh
µα − ξµ∇̄αh

να + h∇̄µξν}+ 1

4ν2
{ξµ∇̄νRL − ξν∇̄µRL +RL∇̄µξν}

+
1

ν2
{ξα∇̄νGLµα − ξα∇̄µGLνα − GLµα∇̄νξα + GLνα∇̄µξα} . (4.7)

Using Stokes theorem the conserved charge can now be expressed as

Q(ξ) =
1

16πG3

∫

FµνdSµν , (4.8)

where S is the boundary of Σ.

We now examine a specific example, namely the BTZ black hole that is asymptotic to

the supersymmetric AdS3 vacuum. The solution is given by [25]

ds2 = −Udt2 + dr2

U
+ r2(dφ− 4J

r2
dt)2 , U = r2 − 8M +

16J2

r2
. (4.9)
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One may define the mass E and angular momentum L as the conserved charges associated

with the Killing vectors Kt = ∂/∂t and Kφ = ∂/∂φ respectively. It is straightforward to

work out these quantities, given by

E =
(

σ +
1

2ν2

)

M − J

µ
, L =

(

σ +
1

2ν2

)

J − M

µ
. (4.10)

Note that the second and third brackets in (4.7) converges too fast to give any contributions.

The µ-term contribution is derived from the formulae presented in [24].

To validate the above mass and angular momentum, we examine the first law of ther-

modynamics. The temperature and the angular velocity can be obtained directly from the

metric, given by

T =
r4+ − 16J2

2πr3+
, Ω =

2J

r2+
, (4.11)

where

r± =
√

2(M + J)±
√

2(M − J) . (4.12)

The entropy can be obtained using the Cardy formula via the AdS/CFT correspondence,

given by [5]

S = 1
3π

2CLTL + 1
3π

2CRTR , (4.13)

where the central charges CL,R are given by (3.34) and TL,R are give by

TL =
r+ − r−

2π
, TR =

r+ + r−
2π

. (4.14)

It is now straightforward to verify the first law of thermodynamics, namely

dE = TdS +ΩdJ . (4.15)

The result should not be surprising since the effect of ν in thermodynamical quantities is

to shift the parameter σ uniformly.

For the BTZ black hole, we have M ≥ |J |; nevertheless, the mass can be negative for

generic parameters (σ, ν2, µ). However, recall that the parameter conditions for the critical

points (3.35), we have

Ecrit =
M

|µ| −
J

µ
, Lcrit =

J

|µ| −
M

µ
. (4.16)

Thus we see that at the critical points, the mass is non-negative. Furthermore the quantity

(Ecrit − Lcrit) is either positive for µ > 0 or 0 for µ < 0, but never negative.
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5 BPS string solution

5.1 The solution

In this section, we construct BPS string solutions with R1,1 isometry. The ansatz is given

by

ds2 = dz2 + e2A(z)(−dt2 + dx2) , φ = φ(z) , S = S(z) . (5.1)

(Such a metric ansatz is also called domain wall.) It is worth pointing out immediately that

for this metric ansatz, the LLCS term gives no contribution to the equations of motion. A

natural choice for the vielbein is given by

e0 = eAdt , e1 = eAdx , e2 = dz . (5.2)

The non-vanishing components of the spin connection and curvature are

ω02 = −A′

e0, , ω12 = A
′

e1 ,

R0101 = A
′2 , R0202 = A

′′

+A
′2 , R1212 = −R0202, . (5.3)

Here a prime denotes a derivative with respect to z. The three-dimensional gamma matrices

can be chosen to be

γ0 =





0 1

−1 0



 , γ1 =





0 1

1 0



 , γ2 =





1 0

0 −1



 . (5.4)

It follows from (2.3) that a Killing spinor ǫ satisfies

Dµǫ+
1

2
γµSǫ = 0 , (5.5)

(γµ∂µφ+ S +m)ǫ = 0 . (5.6)

