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Abstract—Gaze movement plays an important role in 
human visual search system. How to simulate such a 
system to efficiently encode and decode gaze movement 
for target searching is a meaningful issue. There are two 
key points that should be addressed for this issue. First, 
eye movement is affected by the visual context that 
includes more than one object in images. It is important 
to study how to encode the spatial relationship between 
the target and the other objects, and decode the spatial 
relationship to drive the gaze moving to the target. 
Second, the human retina has a non-uniform distribution 
of light sensing neurons, which can be viewed as a 
composition of neuron arrays in different spatial 
resolutions. When a system searches a target, how many 
scales of visual fields should be involved to sense the 
image stimulus? In this paper, we propose a visual search 
system using the population cell coding mechanism and 
the multi-scale visual field as sensing input. As an 
example, the system is applied to human eye center 
searching. An experimental comparison of a Full-scale 
visual field coding system and a Gradual-scale coding 
system is carried out. The experiment results show the 
Gradual-scale coding system performs better than 
Full-scale coding system for target searching. 

I. INTRODUCTION 

 ye gaze movement plays an important role in human 
vision information acquiring and object searching 

system. Much research work simulates the gaze variation in 
bottom-up and top-down modes [2-6]. For example, when 
one searches specific categories of objects, i.e., pedestrians or 
vehicles, from images without the knowledge of object scales, 
orientations and positions, he may moves his gaze to places 
according to the posterior probability related to the context 
between objects and environmental features[7,8], which is 
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known as top-down attention or task-driven object searching. 
When one recognize the located object, he may change his 
view point from one salient region to another [9,10] to extract 
key features according to the attraction strength or according 
to a saliency map[11], which is known as bottom-up attention 
or feature-driven visual searching. 

 

 

 

 

 

 

 
Either the top-down or bottom-up methods, if they adopt 

the decision principle by the largest saliency or the largest 
probability, is similar to winner-take-all or single-cell-coding 
mechanism for only one largest response is used to make 
decision. Single-cell-coding means using one cell 
(grandmother cell) or one response to represent one object. 
However, eye movement is affected by the visual context that 
includes more than one object in images, especially in the 
case of target searching. From the principle of informatics, 
single-cell-coding could save large coding quantity at the risk 
of losing accuracy for recognition or behavior control, while 
the population coding maintains more stabile and higher 
accurate at the cost of more coding quantity. In top-down 
visual object search systems, the context[7, 12-14]between 
environmental features and targets is usually to be learned 
or coded for future prediction of the positions of the 
targets. Visual context is related to the spatial relationship in 
terms of horizontal and vertical distances (Δx, Δy) between 
two centers of related objects, as shown in Fig.1. Much more 
physiological experiments prove that population coding 
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Fig.1. An illustration of visual context: the target (left eye) and the 
environmental object (left shoulder) plus their spatial relationship (Δx, Δy).

Fig.2. Visual context coding: encoding and decoding spatial relationship 
for gaze movement control through population cell coding. 



 
 

 

mechanism is widely used in the human brain, vision and 
movement control system [1, 17]. As shown in Fig.2, we can 
use population coding neurons to encode and decode the 
spatial relationship to control the gaze movement in terms of 
horizontal and vertical shift distances (Δx, Δy). 

 

 

 
The human retina has a non-uniform distribution of light 

sensing neurons, which can be viewed as a composition of 
neuron arrays in different spatial resolutions (see Fig.3). 
When a system searches a target, how many scales of visual 
fields should be used to sense the image stimulus? To solve 
the problem, a general principle of high accuracy of target 
locating with low encoding quantity of training data should 
be considered. In this paper, we propose a visual search 
system using the population cell coding mechanism and the 
multi-scale visual field as sensing input. 

An experimental comparison of a Full-scale visual field 
coding system and a Gradual-scale coding system is carried 
out. The experiment results show the Gradual-scale coding 
system performs better than Full-scale coding system for 
target searching. 

