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Statistical convergence of max-product approximating operators

Oktay Duman

Abstract

In this study, using the notion of statistical convergence, we obtain various statistical approximation

theorems for a general sequence of max-product approximating operators, including Shepard type operators,

although its classical limit fails. We also compute the corresponding statistical rates of the approximation.
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1. Introduction

In the classical approximation theory, many well-known approximating operators obey the linearity
condition. In recent years, Bede et al. [3] have shown that it is possible to find some approximating operators
that are not linear, such as, max-product and max-min Shepard type approximating operators. Actually, these
operators are pseudo-linear which is a quite effective structure in solving the problems in many branches of
applied mathematics, such as, image processing [4], differential equations [19, 20], idempotent analysis [18]

and approximation theory [3, 5]. However, so far, almost all results regarding approximations by pseudo-
linear operators are based on the validity of the classical limit of the operators. Hence, in this paper, we
focus on the following problem: is it possible to make an approximation by max-product operators although
its classical limit fails? As an answer to this problem we mainly use the concept of statistical convergence,
which was first introduced by Fast [13]. Recent studies demonstrate that the notion of statistical convergence

provides an important contribution to the improvement of the classical approximation theory (see, for instance,

[1, 2, 7, 8, 9, 10, 11, 12]).

This paper is organized as follows: The first section is devoted to basic definitions and notations used
in the paper. In the second section, we obtain some statistical approximation results for a general class of
max-product operators including Shepard type operators. In the third section, we compute the corresponding
statistical rates of the approximation, while, in the last section, we give some quantitative statistical rates.

Let (xn) be a sequence of numbers. Then, (xn) is called statistically convergent to a number L if, for
every ε > 0,

lim
j

# {n ≤ j : |xn − L| ≥ ε}
j

= 0,
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where #B denotes the cardinality of the subset B (see [13], also [15]). We denote this statistical limit by

st− limn xn = L. Now, let A = (ajn) be an infinite summability matrix. Then, the A-transform of x , deneted

by Ax := ((Ax)j), is given by (Ax)j =
∑∞

n=1 ajnxn, provided the series converges for each j. We say that A is

regular if limj(Ax)j = L whenever limj xj = L [16]. Assume now that A is a nonnegative regular summability

matrix. Then, a sequence (xn) is said to be A-statistically convergent to L if, for every ε > 0,

lim
j

∑
n: |xn−L|≥ε

ajn = 0 (1.1)

holds (see [14]). It is denoted by stA − limn xn = L.

Now we recall some basic properties of A-statistical convergence as follows:

• A-statistical convergence method is mainly based on the concept of A-density. Recall that the A-density
of a subset K ⊂ N , denoted by δA (K) , is given by

δA (K) = lim
j

∞∑
n=1

ajnχK (n) ,

provided that the limit exists, where χK is the characteristic function of K ; or equivalently,

δA (K) = lim
j

∑
n∈K

ajn.

So, by (1.1), we easily see that stA − limx = L if and only if

δA ({n : |xn − L| ≥ ε}) = 0

for every ε > 0.

• If we take A = C1 := [cjn] , where the Cesáro matrix is given by

cjn :=

⎧⎨
⎩

1
j
, if 1 ≤ n ≤ j

0, otherwise,

then A-statistical convergence reduces to statistical convergence, i.e., stC1 − limn xn = st − limn xn = L.

• Taking A = I , the identity matrix, A-statistical convergence coincides with the ordinary convergence,
i.e., stI − limx = limx = L.

• Observe that every convergent sequence (in the usual sense) is A-statistically convergent to the same

value for any non-negative regular matrix A , but its converse is not always true. Actually, in [17], Kolk

proved that A-statistical convergence is stronger than convergence when A = [ajn] is a non-negative

regular summability matrix such that limj maxn{ajn} = 0. So, one can construct a sequence that is

A-statistically convergent but non-convergent.
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• Not all properties of convergent sequences are true for A-statistical convergence (or statistical conver-

gence). For instance, although it is well-known that a subsequence of a convergent sequence is convergent,
this is not always true for A-statistical convergence. Another example is that every convergent sequence
must be bounded, however an A-statistically convergent sequence does not need to be bounded.

