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1 Introduction

There are strong theoretical evidences that at Planck scale, the dominant geometrical scenario
is the noncommutative (NC) one. The fact that noncommutativity manifests itself as a conse-
quence of string theory embedded into a magnetic field background [1] rekindled the interest in
NC geometry [2] which is considered as a fundamental element of quantum gravity (for reviews
see [3, 4]).

The main geometrical feature considered by General Relativity and Quantum Field Theory
is that both assume that spacetime is a continuum. Based on this assumption, a pseudo Rieman-
nian manifold furnish the basis for the geometrical description of the general theory of relativity
[5]. In this way, quantum fields and their interactions are local operators that are functions
of continuous spacetime coordinates. However, to have an unified theory, it seems that such a
continuous spacetime is not the best choice. The paths described above pinpoint to a discrete
spacetime structure, at the Planck scale, with NC coordinates. The continuum spacetime is
the limiting case. This geometrical issue can also be fathomed since the unification of General
Relativity (GR) and Quantum Mechanics (QM) implies the existence of a fundamental length
[6]. The models that incorporate the notion of a fundamental length form the class of gauge
theories formulated on NC space, which has a fundamental length defined in Planck scale, λP l.

These spontaneous manifestations of noncommutativity can lead, for example, to the fact
that standard four-dimensional spacetimes may become NC, namely, that the position four-
vector operator xµ obeys the following rule

[xµ , xν ] = i θµν , (1.1)

where θµν is a real, antisymmetric and constant matrix. It can be demonstrated that, in a
certain limit, a gauge theory on noncommutative spaces is tantamount to string theory.

In seminal works [7, 8], it was introduced a five dimensional spacetime with SO(4,1) as a
symmetry group, with generators MAB, satisfying the Lorentz algebra, where A,B = 0, 1, 2, 3, 4
and using natural units, i.e., h̄ = c = 1. Moreover, the relation between coordinates and
generators of the SO(4, 1) algebra was written as,

xµ = aM4µ

(where µ, ν = 0, 1, 2, 3 and the parameter a has dimension of length), promoting in this way the
spacetime coordinates to Hermitian operators. The mentioned relation introduced the commu-
tator,

[xµ,xν ] = ia2Mµν (1.2)

and the identities,
[Mµν ,xλ] = i(xµηνλ − xνηµλ) (1.3)

and
[Mµν ,Mαβ ] = i(Mµβηνα −Mµαηνβ +Mναηµβ −Mνβηµα) , (1.4)

which agree with four dimensional Lorentz invariance.
Some years back, in [9], the authors essentially assumes (1.1) as well as the vanishing of the

triple commutator among the coordinate operators. The Doplicher-Fredenhagen-Roberts (DFR)
algebra is based on principles imported from GR and QM. In addition to (1.1) it also assumes
that

[xµ, θαβ ] = 0 . (1.5)
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With this formalism, DFR demonstrated that after the combination of QM with classical
gravitation theory, the ordinary spacetime loses all operational meaning at short distances.

An important point in DFR algebra is that the Weyl representation of NC operators obeying
(1.1) and (1.5) keeps the usual form of the Moyal product,

ϕ(x) ⋆ ψ(x) = exp
[ i

2
θµν

∂

∂ xµ
∂

∂ yν

]

ϕ(x)ψ(y) |x=y (1.6)

and consequently the form of the usual NCFT’s, although the fields have to be considered as
dependent not only on xµ but also on θαβ. The argument is that very accurate measurements of
spacetime localization could transfer to test particles, sufficient energies to create a gravitational
field that in principle could trap photons. This possibility is related to spacetime uncertainty
relations that can be derived from (1.1) and (1.5) as well as from the quantum conditions

θµνθ
µν = 0

(
1

4
∗θµνθµν)

2 = λ8P l (1.7)

where ∗θµν = 1
2ǫµνρσθ

ρσ.
In [10], one of us promoted a DFR algebra extension to a non-relativistic QM in the trivial

way, but keeping consistency. The objects of noncommutativity were considered as true oper-
ators and their conjugate momenta were introduced. This permits to display a complete and
consistent algebra among the Hilbert space operators and to construct generalized angular mo-
mentum operators, obeying the SO(D) algebra, and in a dynamical way, acting properly in all
the sectors of the Hilbert space. If this is not accomplished, some fundamental objects usually
employed in the literature, as the shifted coordinate operator (see (2.10) below), fail to properly
transform under rotations. Symmetry is implemented not in a mere algebraic way, where the
transformations are based on structure indices of the variables. But it comes dynamically from
the consistent action of an operator, as discussed in [11]. This new NC space has ten dimensions
and it has been called since then, the extended DFR space. Next section we will review details
of this new NC space.