The following paragraphs are arranged in five respects: (1) 
Construction of visual search system; (2) Features designed 
for coding visual context; (3) Multi-scale population cell 
encoding and decoding gaze movement; (4) Experimental 
performance comparison and (5) Discussion and Conclusion. 

II. A VISUAL SEARCH SYSTEM BASED ON MULTI-SCALE 

POPULATION CELL CODING 

A multi-scale population-cell-coding structure to control 
gaze movement is designed to implement the visual search 
system, which is illustrated in Fig.4. The coding structure 
consists of two parts. The first one is an image content 
encoding part, including the first three layers: the first layer 
- input neurons, the second layer - feature neurons, and the 
third layer –population coding neurons. It inputs a local 
image from a group of visual fields in different resolutions, 
then extracts features and encodes the current visual field 
image in terms of connection weights between the third 
layer and the second layer. The second one is a spatial 
relationship coding part, including the last two layers: the 
third layer - population coding neurons and the fourth layer – 

gaze movement control neurons. It encodes the spatial 
relationship between two object centers or between one 
target and its environmental key points in terms of 
connecting weights between the third layer and the fourth 
layer, which corresponds to the horizontal and vertical 
shift distances (Δx, Δy) from the center position (x, y) in 
the current visual field to the center of the target. The two 
parts naturally incorporate into an entire one. They 
cooperate to encode or decode the image content and the 
spatial relationship from the current visual field image, 
then move from the center of the current visual field to the 
center of target. It runs this spatial relationship encoding 
(learning/memorizing) or gaze movement decoding (test/ 
searching) procedure in a repeated mode until the system 
finds the target and stops the gaze movement. 

 

 

A. Features designed for encoding visual context 

 
A set of features called local binary patterns (LBP) [15] 

are widely used recently. It is simple and takes into good 
effects on image feature extraction and classification. We 
extended the original LBP features to the ones illustrated 
in Fig.5. LBP is a kind of binary code for representing one 

Fig.3. Visual fields in different scales. The corresponding resolutions 
or distributions of the visual signal receiving cells in retina are 
simulated, where the central crosses indicate the centers of the visual 
fields or the positions of gaze points. 

Fig.4. A visual search system implemented with multi-scale population 
coding and gaze movement controlling mechanisms. 

Fig.5. 256 extend LBP features (receptive field=3×3 pixels, each of 
which is computed by a sum of eight pairs of differences between 
pixels(labels=0~7) and the central pixel (label=8). The gray box 
represents weight 1 while the black box represents –1. 



 
 

 

of 256 patterns for image blocks of 3╳3 pixels. Original 
LBP code features only output a discrete number from 
0~255 to represent an image block pattern instead of 
producing a continuous comparable value. We extend LBP 
features by assigning them continuous output with the 
following function: 
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where the vector ix =(xi0 xi1 ... xi8) represents the i-th image 
block or receptive field input of  3╳3 pixels, the term ijr  

represents the j-th feature extracted from the i-th image 
block, and  j is a decimal number among 0~255, which 
corresponds to a 8-bit binary code, i.e. 
(j)10<=>(b0b1...bk...b7)2, where  
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In our coding system, for each receptive field input ix


, 
there are 256 feature neurons extracting the above 
extended LBP features. Only the first m neurons with the 
largest responses win through the mutual competition and 

produce outputs with their responses i' ' ( )ij jr f x


, where 

j’=1~m. To decrease the coding quantity as much as 
possible, m may be set to 1 for enough sparsity. 