From (5.6), we deduce that

(∂φ)2 = (S +m)2, (5.7)

Thus for our string ansatz, we have, without loss of generality,

φ
′

= −(S +m), (5.8)

This corresponds to the following projection

(γ2 − 1)ǫ = 0 ⇒ ǫ =





χ

0



 . (5.9)
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The integrability condition for (5.5) is

1
4Rαβνµγ

αβǫ+ 1
2 (γµ∂νS − γν∂µS)ǫ+

1
2γνµS

2ǫ = 0. (5.10)

Substituting the Riemann curvature (5.3) and the killing spinor (5.9), we find that the only

solution is

S = −A′

. (5.11)

The Killing spinor can then be solved explicitly from (5.5), given by

ǫ =





e
1
2
A

0



 (5.12)

Under the string ansatz, the φ equation (2.4) becomes

(8m+ 2S + 6A
′

)(A
′

+ S) + 4(S +A
′

)
′

= 0 . (5.13)

It is automatically satisfied by (5.11). The S equation (2.5) can be simplified and becomes

(α+ 8b)S′′ + 2(4b + 3c)SS′ − 2aS′ + cS3 + σe−2φS + m̃ = 0 . (5.14)

The Einstein equations of motion (2.6) are then all automatically satisfied.

It is now straightforward to obtain the supersymmetric AdS vacuum solution, given by

σ =
m̃− cm3

m
, S = −m, φ = 0 , Rij = −2m2gij . (5.15)

Here we let σ be continuous so that φ is zero instead of a non-vanishing constant. The

general solution for (5.14) is not expected to be solved explicitly. For certain choices of the

parameters, explicit solutions can be obtained. Let us first consider the case with

(α, a, b, c) = 0 . (5.16)

The solution is given by

ds2 =
e2mz

1 + qe2mz
(−dt2 + dx2) + dz2 ,

e−2φ =
m̃

m
(1 + qe2mz) , S = − m

1 + qe2mr
. (5.17)

The coordinate z runs from −∞ to +∞, and the metric interpolates between the AdS3

horizon and asymptotic flat Minkowski space-time. The string coupling constant g = eφ

runs from the constant
√

m/m̃ to 0 at the asymptotic flat region. The solution can be lifted
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to D = 6 and it becomes a dyonic string with the “1” in the harmonic function associated

with the magnetic component dropped. To be specific, we have

ds26 = H−1
e (−dt2 + dx2) +Hm(dr2 + r2dΩ2

3) ,

e−2φ =
m̃

m

Hm

He
, H(3) = dx ∧ dt ∧ dH−1

e +m2Ω(3) ,

He = 1 +
q

r2
, Hm =

m2

r2
. (5.18)

The second case we would like to consider is the following

a = 0 , b = −3
4c , α = 6c , m̃ = 0 . (5.19)

We find the solution is given by

ds2 = (emz − q)2(−dt2 + dx2) + dz2 ,

S = − m

1− qe−mz
, e−2φ = − cm

(1− qe−mz)2
. (5.20)

In this case the metric approaches AdS3 at the asymptotic z → ∞ and has a naked singu-

larity in the middle.

The above two solutions can be grouped together with the parameter choice (3.1). In

this case, it is advantageous to make a coordinate transformation and treat S as the radial

coordinate. The solution is then given by

ds2 = e2A(−dt2 + dx2) +
dS2

S2f2
,

e2φ =
S

S3 − S3
2

, A =

∫

1

f
dS f = −2(S − S1)(S

3 − S3
2)

S3
2 + 2S3

, (5.21)

where

S1 = −m < 0 , S2 = −(6ν2m̃)1/3 < 0 . (5.22)

The explicit expression for A is somewhat complicated, given by

A = A0 +
1

4(S3
1 − S3

2)

(

− 2
√
3S1S2(S1 − S2) arctan(

2S + S2√
3S2

)

−2(2S3
1 + S3

2)log(S − S1) + 2S1S2(S1 + S2)log(S − S2)

−S1S2(S1 + S2)log(S
2 + SS2 + S2

2) + 2S3
2 log(S

3 − S3
2)
)

, (5.23)

where A0 is an integration constant and it should be chosen appropriately such that the

expression for A is real.