Recently [12], the formalism presented in [13] was generalized to the relativistic case. A non-
commutative relativistic classical theory was constructed which, under quantization, furnishes
the theories presented in [14, 15]. The results obtained there, are invariant under the action of
the Lorentz group SO(1,D) as well as under some generalization of the Poincaré group [14, 16].
The relation between the formalism in [12] is related to the one in [17], after the elimination of
some auxiliary variables.

Analyzing the theory of quantum fields on curved spacetimes one realize that gravity is
considered as classical background and discuss the features of these quantum fields propagating
on this background. The structure of spacetime is described by a manifoldM with metric gµν ,
i.e., a (M, g) commutative curved spacetime. In (M, g) there is a wide variety of interesting
phenomena, such as particle creation near a black hole with the Schwarzschild radius much
greater than the Planck length. We will give more details about (M, g) in the third section.

The main motivation to study NC systems in curved spacetimes is to make contact to physics
such as cosmic microwave background or Hawking radiation [18]. However, the majority of these
studies make use of the Moyal-Weyl (the star product) or κ-deformed Minkowski spacetime.
Other formalisms using classical methods has been applied in order to introduce noncommuta-
tivity in gravity systems, as shifted coordinates and symplectic deformations [19, 20].
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In this work we perform an extension of the system analyzed in [12] embedding it in a
curved space [21]. We used the vielbein formalism and a set of auxiliary variables, the so-called
Einstein-Kramer [22, 21] variables in order to write the action in a generalized gravitational
background. As we said, the extended DFR space is a larger one with 10 dimensions, 4 for the
spacetime and 6 for the θ-space. The analysis concerning dimension reduction formalisms like
Kaluza-Klein or holography are out of the scope of this work, although are targets for future
investigations. The equations of motion indicating the dynamics of this system in curved space
were obtained.

The paper is organized such that in section 2 we review the quantum mechanics in the
extended DFR space. In section 3 we describe the main steps of curved spaces formalism and its
variational principles were discussed in order to introduce the main ingredients that will be used
throughout the paper. In section 4 we present the mechanical system that will be embedded in
a generalized gravitational background and its equations of motion will be physically discussed.
Comments and perspectives will be depicted in section 5, namely, in the conclusion section.

2 Quantum Mechanics in the extended DFR noncommutative

space

In this section we will furnish the main ingredients of the extended DFR algebra. The interested
reader can find more details and an extensive list of noncommutativity reviews in [2].

The DFR algebra [9] essentially assumes (1.1) as well as the vanishing of the triple commu-
tator among the coordinate operators,

[xµ , [xν , xρ ] ] = 0 . (2.1)

It is easy to realize that this relation constitute a constraint in a NC spacetime. Notice that the
commutator inside the triple one is not a c-number.

The basic DFR algebra rely on principles imported from GR and QM. In addition to (1.1)
it also assumes that

[xµ, θαβ ] = 0 , (2.2)

and we consider that space has arbitrary D ≥ 2 dimensions. As usual xµ and pν , where
i, j = 1, 2, ...,D, and µ, ν = 0, 1, ....,D, represent the position operator and its conjugate mo-
mentum in Euclidean and Minkowski spaces respectively. The NC variable θµν represent the
noncommutativity operator, but now πµν is its conjugate momentum. In accordance with the
discussion above, it follows the algebra

[xµ,pν ] = iδµν , [θµν , παβ ] = iδµναβ (2.3)

where δµναβ = δµαδ
ν
β − δ

µ
βδ

ν
α. The relation (1.1) here in a space with D dimensions, for example,

can be written as
[xi,xj ] = i θij and [pi,pj ] = 0 (2.4)

and together with the triple commutator (2.1) condition of the standard spacetime, i.e.,

[xµ, θνα] = 0 . (2.5)

This implies that
[θµν , θαβ] = 0 , (2.6)
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and this completes the DFR algebra.
Recently, in order to obtain consistency it was introduced [10], as we talked above, the

canonical conjugate momenta πµν such that,

[pµ, θ
να] = 0 , [pµ, πνα] = 0 . (2.7)