B. Encoding visual field image 

With reference to Fig.4, for each single-scale visual field 

input x


, the k-th coding neuron receives inputs weighted with 

'k,ijw ( j’=1~m)from the ij’-th feature neuron, whose response 

'ijr   represent the j’-th feature for its i-th receptive field input 

ix


. For the visual field image 1 2( ... )Nx x x x
   

  which is 

composed of the receptive field inputs ix


(1≤i≤N), a coding 
neuron’s response is: 
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where the weights 'k,ijw  is obtained at the encoding or 

training  stage according to the Hebbian rule by one-step 

updating: ' ' '(1) (0) 'k,ij k,ij k ijw w Rr  , in which ' (0)k,ijw =0; α 

is set as 1 for simplified computation; Rk is set to 1 to 
represent the response of the k-th coding neuron generated for 

representing a new visual field image pattern; and ''ijr  is the 

response of the j’-th feature neuron for receptive field input 

ix


 at the training  stage; 
i' ' ( )ij jr f x


 (j’=1~m) is the 

response belonging to the first m features that have the largest 
responses among the total feature responses {rij}(j=0~255) at 
the test stage. The length of the k-th weight vector composed 

of the weights 'k,ijw (i=1~N, j’=1~m) will be normalized to 

one for unified similarity computation and comparison. 

C. Encoding and decoding spatial relationship or gaze 
movement 

Gaze movement control is the key aspect for visual object 
research, which is implemented in the structure that consists 
of two layers of neurons: coding neurons and movement 
control neurons (Fig.4). The movement control neurons, 
divided intoΔx and Δy neurons, represent the target’s 
relative position (Δx, Δy) from the current gaze point (x, y) 
- the center of the current visual field images. For the visual 
field image in scale s, the first Ms coding neurons with the 
largest responses play main roles in activating the movement 
control neurons. At the test or decoding stage, the responses 
of gaze movement control neurons could be formulated as: 
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where S is the number of scales existed in visual fields (with 

reference to Fig.3 or Fig.4), ',k sR ( k’=1~ Ms) is the response 

of the k’-th coding neuron among the Ms coding neurons for 

the visual field in scale s; , ',x k sw and , ',y k sw are the 

connecting weights from the k’-th coding neuron to the 
movement control neurons in x and y directions respectively.  
They are calculated according to the Hebbian rule by one-step 
updating:  

'
, ', ' ',0x k s k k sw x R     ,  

'
, ', ' ',0y k s k k sw y R      (5) 

where 'kx and 'ky are the responses of two movement 

control neurons, which equal to the distances from current 

gaze point to the center of the target when '
',k sR is the 

response of the k’-th coding neuron that is generated for 
representing a new visual field image pattern with a 

corresponding spatial relationship ( 'kx and 'ky ) at the 

encoding stage. The learning rate βand '
',k sR can be set to 1 

for simplified calculation. Thus, formulae (4) can be rewritten 
as:  
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Formulae (6) means the gaze movement distances decoded 
at the test stage is the sum of spatial relationship encoded at 
the learning stage, which are weighted by the responses of 



 
 

 

population coding neurons(S>1 or Ms>1).  

When the system searches a target, how many scales of 
visual fields should be used? There are two extreme cases. 
The first case is that all the visual field images involved in the 
encoding or decoding spatial relationship for each gaze 
movement, which is characterized by formulae (4). We call 
this case Full-scale coding. The second case is that only one 
visual field image is used each time, for example, the system 
uses the largest visual field first then uses smaller ones to 
search the target. We call this case Gradual-scale coding. For 
the second case, formulae (4) can be simplified to formulae 
(7): 
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D. Algorithm description 

The system’s encoded visual context is preserved in the 
weights of the neural coding structure. Hebbian rule is the 
fundamental learning or coding rule, i.e., ∆wij=αRiRj, where 
wij is connecting weights; α is the learning rate; Ri and Rj are 
responses of two neurons that are connected mutually. The 
encoding algorithm is described as follows: 

 

1. Input one or a group of visual field image(s) centered at 
the gaze point, and predict the target’s shift distances 
(Δx, Δy); 

2. If predictive error is larger than a threshold, generate a 
new coding neuron (let response R=1); else go to 4; 

3. Encode visual context by computing the connecting 
weights between the new coding neuron and feature 
neurons, and those weights between the new coding 
neuron and two movement control neurons (responses 
RΔx=Δx and RΔy =Δy) using Hebbian rule ∆wij=αRiRj;

4. Move current gaze point to the center of the target in the 
current visual field(s); 

5. Go to 1, until all given starting gaze points are trained.

 
Fig.6 describes the target search procedure in terms of gaze 

movements starting from any given gaze point that is 
initialized to be the center of the visual field. According to the 
encoded visual context, the system perceive image input, 
decode the spatial relationship and move the gaze in a 
repeated mode until the system ensure that the center of the 
current visual field(s) is the center of the target in terms of 0 
shift distances (Δx=0, Δy=0). The decoding or target 
search procedure is illustrated in Fig.7. 
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(a) Five visual fields centered at the target center (the left eye center). 