• A characterization for statistical convergence, i.e., the case of A = C1, was proved by Connor [6]:

st − limx = L if and only if there exists a subsequence {xnk} of x such that δ ({n1, n2, ...}) = 1 and
limk xnk = L. It is easy to check that a similar characterization is also valid for A-statistical convergence
when A is any non-negative regular summability matrix.

2. Approximation properties of max-product operators

Let (X, d) be an arbitrary compact metric space, and let A = (ajn) be a non-negative regular summability

matrix. By C(X, [0,∞)) we denote the space of all non-negative continuous functions on X. Then we consider
the following max-product operators:

Ln (f ; x) =
n∨

k=0

Kn(x, xk) · f(xk), x ∈ X and f ∈ C(X, [0,∞)), (2.1)

where xk ∈ X, k = 0, 1, ..., n, are the knots; and Kn(x, xk) are non-negative continuous functions on X having

relatively simple expression (algebraic or trigonometric polynomials, rational functions, wavelets, etc.) such
that, for any x ∈ X,

δA

({
n ∈ N :

n∨
k=0

Kn(x, xk) = 1

})
= 1 (2.2)

holds. Observe that the operators mapping C(X, [0,∞)) into C(X, [0,∞)) are pseudo-linear, i.e., for every

f, g ∈ C(X, [0,∞)) and for any non-negative numbers α, β,

Ln

(
α · f

∨
β · g; x

)
= α · Ln(f ; x)

∨
β ·Ln(g; x)

is satisfied (see [3]).

We first recall the following lemma introduced in [3], which is useful in proving our main results.

Lemma A ([3]). For any ak, bk ∈ [0,∞), k = 0, 1, ..., n, we have

∣∣∣∣∣
n∨

k=0

ak −
n∨

k=0

bk

∣∣∣∣∣ ≤
n∨

k=0

|ak − bk| .

Then we obtain the following Korovkin-type result for the max-product operators.
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Theorem 2.1 Let (X, d) be an arbitrary compact metric space, and let A = (ajn) be a non-negative regular

summability matrix. If, for the operators Ln given by (2.1) and (2.2) ,

stA − lim
n

{∨
{|Ln(ϕx; x)| : x ∈ X}

}
= 0 with ϕx(y) = d2(y, x), (2.3)

then, for all f ∈ C(X, [0,∞)), we have

stA − lim
n

{∨
{|Ln(f ; x) − f(x)| : x ∈ X}

}
= 0.

Proof. Let x ∈ X and f ∈ C(X, [0,∞)) be fixed. Then, using the continuity of f and also considering the
compactness of X, we immediately see that, for a given ε > 0, there exists a positive number δ such that

|f(y) − f(x)| ≤ ε +
2Mf

δ2
ϕx(y) (2.4)

holds for all y ∈ X, where Mf :=
∨ {|f(y)| : y ∈ X} . Now put

K :=

{
n ∈ N :

n∨
k=0

Kn(x, xk) = 1

}
. (2.5)

Then, by (2.2), we may write that

δA (K) = 1 and δA (N\K) = 0.

Hence, by (2.2), (2.4) and Lemma A, we get, for all n ∈ K, that

|Ln(f ; x) − f(x)| =

∣∣∣∣∣
n∨

k=0

Kn(x, xk) · f(xk) −
n∨

k=0

Kn(x, xk) · f(x)

∣∣∣∣∣
≤

n∨
k=0

Kn(x, xk) · |f(xk) − f(x)|

≤
n∨

k=0

Kn(x, xk) ·
(

ε +
2Mf

δ2
ϕx(xk)

)

≤ ε +
2Mf

δ2

n∨
k=0

Kn(x, xk) · ϕx(xk)

= ε +
2Mf

δ2
Ln (ϕx; x) .