The Jacobi identity formed by the operators xi, xj and πkl leads to the nontrivial relation

[[xµ, παβ],x
ν ]− [[xν , παβ ],x

µ] = −δµναβ . (2.8)

The solution, unless trivial terms, is given by

[xµ, παβ ] = −
i

2
δµναβpν . (2.9)

It is simple to verify that the whole set of commutation relations listed above is indeed consistent
under all possible Jacobi identities. Expression (2.9) suggests the shifted coordinate operator
[24, 25, 26, 27, 28]

Xµ ≡ xµ +
1

2
θµνpν , (2.10)

that commutes with πkl. Actually, (2.10) also commutes with θkl and Xj , and satisfies a non
trivial commutation relation with pi depending objects, which could be derived from

[Xµ,pν ] = iδµν (2.11)

and
[Xµ,Xν ] = 0 . (2.12)

To construct an extended DFR algebra in (x, θ) space, we can write

Mµν = Xµpν − Xνpµ − θµσ π ν
σ + θνσ π µ

σ ,

where Mµν is the antisymmetric generator of the Lorentz-group. To construct πµν we have
to obey equations (2.3b) and (2.9), obviously. From (2.3a) we can write the generators of
translations as

Pµ = −i∂µ .

With these ingredients it is easy to construct the commutation relations

[Pµ,Pν ] = 0

[Mµν ,Pρ] = − i (ηµν Pρ − ηµρ Pν) (2.13)

[Mµν ,Mρσ ] = − i ( ηµρ Mνσ − ηµσ Mνρ − ηνρ Mµσ − ηνσ Mµρ ) ,

and we can say that Pµ and Mµν are the generators of the extended DFR algebra. These
relations are important because they are essential for the construction of the Dirac equation in
this extended DFR configuration D = 10 (x, θ) space [16]. It can be shown that the Clifford
algebra structure generated by the 10 generalized Dirac matrices Γ relies on these relations [2].
In [14], the reader can find a complete discussion about the symmetries involved in this extended
DFR space.
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3 Variational principles in curved spaces

In this section we will carry out a brief review of the formalism used to calculate the equations
of motion, i.e., the Euler-Lagrange (E-L) equations, when curved coordinates are introduced,
i.e., the vielbein method.

We will not discuss here the features of physical definition of particle in curved space
[30, 31, 32]. Here, a particle is an object which configuration space is a pseudo Riemannian
manifold (M, g), the spacetime manifold. The particle dynamics is defined by constraints and
Hamiltonian.

The fundamental structure necessary onM in order to formulate Hamiltonian mechanics is a
symplectic form ωµν , which is non-degenerate (it has a unique inverse, ωµν satisfying ωµν ωµν =
δµρ ), closed 2-form onM, i.e., ω is a tensor field of type (0,2) onM. For any tangent vector vν

onM, we have ωµν v
µ = 0, if and only if vµ = 0. We will talk more about this symplectic form

here in the future.
Let us consider a system represented by a Lagrangian function L which depends on two sets

of independent local variables, the local coordinates {xa} and the extra coordinates z = {χa, ξa}
(these variables are also called Einstein-Kramer variables [22, 21]), where a, b, . . . denote Lorentz-
indices running from 0, . . . ,D, with the associated action

Slocal =

∫ τ2

τ1
dτL (xa, ẋa, z, ż) . (3.1)

Notice that we are in Minkowski spacetime for the time being. Using the principle of least action
with Dirichlet boundary conditions in both sets of variables, we can write that,

δxa(τ1) = δxa(τ2) = δz(τ1) = δz(τ2) = 0 ,

and the E-L equations are established as

∂L

∂xa
−

d

dτ

∂L

∂ẋa
= 0,

∂L

∂z
−

d

dτ

∂L

∂ż
= 0 . (3.2)

On the other hand, the independence between the variables can be written through the relations

∂z

∂xa
= 0,

∂ż

∂xa
= 0,

∂ẋa

∂xa
= 0 . (3.3)

The relation between the variables defined in the local frame with Lorentz-indices and the
variables defined in the coordinate basis, with world-indices µ, ν, . . . running from 0, . . . ,D, is
given by the intertwining of the local coordinate axes named vielbein (vierbeins or tetrads)
matrices at each point X in spacetime and then project all tensor quantities onto these local,
Lorentzian inertial frame axes. The vielbeins V a