In the vicinity of S = 0, the metric describes Minkowski space-time. In the vicinity

of S = S1 ≡ −m < 0, the solution approaches the vacuum AdS3. In the vicinity of

S = S2 ≡ −(m̃/c)1/3 < 0, the solution becomes

ds2 ∼ e−2S2z(−dt2 + dx2) + dz2 , φ ∼ (S1 − S2)z . (5.24)
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This linear-dilaton solution is approximate, valid for z → ∞ when S2 < S1, and for z → −∞
when S2 > S1. For both cases, the “string” coupling g = eφ goes to infinity. It is clear

that in the region S ∈ (max(S1, S2), 0), the metric interpolates between the flat Minkowski

space-time and the boundary of an AdS3. For S1 < S2 < 0, the region of S ∈ (S1, S2)

describes an interpolation between the boundary of the vacuum AdS3 and the AdS3 with

the linear dilaton. To see this, we note that the function f is negative in this region and

that

A =

∫ S

S0

1

f
dS , (5.25)

where S1 < S0 < S2. Thus A(S1) → +∞ and A(S2) → −∞, indicating a boundary and

a horizon structure respectively. For S2 < S1 < 0, the role the two AdS3 reverses, and

the horizon lies in the vacuum AdS3 whilst the boundary lies in the AdS3 with the linear

dilaton.

5.2 Spectrum analysis

In the previous subsection, we discuss the general BPS string solutions. For certain pa-

rameter choice, we obtain explicit solutions. Some of these metrics are asymptotic to AdS3

and hence are dual to certain two-dimensional field theory that has an ultra-violet confor-

mal fix points. In the general discussion of the AdS/CFT correspondence, the correlation

functions and the spectrum of the corresponding strongly coupled two-dimensional theory

can be analyzed by studying the wave equations in these gravitational backgrounds in the

Einstein frame. Making appropriate coordinate transformations, the metric can be cast into

the following form.

ds2 = e2Ã(−dt2 + dx2 + dr2) , (5.26)

The simplest two-point function is that of the operator O ∼ trF 2, which is expected to be

coupled to a massless s-wave free scalar φ, satisfying

∂µ(
√−ggµν∂νφ) = 0 . (5.27)

For the s-wave, we have φ = eiωte−
1
2
Ãχ(r), where ω measures the energy level of the solution.

It is easy to show that χ satisfies Schrödinger equation

[

− ∂2r + V (r)
]

χ = ω2χ , (5.28)

where

V = 1
4 (2Ã

′′ + Ã′2) . (5.29)
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Note that the potential can be written as V = U2+U ′ where the superpotential is U = 1
2A

′,

thus this is a supersymmetric quantum mechanics system [26]. We now consider the solution

(5.20). First we convert the metric to the Einstein frame by a conformal rescaling of the

metric ds2 → e4φds2. We can then cast the resulting metric into the conformal form (5.26),

with

e2Ã =
e6mqr

(1− emqr)2
. (5.30)

Thus the potential V is

V =
m2q2(4e2mqr − 10emqr + 9)

4(1− emqr)2
. (5.31)

The variable r runs from −∞ to 0. In this region, we have 4
9m

2q2 ≤ V < ∞. Thus, it is

clear that the spectrum is continuous with a mass gap Vmin = 9
4m

2q2.