Now, taking maximum over x ∈ X, the last inequality gives, for all n ∈ K, that

∨
{|Ln(f ; x) − f(x)| : x ∈ X} ≤ ε +

2Mf

δ2

∨
{|Ln(ϕx; x)| : x ∈ X} . (2.6)

For a given r > 0, choose an ε > 0 such that ε < r, and then define the sets

D :
{
n ∈ N :

(∨
{|Ln(f ; x) − f(x)| : x ∈ X}

)
≥ r

}
,

D′ :
{

n ∈ N :
(∨

{|Ln(ϕx; x)| : x ∈ X}
)
≥ (r − ε)δ2

2Mf

}
.
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So, inequality (2.6) implies

D ∩ K ⊆ D′ ∩K,

which yields, for every j ∈ N , that

∑
n∈D∩K

ajn ≤
∑

n∈D′∩K

ajn ≤
∑

n∈D′

ajn. (2.7)

Taking limit as j → ∞ on the both-sides of the inequality (2.7) and also using the hypothesis (2.3), we get

lim
j

∑
n∈D∩K

ajn = 0. (2.8)

On the other hand, since

∑
n∈D

ajn =
∑

n∈D∩K

ajn +
∑

n∈D∩(N\K)

ajn

≤
∑

n∈D∩K

ajn +
∑

n∈(N\K)

ajn

holds for every j ∈ N , letting again j → ∞ in the last inequality and using (2.8) and also the fact that

δA (N\K) = 0, we have

lim
j

∑
n∈D

ajn = 0,

which means that

stA − lim
n

{∨
{|Ln(f ; x) − f(x)| : x ∈ X}

}
= 0.

The theorem is proved. �

We immediately obtain the next result from Theorem 2.1 by replacing the matrix A = (ajn) with the

identity matrix.

Corollary 2.2 Let (X, d) be an arbitrary compact metric space. Assume that the operators Ln given by (2.1)
satisfy the condition

n∨
k=0

Kn(x, xk) = 1 (for n ∈ N and x ∈ X).

If the sequence {Ln(ϕx; x)}n∈N
converges uniformly to zero function with respect to x ∈ X, then, for all

f ∈ C(X, [0,∞)), {Ln(f ; x)}n∈N
is also uniformly convergent to f(x) with respect to x ∈ X.

Remark 2.3 Observe that Theorem 2.1 gives the statistical approximation to a function f ∈ C(X) by means
of the max-product operators Ln while Corollary 2.2 gives the classical approximation. However, the following
example shows that our statistical approximation result is stronger than the classical one.
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Example. Let (X, d) be an arbitrary compact metric space. Consider the Shepard-type max-product operators

(see [5]) as follows:

Sλ
n(f ; x) =

n∨
k=0

⎛
⎜⎜⎝

1
dλ(x,xk)

n∨
j=0

1
dλ(x,xj)

⎞
⎟⎟⎠ · f(xk) =

n∨
k=0

f(xk)
dλ(x,xk)

n∨
j=0

1
dλ(x,xj)

, (2.9)

where x ∈ X, λ, n ∈ N and f ∈ C(X, [0,∞)). In this case, we know from [5] that, for all f ∈ C(X, [0,∞)), the

sequence {Sλ
n(f)} in (2.9) is uniformly convergent to f on X. Now, let (un) be a divergent but A-statistically

null sequence of positive numbers. Recall that we can construct such a sequence (un) due to Kolk [17]. Actually,

Kolk [17] proved that A-statistical convergence is stronger than the usual convergence if the matrix A = (ajn)

is any nonnegative regular summability matrix for which limj maxn{ajn} = 0. Then, we define the max-product

operators on C(X, [0,∞)) as

Tn(f ; x) = (1 + un)Sλ
n(f ; x), x ∈ X and f ∈ C(X, [0,∞)), (2.10)

where the operators Sn are given by (2.9). Observe now that all the conditions of Theorem 2.1 are satisfied for

the operators Tn defined by (2.10). Therefore, for all f ∈ C(X, [0,∞)), we conclude that

stA − lim
n

{∨
{|Tn(f ; x) − f(x)| : x ∈ X}

}
= 0.

However, since (un) is divergent, Corollary 2.2 does not work for the operators Tn given by (2.10).

3. Statistical rates of the approximation

This section is devoted to compute the rates of A-statistical convergence in Theorem 2.1. Before starting,
we recall that various ways of defining rates of convergence in the A-statistical sense have been introduced in
[10] as follows:

Let A = (ajn) be a non-negative regular summability matrix and let (pn)n∈N be a positive non-increasing

sequence of real numbers. Then,

(i) A sequence x = (xn)n∈N is A-statistically convergent to the number L with the rate of o(pn) if for every
ε > 0,

lim
j

1
pj

∑
n:|xn−L|≥ε

ajn = 0.