µ and V ν
a are defined by,

V µ
aV

b
µ = δba, V a

µV
ν
a = δνµ,

ηabV
a
µV

b
ν = gµν ηabV µ

a V ν
b = gµν , (3.4)

where ηab is the Minkowski metric (+ − −−). So, the flat and curved variables are related to
each other as

ẋa = V a
µẋ

µ, χa = V a
µχ

µ

ξa = V µ
aξµ . (3.5)
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Here the variables χa and ẋa can be seen as components of vector fields and ξa are the components
of a co-vector field, i.e., ξa ∈ T

∗M. The transformation rules between the flat and curved indices
for ż involve the following covariant generalizations,

χ̇a = V a
µ

D

Dτ
χµ = V a

µẋ
β∇βχ

µ

ξ̇a = V µ
a

D

Dτ
ξµ = V µ

aẋ
β∇βξµ, (3.6)

where we used the relations in (3.3) and the definition,

D

Dτ
Aµ

ν = Ȧµ
ν + Γµ

αβA
α
ν ẋ

β − Γα
νβA

µ
αẋ

β = ẋβ∇β A
µ
ν ≡

◦

Aµ
ν , (3.7)

where ∇µ is the usual covariant derivative. We also suppose that the connection is symmetric,
i.e., Γσ

µν = Γσ
νµ, which implies that the we are in a torsion free regime.

With these relations we can show that the conditions (3.3) in the coordinate basis become

∇µχ
ν = 0, ∇µξν = 0 ,

∇µχ̇
ν = 0, ∇µξ̇ν = 0 . (3.8)

We need to be careful because even if the above relations are zero their covariant derivatives
(second order covariant derivatives) are not zero necessarily. An important and useful relation
between the vielbein matrices and the Christoffel symbols are

∂V a
µ

∂xν
= V a

λΓ
λ
µν ,

∂V µ
a

∂xν
= −V λ

aΓ
µ
λν . (3.9)

With the rules (3.4), (3.5) and (3.6), the Lorentz invariant quantities in the local basis become
quantities which are invariant under the general transformation of coordinates in the coordinate
basis. The functional (3.1) will rely on variables with holonomic indices

S =

∫ τ2

τ1
dτL

(

xµ, ẋµ, zA,
◦

z
A
)

(3.10)

and we are using the short notations zA = (χµ, ξµ) and
◦

z≡ Dz/Dτ that have been defined in
(3.7). In order to calculate the E-L equations for this general covariant action we will use the
variational principle. Let us start with the variation of the functional (3.10)

δS =

∫ τ2

τ1
dτ

[

∂L

∂xµ
δxµ +

∂L

∂ẋµ
δẋµ +

∂L

∂zA
δzA +

∂L

∂
◦

z
A
δ

◦

z
A
]

. (3.11)

In the usual formalism, to derive the E-L equations (3.2), besides the vanishing of δS and the
Dirichlet conditions, the variation and the “time” derivative commute

δ
d

dτ
xa =

d

dτ
δxa and δ

d

dτ
z =

d

dτ
δz .

In our case we perform the variation δẋµ using the local basis and the vielbein matrices. From
(3.5) the variation δxa can be written as follows

δẋa =
d

dτ
δxa =

d

dτ

(

V a
µδx

µ
)

. (3.12)
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Using the relations (3.9) and the fact that δẋµ = V µ
aδẋ

a the variation of ẋµ is equal to

δẋµ =
d

dτ
δxµ + Γµ

αβδx
αẋβ =

D

Dτ
δxµ , (3.13)

where we used that Γσ
µν = V σ

λ Γλ
µν . Proceeding in a similar way for δżA it is easy to show that

the variations δ
◦

χµ and δ
◦

ξµ have the following form

δ
◦

χµ =
d

dτ
δχµ + Γµ

αβδχ
αẋβ

δ
◦

ξµ =
d

dτ
δξµ − Γα

µβδξαẋ
β . (3.14)

Substituting relations (3.13) and (3.14) into the integral in (3.11) and integrating by parts using
the Dirichlet conditions (δxµ(τ1) = δxµ(τ2) = δzA(τ1) = δzA(τ2) = 0) we obtain the covariant
E-L equations of motion for {xµ}

∇µL−
D

Dτ

(

∂L

∂ẋµ

)

= ∇µL− ẋ
σ∇σ

(

∂L

∂ẋµ

)

= 0 (3.15)

and for zA we have that

∂L

∂χµ
−

D

Dτ

(

∂L

∂
◦

χ
µ

)

=
∂L

∂χµ
− ẋσ∇σ

(

∂L

∂
◦

χ
µ

)

= 0 (3.16)

and

∂L

∂ξµ
−

D

Dτ





∂L

∂
◦

ξµ



 =
∂L

∂ξµ
− ẋσ∇σ





∂L

∂
◦

ξµ



 = 0 . (3.17)

The star product, mentioned in the first section, for example, can be covariantly generalized as

f ⋆ g = f exp

(

←−
∇µ

i

2
ωµν−→∇ν

)

g

=
∞
∑

n=0

1

n!