The structure for the solution (5.21) is more complicated, and the explicit form of the

potential V cannot be obtained. The characteristics of the potential can nevertheless be

analyzed. Although in the string frame, the metric runs from an AdS3 horizon to an AdS3

boundary, in the Einstein frame, one of the AdS3 turns into a singular metric owing to the

linear dilaton. For the theory to dual to a two-dimensional quantum field theory, it is easier

to consider the case with S1 < S2 so that its asymptotic behavior is AdS3 with a naked

singularity in the bulk. Following the same procedure outlined for the previous simpler

example, we obtain that now r lies in the region (r1, r2) with the potential V behaves as

follows

r → r2 V ∼ 3

4(r − r2)2
,

r → r1 V ∼ (3S2 − 2S1)(5S2 − 2S1)

4S2
2(r − r1)2

. (5.32)

Thus in general the system has a discrete spectrum.

6 General supersymmetric solutions

By definition, in any supersymmetric background, there exists a solution of the Killing

spinor equations (5.5, 5.6). From the Killing spinor ǫ, we can construct a Killing vector

Kµ = ǭγµǫ , (6.1)

which is null. It follows from (5.5) that we have

S Kλ =
ǫλαβ

2
√−g ∂αKβ , ǫ012 = 1 . (6.2)
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As was demonstrated in [13], the general metric ansatz with a null Killing vector K = ∂/∂v

can be casted into the following form

ds2 = e2Adz2 + e2Bdu2 + 2e2mzdudv, (6.3)

where the functions A and B depend on the coordinates (u, z). The non-vanishing compo-

nents of the Ricci tensor are given by

Ruu = −1
2e

−2A[h′′ − (2m+A′)h′ + 4m2h]− (Ä+ Ȧ2) ,

Ruv = m(A′ − 2m)e2(mz−A) , Ruz = mȦ , Rzz = 2m(A′ −m) , (6.4)

where a prime and a dot denote a derivative with respect to z and u respectively and

h = e2B . The Ricci scalar is given by

R = e−2A(4mA′ − 6m2) . (6.5)

It follows from (6.2) that we have the following algebraic constraint

S = −me−A. (6.6)

Substituting this relation into (5.5), we can find that the killing spinor is given by

ǫ =





e−
1
2
B+mz

0



 (6.7)

Comparing this to the Killing spinor (5.12) in the earlier section, one can deduce that when

B = mz, the general solutions reduce to the previous simpler string solution.

Since guu = 0, it follows from (5.6) that we have e−Aφ′ = ±(S+m). The ± sign choices

are inequivalent. The plus-sign choice leads only to S = −m and constant φ, which we shall

discuss later. For the minus-sign, i.e.

e−Aφ′ = −(S +m) , (6.8)

it is easy to verify that the dilaton equation (2.4) is satisfied by (6.8), together with (6.6).

The S equation of motion (2.5) now becomes

(α+ 8b)S(S2)′′ + 4amSS′ − 4(4b+ 3c)mS2S′ + 2m2(cS3 + e−2φS + m̃) = 0 . (6.9)

The Einstein equations of motion are generally satisfied by (6.6, 6.8, 6.9) except for one in

the (u, u) direction. This equation is effectively a 4’th-order linear differential equation, but

it is rather complicated and we shall not present it here.
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It is worth pointing out that the three equations (6.6, 6.8, 6.9) are self-containd involving

three functions (A,φ, S) and derivatives on coordinate z. Thus these can be viewed as

ordinary differential equations with the integration constant depending on the coordinate

u. The Einstein equation then determines the metric function B(u, z).

Let us consider a simple case with (a, b, c, α) = 0. The functions (A,φ, S) can be solved

explicitly, given by

e−2φ = −m̃
S
, eA = −m

S
, S = −(m+ q(u)e2mz) . (6.10)

The Einstein equation implies that

β h′′′ +
1

2S2

(

6βmS(2m + S)− m̃
)

h′′ − m

S2

(

2βm(3S2 + 2mS − 2m2)− m̃
)

h′

−8βm3(m+ S)2

S2
h+

m2

S6

(

4βm2S(SS̈ − Ṡ2) + m̃(2SS̈ − 3Ṡ2)
)

= 0 , (6.11)

where h(u, z) = e2B . This can be viewed as an ordinary linear differential equation for h

with a source, but with integration constants now being arbitrary functions of u.