In this case we write xn − L = stA − o(pn) as n → ∞.

(ii) (xn)n∈N is A-statistically convergent to L with the rate of om(pn), denoted by xn − L = stA − om(pn)
as n → ∞, if for every ε > 0,

lim
j

∑
n:|xn−L|≥εpn

ajn = 0.
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Observe that, in definition (i), the “rate” is more controlled by the entries of the summability method

rather than the terms of the sequence (xn)n∈N . For instance, when one takes the identity matrix I , if we

choose any non-increasing sequence (pn)n∈N satisfying 1/pn ≤ M for some M > 0 and for each n ∈ N , then

xn − L = stA − o(pn) as n → ∞ for any convergent sequence (xn − L)n∈N regardless of how slowly it goes
to zero. To avoid such an unfortunate situation one may borrow the concept of convergence in measure from
measure theory to define the rate of convergence as in definition (ii). So, we use the notation om .

We first need the following lemma.

Lemma 3.1 For every ak, bk ≥ 0 (k = 0, 1, ..., n), we have

n∨
k=0

akbk =

√√√√ n∨
k=0

a2
k

√√√√ n∨
k=0

b2
k.

Proof. Assume that, for some p, q ∈ {0, 1, ..., n},

n∨
k=0

ak = ap and
n∨

k=0

bk = bq.

Since, for every k = 0, 1, ..., n,

n∨
k=0

akbk = apbp,

n∨
k=0

a2
k = a2

p and
n∨

k=0

b2
k = b2

q ,

the proof follows immediately. �

Now we are ready to give the corresponding statistical rates.

Theorem 3.2 Let (X, d) be an arbitrary compact metric space, and let A = (ajn) be a non-negative regular

summability matrix. Assume that (pn) is a sequence of positive non-increasing real numbers. If the operators

Ln given by (2.1) and (2.2) satisfy that

w(f, δn) = stA − o(pn) as n → ∞ for f ∈ C(X, [0,∞)), (3.1)

where (δn) is a sequence whose terms are defined by

δn :=
√∨

{Ln(ϕx; x) : x ∈ X} with ϕx(y) = d2(y, x) (3.2)

then, for any sequence (qn) of positive non-increasing real numbers satisfying qn ≥ pn and qn ≥ 1 for all
n ∈ N , we have ∨

{|Ln(f ; x) − f(x)| : x ∈ X} = stA − o(qn) as n → ∞. (3.3)
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Proof. Let x ∈ X and f ∈ C(X, [0,∞)) be fixed. Considering the set K given by (2.5), we can write, for
every n ∈ K and for any δ > 0, that

|Ln(f ; x) − f(x)| ≤
n∨

k=0

Kn(x, xk) · |f(xk) − f(x)|

≤
n∨

k=0

Kn(x, xk) · w (f, d(xk, x))

≤ w(f, δ)
n∨

k=0

Kn(x, xk) ·
(

1 +
d(xk, x)

δ

)

= w(f, δ)

{
1 +

1
δ

n∨
k=0

Kn(x, xk) · d(xk, x)

}
.

= w(f, δ)

{
1 +

1
δ

n∨
k=0

[
K1/2

n (x, xk)
]
·
[
K1/2

n (x, xk)d(xk, x)
]}

Now, by using Lemma 3.1, we immediately see that

|Ln(f ; x) − f(x)| ≤ w(f, δ)
{

1 +
1
δ

√
Ln (d2(·, x); x)

}

holds for every n ∈ K and for any δ > 0. Hence, we obtain, for the same n and δ, that

∨
{|Ln(f ; x) − f(x)| : x ∈ X} ≤ w(f, δ)

{
1 +

δn

δ

}
. (3.4)

Now choosing δ := δn given by (3.2), it follows from (3.4) that

∨
{|Ln(f ; x) − f(x)| : x ∈ X} ≤ 2w(f, δn). (3.5)

For a given ε > 0, consider the following sets:

E : =
{
n ∈ N :

∨
{|Ln(f ; x) − f(x)| : x ∈ X} ≥ ε

}
,

E′ : =
{
n ∈ N : w(f, δn) ≥ ε

2

}
.