(

i

2

)n

ωµ1ν1 . . . ωµnνn(∇µ1
. . .∇µn

f)(∇ν1 . . .∇νng) . (3.18)

where ω is a closed non-degenerate 2-form [23]. Geometrically speaking, in few words, let
π : T ∗M → M be the canonical projection, where T ∗M is the cotangent bundle over the
spacetime manifold M with the symplectic 2-form ω. In a local chart (π−1(U), xµ, pµ), where
U ⊆M and the 2-form ω is given by the formula [33]

ω =
∑

µ

dpµ ∧ dx
µ .

Therefore, we can say that M is equipped with a closed non-degenerate 2-form ω which, in a
local coordinate system,

∂µ ωνρ + ∂ρ ωµν + ∂ν ωρµ = 0 ,
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and this implies that ω satisfies the Jacobi identities.
Now we can see clearly the geometrical meaning of EK variables z = {χa, ξa}, where χ

a ∈
M, ξa ∈ T ∗M and (ξ1, . . . , ξn) as said before, are the components of the cotangent vectors in
the coordinate basis associated with (χ1, . . . , χn). In terms of (χa, ξa) the symplectic 2-form ω
(defined before) can be defined as

ω =
∑

µ

dξa ∧ dχ
a ,

and ω can be used to construct the Poisson brackets of the system.
For high order tensors the covariant equations can also be generalized. As a simple example

let us consider the first order action,

S =

∫

dτ

[

pµẋ
µ −

1

2
(gµνpµpν +m2)

]

(3.19)

that is just the relativistic first order action for a particle in curved space. From the E-L
equations (3.15) it is easy to verify that

ẋµ∇µpν = 0 , (3.20)

meaning momentum conservation Dpν
Dτ

= 0. And, for pµ the equations of motion lead us to the
relation pµ = gµν ẋ

ν , which is just the momentum definition in this case. Inserting it in (3.20)
the geodesic equations can be obtained as

Dẋµ

Dτ
= ẍµ + Γµ

αβẋ
αẋβ = 0 (3.21)

as expected. The covariant E-L equations can be computed directly by using the non covariant
ones and the vielbein matrices, using the chain rule in order to transform the derivatives relative
to the nonholonomic variables into the holonomic ones. The variational principle was introduced
in order to clarify the validity of this equations.

Concerning the symmetries of (3.19), let us consider an infinitesimal transformation of co-
ordinates δxµ = x′µ − xµ = ǫµ(x) which implies an infinitesimal metric tensor transformation,

δgµν = −∇µǫν −∇νǫµ . (3.22)

The action (3.19) is invariant under diffeomorphism if ẋµ and the momenta pµ transform like

δẋµ =
D

Dτ
δxµ = ẋα∇αǫ

µ ,

δpµ = −pα∇µǫ
α , (3.23)

equivalently the rule transformation of the momenta can be written as δpµ = pα∇αǫ
µ.

4 Noncommutative Free Particle

In this section, we present a curved space generalization of the algebraic structure found in [13]
with relativistic version in [12]. To achieve this goal, it is introduced a constrained Hamiltonian
system living in a phase space spanned by the quantities xµ, Zµ and θµν and their conjugate
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momenta pµ,Kµ and πµν , respectively. The coordinates xµ represent the curved coordinates,
θµν , as has been said, is the object of noncommutativity which is considered as an independent
coordinate in the phase space and Zµ represents auxiliary variables introduced in order to
properly implement space-time noncommutativity.