The general explicit solutions for the special case with q(u) = 0 was obtained in [13].

Alternatively if we set β = 0, corresponding to turning off the Lorentz Chern-Simons term,

the general explicit solution also exists, given by

e2B = h = f1(u) + e2mzf2(u)−
Ṡ2

4(m+ S)2S2
+
(m− 4mzS − 4zS2

2m2(m+ S)S
+

log(−S)
m3

)

S̈ . (6.12)

Here f1 and f2 are two arbitrary functions of u. It is clear that f2 can be absorbed by a

gauge transformation v → v − 1
2

∫

f2du.

We now consider the parameter choice (3.1). In this case, we have

e−2φ = −cS
3 + m̃

S
, eA = −m

S
, (6.13)

where S satisfies

S′ = f ≡ 2m(S +m)(cS3 + m̃)

m̃− 2cS3
. (6.14)

This can be solved as follows

z + y(u) =

∫

dS

f
, (6.15)

where y is an arbitrary function of u. This implies that

dz + dy =
dS

f
, Ṡ = f ẏ . (6.16)

Thus we may chose (S, y) as coordinates to replace the original (z, u). The Einstein equation

gives rise to a linear differential equation with only z derivative on h = e2B up to the 4’th
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order. The detail expression is rather complicated and we shall not present here. The result

is simplified significantly if we further set m̃ = 0. In this case, S can be solved explicitly,

given by

S = −(m+ q(u)e−mz) , (6.17)

where q is an arbitrary function of u. The function h = e2B satisfies the following equation

ch′′′′ +
m

3S

(

βm− 6c(3m + 5S)
)

h′′′

+
m2

3S2

(

− 3βm(m+ 2S) + c(21m2 + 117mS + 109S2)
)

h′′

+
m3

3S3

(

βm(m2 + 11mS + 12S2)− c(3m3 + 81m2S + 246mS2 + 170S3)
)

h′

+
2m4(m+ S)

3S3

(

− βm(m+ 4S) + 3c(m2 + 12mS + 16S2)
)

h (6.18)

+
2m4

3S6

(

βm2(4Ṡ2 − SS̈) + c(24m2Ṡ2 − 6mSṠ2 − 3m2SS̈ + 6S2Ṡ2 − 2S3S̈)
)

= 0 .

Since there is only z derivatives on h, this is effectively an fourth-order ordinary linear

differential equation with a source. The integration constants should be considered as

arbitrary functions of u.

A special class of pp-wave solution corresponds to setting

S = −M , φ = 0 , A = 0 . (6.19)

The S equation (2.5) then requires that m̃ = m + cm3. The Einstein equations reduce to

the following differential equation

αh′′′′ − 2(2α + β)mh′′′ + (1 + 2am+ (4α+ 6β + 3c)m2)h′′

−2m(1 + 2am+ (2β + 3c)m2)h′ = 0 . (6.20)

The solution is given by

h = f1(u) + f2(u)e
2mz + f3(u)e

c+z + f4(u)e
c−z , (6.21)

where fi’s are four arbitrary functions of u and constants are given by

c± = α−1
[

(α+ β)m±
√

(α2 + β2 − 3αc)m2 − α(1 + 2am)
]

. (6.22)

It is clear that when α = β = c = a = 0, the solution reduces to the one given in [13] for

the original topologically massive supergravity. There are two additional classes of special

solutions. The first corresponds to having c = −(1+ 2am+2βm2)/(3m2) such that c+ = 0

or c− = 0. The function h is given by

h = f1(u) + f2(u)e
2mz + f3(u)z + f4(u)e

2mz(1+β/α) . (6.23)
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The second class corresponds to have c = −(1+2am−2αm2)/(3m2) and β = −α, for which
c+ = 0 = c−. The function h is given by

h = f1(u) + f2(u)e
2mz + f3(u)z + f4(u)z

2 . (6.24)

In all of the above solutions, the terms of f1 and f2 are pure gauge [13]. Note that the

coordinate z is a logarithmic function of the global radial coordinate. Specializing the

parameters to the theory discussed in section 2, we find that the first case in the above

corresponds to the critical conditions. Thus logarithmic modes can emerge at the critical

points and to understand them via a logarithmic CFT [27], one should choose a boundary

condition [28] that is less restrictive than that advocated in [29].