 

 

 

(b) Five visual field images (16×16 pixels, scales=5, 4, 3, 2 and 1) 
sub-sampled from the original image (320×214 pixels). 

 

 

 

 

 

(c) The spatial relationship between the target center and a given starting gaze 
point. 

 

 

 

 

 

(d) encoding the content of visual field images and the spatial relationship 
between target centers and starting gaze points, or searching the target 
according to the visual context encoded (here two scales of visual fields are 
shown). 

Fig.7. Illustration of spatial relationship encoding and decoding. 

III. EXPERIMENTS ON CODING FOR GAZE MOVEMENT 

CONTROL IN TARGET SEARCH 

To test the system’s performance and compare the 
Full-scale coding and Gradual-scale coding, two 
experiments for left eye center searching are carried out on 
the still face image database of the University of Bern[16], 
which has total 300 images (320×214 pixels) with 30 people 
(ten images each person) in ten different poses. Fig.8 

Fig.6. Target search in terms of gaze movement driven by population 
cell coding. 



 
 

 

illustrates the first ten images. 

 

Fig.8. Examples from the face database of the University of Bern (320×214 
pixels) 

A. Coding Structures 

We designed two coding systems using Full-scale coding 
and Gradual-scale coding mechanisms. A group of visual 
fields in five scales (256×256, 128×128, 64×64, 32×32 and 
16×16 pixels) are used to input local images from the training 
and test images (320×214 pixels). For each scale or resolution, 
there is the same number of 16×16 input neuron with 
different intervals (16, 8, 4, 2 and 1 pixels). So there are 
totally 5×16×16=1280 neurons in the first layer of the neural 
coding structure. With reference to Fig.5, there are 256 kinds 
of LBP features for five visual fields with different 
resolutions, and the size of receptive field of each feature 
neuron is 3×3 pixels, which has 1/2 overlap between 
neighboring receptive fields, thus there are totally 
5×256×[16-(3-1)]2=250880 feature neurons respectively in 
two systems, in which only 250880×(1/256)=980 neurons 
(the first m largest responding feature neurons, m=1 for 
sparsity, see Section 2) contribute to activate the coding 
neurons in  the third layer. The number of coding neurons in 
the third layer is dependent on natural categories of visual 
context patterns that the system learned. The number of gaze 
movement control neurons in the fourth layer is two, which 
should, from reasonable expectation, output the value in a 
range from –8 to 7 to represent 16 positions in x and y 
directions respectively, corresponding to 16×16 input neuron 
array for all the five visual fields in the first layer. 

B. Experiments on encoding visual context for target 
search 

Two experiments for each system, totally four experiments 
were carried out on the head-shoulder database of the 
University of Bern for searching and locating left eye centers. 

 

     
(a)                                                         (b) 

 

As illustrated in Fig.9, encoding was with a group of initial 
gaze points in a uniform distribution while testing was with a 

group of initial gaze points in a random distribution. The 
systems were trained and tested from the two groups of se 
initial gaze points respectively to encode the context and 
decode the spatial relationship for searching the left eye 
centers. 

In the first experiment (Exp.1) for two systems, 30 images 
of 30 people (one frontal image each person) were encoded 
with 368 initial gaze points on each image, and the rest of 270 
images were tested at 48 random initial gaze points on each 
image. In the second experiment (Exp. 2) for two systems, 90 
images of 9 people (10 images each one) were encoded and 
the rest of 210 images were tested with initial gaze points as 
Exp.1. The number of total feature neurons in layer 2, the 
number of total coding neurons in layer 3, the number of 
connections between feature neurons and coding neurons, 
and the mean/standard deviation of locating errors are listed 
in the table below. 