In [15] the first order action which generates all the noncommutative algebra preserving the
Lorentz symmetry is found, the generalization to curved spaces is almost direct and is given by

S =

∫

dτLFO =

∫

dτ

[

p · ẋ+K·
◦

Z +π·
◦

θ −λa Ξ
a − λΥ

]

(4.1)

the center dots mean contraction of the indices (internal products) using the metric tensor gµν(x)
which depends only on the curved coordinates, the symbol ◦ means time-covariant derivative
(3.7) which is necessary in order to preserve the invariance under general transformation of
coordinates. The 2(D + 1) second class constraints Ξa = (Ψµ,Φµ) [15] are given by

Ψµ = Zµ −
1

2
θµνpν

Φµ = Kµ − pµ, (4.2)

where λa = (λ1µ, λ
µ
2 ) in (4.1) are the Lagrange multipliers.

By starting from the first order Lagrangian (4.1),we arrive at

L1 = p · (ẋ+ Ż) + π · θ̇ − λ1 · (Z −
1

2
θ · p) − λ2 · ( p − K ) − γ(

1

λ2
π2 + p2 +m2) (4.3)

if one uses the equation of motion for λµ2 , which is pµ−Kµ = 0. We observe that the form of the
first class constraint is also simplified due to symmetry. If we now use the equation of motion
for λ1µ, which is just Zµ − 1

2θ
µνpµ = 0, we arrive at

L2 = p · ẋ+ π · θ̇ − γ(
1

λ2
π2 + p2 +m2) +

1

2
p · θ · ṗ (4.4)

In [12] the first class constraint Υ generated appropriate transformations for all variables
(reparametrization invariance) of the extended phase space and has the form

Υ =
1

κ2
χ′ + χ, (4.5)

in our treatment the first class quantities χ and χ′ in a curved space are expressed as

χ =
1

2
(gµνpµpν +m2) (4.6)

and

χ′ =
1

2

{

π · π + π ·K · p +
1

4

[

(K ·K)(p · p) − (K · p)2
]}

(4.7)

The commutation relations under the Poisson brackets for the phase space variables are the
usual ones

{xµ, pν} = δµν

{θµν , πρσ} = δµνρσ

{Zµ,Kν} = δµν (4.8)
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where δµνρσ = δµρ δ
ν
σ − δµσδ

ν
ρ . Using the standard Dirac’s procedure for treatment of singular

systems [29] it is easy to verify that action (4.1) has a first class constraint Υ since

{Υ,Ψµ} = 0, {Υ,Φµ} = 0 (4.9)

and the second class set of constraints Ξa with the associated non degenerated second class
constraint matrix

(∆ab) =

(

{Ψµ,Ψν} {Ψµ,Φν}
{Φµ,Ψν} {Φµ,Φν}

)

=

(

0 gµν

−gµν 0

)

(4.10)

with inverse

(∆−1
ab ) =

(

0 −gµν
gµν 0

)

(4.11)

As well known the Dirac brackets between any two phase space functions A and B is given by
[29]

{A,B}D = {A,B} − {A,Ξa}∆−1
ab {Ξ

b, B} (4.12)

As one can verify, the algebraic structure above permits to compute the Dirac brackets

{xµ, xν}D = θµν {xµ, pν}D = δµν
{pµ, pν}D = 0 {θµν , πρσ}D = δµνρσ
{θµν , θρσ}D = 0 {πµν , πρσ}D = 0
{xµ, θρσ}D = 0 {xµ, πρσ}D = −1

2δ
µν
ρσpν

{pµ, θ
ρσ}D = 0 {pµ, πρσ}D = 0

(4.13)

which involves the physical variables xµ, pµ, θ
µν and πµν . The first relation show the noncom-

mutative character of the model. The brackets listed above generalize the algebra found in
Ref.[10, 14]. It is also interesting to display the remaining Dirac brackets where the auxiliary
variables Zµ and Kµ appear:

{Zµ,Kν}D = 0 {Zµ, Zν}D = 0
{Kµ,Kν}D = 0 {Zµ, xν}D = −1

2θ
µν

{Kµ, x
ν}D = −δνµ {Zµ, pν}D = 0

{Kµ, pν}D = 0 {Zµ, θσρ}D = 0
{Zµ, πσρ}D = 1

2δ
µν
σρpν {Kµ, θσρ}D = 0

{Kµ, πσρ}D = 0

(4.14)