Then, inequality (3.5) guarantees that

E ∩ K ⊆ E′ ∩ K. (3.6)

Since qj ≥ pj for all j ∈ N , we obtain from (3.6) that

1
qj

∑
n∈E∩K

ajn ≤ 1
pj

∑
n∈E′∩K

ajn ≤ 1
pj

∑
n∈E′

ajn.
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Letting j → ∞ on the both-sides of the last inequality, and applying the hypothesis (3.1), we get

lim
j

1
qj

∑
n∈E∩K

ajn = 0. (3.7)

Furthermore, as in the proof of Theorem 2.1, since

∑
n∈E

ajn =
∑

n∈E∩K

ajn +
∑

n∈E∩(N\K)

ajn

≤
∑

n∈E∩K

ajn +
∑

n∈(N\K)

ajn,

it is clear that
1
qj

∑
n∈E

ajn ≤ 1
qj

∑
n∈E∩K

ajn +
1
qj

∑
n∈(N\K)

ajn.

Using the fact that qj ≥ 1 for all j ∈ N , the last inequality implies that

1
qj

∑
n∈E

ajn ≤ 1
qj

∑
n∈E∩K

ajn +
∑

n∈(N\K)

ajn. (3.8)

Then, taking limit as j → ∞ in (3.8), and considering (3.7), we conclude that

lim
j

1
qj

∑
n∈E

ajn = 0.

Therefore, we have ∨
{|Ln(f ; x) − f(x)| : x ∈ X} = stA − o(qn) as n → ∞,

which completes the proof. �

In a similar manner, we obtain the following result for the statistical rate om.

Theorem 3.3 Let (X, d) be an arbitrary compact metric space, and let A = (ajn) be a non-negative regular

summability matrix. Assume that (pn) is a sequence of positive non-increasing real numbers. If the operators

Ln given by (2.1) and (2.2) satisfy that

w(f, δn) = stA − om(pn) as n → ∞ for f ∈ C(X, [0,∞)),

where (δn) is the same as in (3.2) , then, for any sequence (qn) of positive non-increasing real numbers satisfying
qn ≥ pn for all n ∈ N , we have

∨
{|Ln(f ; x) − f(x)| : x ∈ X} = stA − om(qn) as n → ∞.
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Proof. For any ε > 0, define the sets:

F : =
{
n ∈ N :

∨
{|Ln(f ; x) − f(x)| : x ∈ X} ≥ εqn

}
,

F ′ : =
{
n ∈ N : w(f, δn) ≥ εpn

2

}
.

Then, by (3.5), we get

F ∩ K ⊆ F ′ ∩K.

Hence, we obtain, for every j ∈ N , that

∑
n∈F∩K

ajn ≤
∑

n∈F ′∩K

ajn ≤
∑

n∈F ′

ajn,

which gives

lim
j

∑
n∈F∩K

ajn = 0. (3.9)

As in the proof of Theorem 3.2, it follows from (3.9) that

lim
j

∑
n∈F

ajn = 0.

Therefore, we conclude that

∨
{|Ln(f ; x) − f(x)| : x ∈ X} = stA − om(qn) as n → ∞,

whence the result. �

Remark 3.4 It is easy to see that our Theorem 2.1 can be deduced from Theorem 3.2 (or Theorem 3.3) by
choosing pn = qn = 1 for each n ∈ N . Hence, Theorems 3.2 and 3.3 give us the statistical rates in the
approximation of the max-product operators Ln defined by (2.1) and (2.2) .

4. Quantitative statistical rates

In order to obtain the statistical rates quantitatively one can consider the following expressions instead
of the definitions (i) and (ii) given in Section 3:

Let A = (ajn) be a non-negative regular summability matrix and let (pn)n∈N be a positive non-increasing

sequence of real numbers. Then,

(i)′ A sequence x = (xn) is A-statistically bounded with the rate of O(pn) if for every ε > 0,

sup
j

1
pj

∑
n:|xn|≥ε

ajn < ∞.

In this case we write xn = stA − O(pn) as n → ∞.
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(ii)′ (xn)n∈N is A-statistically bounded with the rate of Om(pn), denoted by xn = stA −Om(pn) as n → ∞,

if for every ε > 0,

lim
j

∑
n:|xn−L|≥εpn

ajn = 0.

In this case, by a similar idea used in the proofs of Theorems 3.2 and 3.3, the following results can easily
be proved.