TABLE I  PERFORMANCES OF THE TWO CODING SYSTEMS (M: MILLION) 

number of 
coding 
neurons in 
layer 3 

number of 
connections 
between feature 
neurons and 
coding neurons 
(M) 

average  
locating 
error/standard 
deviation of 
locating error 
 (pixels) 

Coding 
system  

number 
of 
feature 
neurons 
in layer 
2 

Exp.1 Exp.2 Exp.1 Exp.2 Exp.1 Exp.2 

Full-scale 250880 36609 110497  7.18 21.66 
9.98/
10.72

7.53/
8.99 

Gradual- 
scale 

250880 32961 99549 6.46 19.51 
3.00/
7.45

2.29/
4.05 

The number of population coding neurons to activate 
movement control neurons is a dynamical value that is 
decided by the ratio of the sum of the responses of the first 
M largest responding coding neurons to the sum of the 
responses of the total coding neurons. According to 
experimental experience, the best searching accuracy 
could be obtained when this ratio is set to 1%. The mean 
radius of the eyeballs in the database is approximately 
4.02 pixels. Table 1 shows the average locating error 
decreases of Exp.1 and Exp.2 are 6.98 pixels (from 9.98 to 
3.00 pixels) and 5.24 pixels (from 7.53 to 2.29 pixels) 
respectively by using two coding mechanisms, which 
means the average locating positions by using Full-scale 
coding is outside the average borders of the eyeball 
objects and the average locating positions by using 
Gradual-scale coding is inside the borders of the objects. 
From the above table, it can be learned that the Gradual-scale 
coding system reached an average locating error that is 
69.79% lower than that of the Full-scale coding system and 
cost 10.28% less coding neurons and connections. 
Simultaneously, the decreases of standard deviations of 
locating errors for Exp.1 and Exp.2 are 3.27 pixels (from 
10.72 to 7.45 pixels) and 4.94 pixels (from 8.99 to 4.05 pixels) 
respectively, which indicate significant standard deviation 
decreases of 30.5% and 54.9% respectively. In the respect of 
two system’s encoding quantities, mainly in terms of the 
numbers of neuron connections, the Gradual-scale coding 
system only account for approximately 90% encoding 
quantities of the Full-scale coding system. 

Fig.9. Illustration of experiments: (a) Training for encoding visual 
context between the eye center and a group of initial gaze points in a 
uniform distribution. (b) Testing for gaze movement for search the eye 
center from a group of initial gaze points in a random distribution. 



 
 

 

Fig. 10 and Fig. 11 illustrate two pairs of final gaze 
position distributions that reflect two coding systems’ 
performance difference in target (left eye center) searching 
for two groups of training-test sets. The first group is 
composed of 30 training images and 270 test images (Exp.1) 
and the second group is composed of 90 training images and 
210 test images (Exp.2). From Fig. 10 (b) and Fig.11 (b), it 
can be seen that the Gradual-scale coding system has more 
compact searching results compared to that of the Full-scale 
coding system shown in Fig.10 (a) and Fig.11 (a). 

 
 
 
 
 
 
 
 

(a)                                        (b) 

Fig.10. The distribution of target locating results for 270 test images in 
the first experiment using two coding mechanisms. (a) Distribution of 
locating results using Full-scale coding mechanism. (b) Distribution of 
locating results using Gradual-scale coding mechanism. 

 
 
 
 
 
 
 
 

(a)                                        (b) 

Fig.11. The distribution of target (left eye center) locating results for 210 
test images in the second experiment using two coding mechanisms. (a) 
Distribution of locating results using Full-scale coding mechanism. (b) 
Distribution of locating results using Gradual-scale coding mechanism. 