An important quantity is the shifted coordinate

Xµ = xµ +
1

2
θµνpν (4.15)

as can be verified such coordinates fulfill the canonical relations

{Xµ,Xν}D = 0 {Xµ, pν}D = δµν
{Xµ, xν}D = 1

2θ
µν {Xµθρσ, πρσ}D = 0

{Xµ, πρσ}D = 0 {Xµ, Zν}D = −1
2θ

µν

{Xµ,Kν}D = δµν

0 (4.16)

this quantity play a fundamental role in the relativistic treatment where the generator of the
Poincaré group Mµν is defined using an appropriated combinations of the shifted coordinate,
momenta and NC coordinates and their conjugate momenta [12].
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As in the ordinary case, it is also possible here to eliminate some of the variables in favor of
the others, by using for instance the second class constraints in a strong way. By starting from
the first order action (4.1), we arrive at

S =

∫

dτ

[

p · ẋ+ π·
◦

θ +
1

2
p · θ·

◦

p −
γ

2
Υ

]

(4.17)

if one uses the equations of motion for λ1µ and λµ2 which are Zµ − 1
2θ

µνpν and pµ − Kµ = 0
respectively. We observe that the form of the first class constraint in (4.17) is also simplified
due to symmetry, then in the second class constraints surface Υ reduces to the simpler form

Υ =
1

2

(

gµνpµpν +
1

κ2
gµαgνβπµνπαβ +m2

)

. (4.18)

We observe that the last term in (4.17) has already appeared in [17]. In the Deriglazov’s
treatment there is the introduction of a factor of θ−2 in the corresponding term in order to
introduce an additional gauge invariance which can be fixed by imposing constant θ’s. In those
works there is no term in π and any dynamics for the θ sector, which is a necessary ingredient to
implement the quoted symmetry. Also that symmetry is broken if any interaction is introduced
via minimal coupling procedures.

As can be verified, (4.17) can be the starting point for essentially the same structure described
in the first part of this section. It is important to remark that here the tensor fields θµν have
been included as the objects of noncommutativity. As a result the counting of bosonic degrees
of freedom are D + 1 + D(D+1)

2 . This implies that in D + 1 = 4 ({x0, . . . , x3}), the number of
bosonic degrees of freedom would be 10.

The invariance under diffeomorphism is expected in gravity models. In our model this
symmetry can be retained. If the transformations (3.22) and (3.23) hold, we can find the
transformations of the remainder variables. For the NC objects and their momenta conjugate
we found that,

δθµν = θµσ∇σǫ
ν + θσν∇σǫ

µ

δπµν = −πσν∇µǫ
σ − πµσ∇νǫ

σ (4.19)

and for the time-covariant derivatives

δ
◦

pµ = −
◦

pσ ∇µǫ
σ

δ
◦

θ
µν

=
◦

θ
µσ

∇σǫ
ν+

◦

θ
σν∇σǫ

µ (4.20)

and the Lagrange multiplier transforming as δγ = 0. Using (4.19) and (4.20) it is straightforward
to show that (4.17) is invariant under diffeomorphisms.

5 Motion on Noncommutative phase space

In the previous section it has been introduced the first order action used to obtain the constraint
structure necessary to generate the Dirac brackets in the extended DFR phase space. This
structure is NC in the coordinates. Now we will turn our attention to the dynamics obtained
from (4.17).
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The E-L equations have to be calculated in a covariant way (in section 3 the treatment of
variational principles in curved spaces was introduced). In order to calculate the equations of
motion related to the coordinates xµ it is useful to rewrite the Lagrangian as

LFO = p · ẋ+ πµν ẋ
α∇αθ

µν +
1

2
pµθ

µν ẋα∇αpν −
γ

2
Υ (5.1)

where we write LFO in terms of the covariant derivative ∇µ and (3.7) was used. From (3.15)
the first set of equations, related with the coordinates {xµ}, is given by

Dpµ
Dτ

+
1

2
pαθ

αβẋσ[∇σ,∇µ]pβ + παβ ẋ
σ[∇σ,∇µ]θ

αβ = 0 , (5.2)

the commutator of the covariant derivatives can be related with the curvature tensor Rλ
µνκ

([∇µ,∇ν ]Aσ = −Rλ
σµνAλ and similar relations for high order tensors) left the last equation in

the form
Dpµ
Dτ
−

1

2

(

pαθ
αβpσ − 4πασθ

αβ
)

Rσ
βλµẋ

λ = 0 . (5.3)

Here it is important remember that even ∇αpµ = 0 and ∇αθ
µν = 0 are true, they are relations

and are not identities, then the second covariant derivatives ∇β∇αpµ and ∇β∇αθ
µν in general

are different to zero. For the momenta pµ the E-L equations resulting from (3.16) are