Theorem 4.1 Let (X, d) be an arbitrary compact metric space, and let A = (ajn) be a non-negative regular

summability matrix. Assume that (pn) is a sequence of positive non-increasing real numbers. If the operators

Ln given by (2.1) and (2.2) satisfy that

w(f, δn) = stA − O(pn) as n → ∞ for f ∈ C(X, [0,∞)),

where (δn) is given by (3.2), then, for any sequence (qn) of positive non-increasing real numbers satisfying
qn ≥ pn and qn ≥ 1 for all n ∈ N , we have

∨
{|Ln(f ; x) − f(x)| : x ∈ X} = stA − O(qn) as n → ∞.

Theorem 4.2 Let (X, d) be an arbitrary compact metric space, and let A = (ajn) be a non-negative regular

summability matrix. Assume that (pn) is a sequence of positive non-increasing real numbers. If the operators

Ln given by (2.1) and (2.2) satisfy that

w(f, δn) = stA − Om(pn) as n → ∞ for f ∈ C(X, [0,∞)),

where (δn) is given by (3.2) , then, for any sequence (qn) of positive non-increasing real numbers satisfying
qn ≥ pn for all n ∈ N , we have

∨
{|Ln(f ; x) − f(x)| : x ∈ X} = stA − Om(qn) as n → ∞.

Now we construct an example satisfying all conditions of Theorem 4.1. Firstly, in (2.9), choosing

X = [0, 1] and xk = k
n (k = 0, 1, ..., n) and also taking the absolute value metric, for all continuous functions

f : [0, 1] → [0,∞), we consider the following Shepard-type max-product operators

Hλ
n(f ; x) =

n∨
k=0

f(k/n)

|x−(k/n)|λ

n∨
j=0

1
|x−(j/n)|λ

, n, λ ∈ N, x ∈ [0, 1] with x 
= k

n
(k = 0, 1, ..., n). (4.1)

In this case, we may write from Theorem 6 of [5] that, for every x ∈ [0, 1],

Hλ
n(ϕx; x) ≤ 3

2
w

(
ϕx,

1
n

)
with ϕx(y) := (y − x)2. (4.2)
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Now take A = C1 := [cjn] , the Cesáro matrix and defined the sequences (αn), (pn) and (qn) by

αn =
{

n2, if n = m2,
0, if n 
= m2.

(4.3)

and

pn =
1
3
√

n
, qn = 1 +

1
4
√

n
. (4.4)

Then, using (4.1) and (4.3) define the max-product operators

Ln(f ; x) := (1 + αn)Hλ
n(f ; x), (4.5)

where n, λ ∈ N , x ∈ [0, 1] and f : [0, 1] → [0,∞) is any continuous function on [0, 1]. Hence, we get from (4.2)
that

δn :=
√∨

{Ln(ϕx; x) : x ∈ [0, 1]} ≤
√

3 (1 + αn)
2

√∨{
w

(
ϕx,

1
n

)
: x ∈ [0, 1]

}
. (4.6)

By (4.3) and (4.4) , observe that, for every ε > 0,

1
pj

∑
n: |αn|≥ε

cjn = 3
√

j
∑

n: |αn|≥ε

1
j
≤

3
√

j
√

j

j
=

1
6
√

j
≤ 1

holds for every j ∈ N . Then, we have

αn = stC1 − O

(
1
3
√

n

)
as n → ∞.

Combining this with (4.6) we get

δn = stC1 − O

(
1
3
√

n

)
as n → ∞ (4.7)

because of the fact that

lim
n→∞

√∨{
w

(
ϕx,

1
n

)
: x ∈ [0, 1]

}
= 0.

Now using the right continuity at zero of the modulus of continuity, it follows from (4.7) that

w(f, δn) = stC1 − O

(
1

3
√

n

)
as n → ∞ for f ∈ C([0, 1], [0,∞)).

Therefore, all conditions of our Theorem 4.1 hold. So, for the operators Ln given by (4.5), we get, for all

f ∈ C([0, 1], [0,∞)), that

∨
{|Ln(f ; x) − f(x)| : x ∈ [0, 1]} = stA − O (qn) as n → ∞,

since qn ≥ pn for every n ∈ N .
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