7 Conclusions

In this paper we study generalized topologically massive supergravity that was recently

constructed in [11]. The theory is hybrid in a sense that it consists one off-shell su-

pergravity multiplet and one on-shell matter scalar multiplet. An important feature of

three-dimensional massive supergravities is that the supersymmetry can be off-shell. As a

consequence, such a theory can be complete in terms of supersymmetry by augmenting with

only a finite number of higher-derivative terms. The hybrid theory studied in this paper

implies that the matter sector can still be minimally dynamical with at most two deriva-

tives even though the higher derivative terms in gravity sector is inevitable in a quantum

theory. For generic parameters, the auxiliary scalar field in the off-shell supergravity multi-

plet is dynamical. We focus on a special class of parameter choices for which the auxiliary

field is non-dynamical. The resulting theory has five parameters and it can be viewed as

generalized super NMG theory with a matter scalar multiplet.

Since the super NMG theory with negative Einstein-Hilbert action can be ghost free,

we analyze the linear perturbation of our generalized super NMG theory in Minkowski

space-time. We find that the spectrum contains one massless scalar mode and two massive

graviton modes. For general parameters, when the Einstein-Hilbert action is negative, the

two graviton modes are ghost free, but the scalar mode is ghost like. When the action is

positive, the scalar mode is non-ghost, but one of the two massive graviton is ghost like.

However, we find a special choice of parameters such that the on-shell Hamiltonian for

both massive graviton vanish. This signals that the linearized analysis breaks down and

it suggests a possibility that the theory may become ghost free. A proper higher-order

analysis is relegated for future research.
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Next, we perform linearized analysis around the supersymmetric AdS3 vacuum. For

generic parameters, the theory contains one scalar mode and two non-trivial massive gravi-

tons. For the scalar mode to be ghost free, it is necessary that the coefficient σ of the

super invariant involving the Einstein-Hilbert term is positive. Then one of the two massive

gravitons becomes inevitably ghost. We obtain the critical conditions for which the ghost

graviton becomes pure gauge and decouples from the bulk physics. We then show that the

remaining massive graviton can indeed have positive energy. (This conclusion also applies

to the corresponding pure massive supergravity (3.5).) Furthermore, we also demonstrate

explicitly that the scalar mode is stable satisfying the Breitlohner-Freedman bound. These

properties suggest that the theory may be well-defined at these critical points. In order to

establish this point further, we obtain the mass and angular momentum for the BTZ black

hole that is asymptotic to the AdS3. We find that indeed at the critical points, the mass is

non-negative and furthermore it is always greater or equal to the angular momentum. We

also verify explicitly that the first law of thermodynamics holds.

We also construct BPS solutions of the general theory. We find that the equations are

reduced to effectively two linear differential equations of two functions. For some specific

parameter choices, the solutions can be solved explicitly. In particular, we obtain two types

of exact solutions. One is the pp-wave propagating in the AdS3 background, including the

one arising at the critical points. The other is the BPS string (domain wall) solution, which

is dual to some two-dimensional boundary theory with an ultra-violet conformal fixed point.

We obtain the characteristics of the spectrum using the standard free-scalar analysis.

Our results are the first tentative approach to understand a possible quantum gravity

in three dimensions with inevitable higher derivatives terms in the supergravity sector, but

with the standard dynamics in the matter sector. The existence of a remaining well-defined

massive graviton at the critical points makes bulk gravity non-trivial, giving rise to a more

interesting model to study quantum gravity.
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