ẋµ + θµα
◦

pα +
1

2

◦

θ
µα

pα − λg
µνpν = 0 (5.4)

For the extended coordinates θ the E-L equations resulting are,

Dπµν
Dτ

−
1

4
p[µ

◦

pν]= 0 , (5.5)

where the square brackets means antisymmetry in the indices and for its momenta conjugate we
find

κ2
Dθµν

Dτ
− λgµαgνβπαβ = 0 . (5.6)

In the commutative limit, when θµν → 0, the equations (5.3) and (5.4) turn into the correspond-
ing equations for an ordinary particle in curved background introduced as an example at the
end of section 3. To implement the set of equations (5.3)-(5.6) using some particular metric one
could impose the corresponding symmetries to noncommutative variables, in this scheme the
NC variables should be interpreted as independent fields in the model. Another way to treat
these equations is using some dimensional reduction formalism like Kaluza-Klein or holography.

In commutative spacetime, gµν is a classical “c-number.” We can consider this approxima-
tion since quantum gravitational fluctuations can be ignored. Besides, one does not take into
account the back reaction to particle creation. The curvatures necessary to create particles will
necessarily build up during gravitational collapse or in the big bang. These processes are not
known in this extended NC spacetime. As we have observed at the beginning of section 3, a
detailed discussion about the particles which obey the equations of motion described above in
curved extended NC D = 10 spacetime is out of the scope of this work and it is subject for future
analysis. However, we can say that the trajectories described by these equations of motion live
in this pseudo Riemannian manifold. Besides we showed above that the particles dynamics can
be defined from the construction of the NC Lagrangian constructed inM.
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6 Conclusions

There is some circumstances where the quantum effects of gravity itself has not a fundamental
role. In these circumstances, if we do not have an exact theory, it is believed that quantum field
theory in curved spacetime should provide a good approximate description.

The effort to construct a theory that describes exactly the unification of general relativity
and quantum mechanics tell us that exists a fundamental length. At this point we can talk in
terms of a NC spacetime, which has a fundamental length defined in Planck scale.

In this work a model of a noncommutative particle in curved space was constructed. The
action describing such particle was written into the extended Doplicher-Fredenhagen-Roberts
spacetime, where now the noncommutative antisymmetric parameters θµν are incorporated as
spacetime coordinates and therefore have conjugate momentum. We explored the results ob-
tained in [13] concerning the construction of an action that obeys the NC algebra and we have
embedded this action in curved space. It can be shown that this action can describe also the
relativistic particles depicted in [12, 17].
Concerning the resulting algebra

{xµ, xν}D = θµν(τ) , (5.7)

the noncommutative coordinates are dependent on the “time” since it is not a constant parameter
as in the usual approaches. Another way to incorporate non-constant noncommutative objects
is using non-canonical symplectic two-forms in the context of symplectic mechanics [20].

The resulting dimension of the spacetime is D + 1 + D(D+1)
2 due to the new variables in-

clusion. Another characteristic of our model is that, in the first order action describing the
particle, similar coupling terms between the noncommutative sector and the commutative one
was reported by [17], see equation (4.17) .

We review the main steps in curved space formalism and as said just above, embedded the
NC action in this curved background. To accomplish this we used the so-called Einstein-Kramer
variables, which are auxiliary variables that divides the original vectorial space and the vielbein
formalism which provides the relations between curved variables and the flat space ones. The
resulting action is invariant under diffeomorphism with the suitable rules of transformations of
the NC variables.

To describe the dynamics of this curved space NC system, we computed the Euler-Lagrange
equations. These equations have the correct commutative limit at the surface where the non-
commutative variables vanish θµν = 0. As a consequence of the incorporation of the new
noncommutative variables, the curvature tensor appear in the covariant set of equations of mo-
tions. One deep analysis and applications of the noncommutative motion equations is beyond
the scope of this work, research in this direction are being constructed and will be reported
elsewhere.

As well known, linear wave equations in flat spacetime for arbitrary spin particles can be
constructed. An object for future investigation is to construct the basic structure of the NC
curved spacetime propagation equations for spin 0 and 1

2 particles and the subsidiary conditions.
As another perspective, the minimal coupling or other generalizations to curved spacetime

can introduce extra-subsidiary conditions or propagation equations. However, these features are
unknown in this extended NC background and can be investigated.
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