IV. DISCUSSION AND CONCLUSION 

This paper proposed a visual search system using the 
population cell coding mechanism and the multi-scale visual 
field as sensing input. It laid stress on how to efficiently 
encode and decode gaze movement for target searching. As 
an example, the system was applied to human eye center 
searching. An experimental comparison of the Full-scale 
visual field coding system and the Gradual-scale coding 
system is carried out. The experiment results show the 
Gradual-scale coding system performed better than the 
Full-scale coding system in terms of the higher locating 
accuracy and the lower encoding quantity. It means not all the 
visual field images in different scales are effective for 
searching a target each time. Choosing the suitable sequence 
of visual field scales, e.g. larger scales first and smaller scales 
in next steps, is more efficient. From another point of view, 
the experiment verified the reasonability of some efficient 
searching strategies, for example, the strategy of detecting 
objects in coarse-to-fine mode. 

 

REFERENCES 
[1]  Deliang Wang, The time dimension for scene analysis, IEEE Trans. 

NN, 16(6), pp.1401-1426, 2005. 
[2]  G. Zelinsky, W. Zhang, B. Yu, X. Chen, and D. Samaras, The role of 

top-down and bottom-up processes in guiding eye movements during 
visual search, Advances in NIPS, 2006. 

[3]  M. Mozer and D. Baldwin, Experience-Guided Search: A Theory of 
Attentional Control, NIPS, 2007. 

[4]  M. Cerf, J. Harel, W. Einhaeuser, and C. Koch, Predicting human gaze 
using low-level saliency combined with face detection, Advances in 
NIPS, 2007. 

[5]  J. Wolfe, Guided Search 4.0: Current progress with a model of visual 
search, in. W. Gray (Ed.), Integrated Models of Cognitive Systems,NY: 
Oxford, 2007 

[6]  A.Torralba, A.Oliva, M. Castelhano and J. Henderson, Contextual 
guidance of eye movements and attention in real-world scenes: The 
role of global features on objects search. Psych. Rev., 113, 2006. 

[7]  A. Torralba, Contextual Priming for Object Detection, IJCV  53(2): 
169-191, 2003. 

[8]  K. Murphy, A. Torralba, and W.T. Freeman, Using the forest to see the 
trees: a graphical model relating features, objects, and scenes, 
Advances in NIPS, 2003. 

[9]  I. Rybak, V. Gusakova, A. Golovan, L. Podladchikova, and N. 
Shevtsova, A model of attention-guided visual perception and 
recognition, Vision Research, vol.8, pp. 2387–2400, 1998 

[10]  T. Shibata, S. Vijayakumar, J. Conradt, S. Schaal, Humanoid 
oculomotor control based on concepts of computational neuroscience, 
Proc.  the 2nd International Conference on Humanoid Robots, 2001. 

[11]  L. Itti and C. Koch, A saliency-based search mechanism for overt and 
covert shifts of visual attention, Vision Research, vol. 40, pp. 
1489-1506, 2000. 

[12]  H. Kruppa, M. Santana and B. Schiele, Fast and Robust Face 
Finding via Local Context, Proc. Joint IEEE International 
Workshop on Visual Surveillance and Performance Evaluation of 
Tracking and Surveillance (VS-PETS'03), 2003. 

[13]  L. Paletta and C. Greindl. Context based object detection from 
video, LNCS 2626-Proc. International Conference on Computer 
Vision Systems, pp. 502-512, 2003. 

[14]  T. Strat and M. Fischler, Context-based Vision: recognizing 
objects using information from both 2D and 3D imagery, 
IEEE-PAMI vol.13(10), pp. 1050-1065, 1991  

[15]  T. Ahonen, A. Hadid, and M. Pietikainen, Face recognition with 
local binary patterns, Lecture Notes in Computer 
Science-Proc.ECCV, vol. 3021, pp. 469-481, 2004. 

[16]  The Face Database of the University of Bern, 
ftp://iamftp.unibe.ch/pub/Images/FaceImages/, 2008. 

[17]  M. Bear, B. Connors, and M. Paradiso, Neuroscience: Exploring the 
Brain(3rd), Wolters Kluwer Health, 2007. 

target target 

target target 


