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Abstract
The galileon model was recently proposed to locally describe a class of modified gravity theories,

including the braneworld DGP model. We discuss spontaneous symmetry breaking of the self-

accelerating branch in a multi-galileon theory with internal global symmetries. We show a modified

version of Goldstone’s theorem is applicable to the symmetry breaking pattern and discuss its

implications. We also derive the Hamiltonian of a general multi-galileon theory and discuss its

implications.
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I. INTRODUCTION

The DGP model [1, 2] is a 5 dimensional braneworld theory that non-trivially modifies
General Relativity (GR) in the infrared. Nevertheless, at sub-crossover (sub-Hubble Length)
scales many of its properties can be captured by a 4D (boundary) effective theory [3, 4].
This effective theory amounts to GR coupled to a scalar field π whose equation of motion
has only second derivatives and is invariant under the Galilean shift π → π + aµx

µ + b, aµ
and b being constant. This scalar is related to the bending of the DGP brane in the bulk
and has been termed as galileon [5].

As ghost instability has been identified on the phenomenologically interesting self-
accelerating branch of the DGP model [6], which can also be easily seen in the local galileon
approximation [3, 4], attempts have been made to generalize the DGP galileon description to
produce a healthy modified gravity theory [5, 7–16]. In [5], the authors wrote down the most
general single galileon Lagrangian. Remarkably, there are only d+ 1 possible galileon terms
in d dimensional spacetime, and ghost free self-accelerating background solutions have been
shown to exist in a generalized galileon theory. However, a few phenomenologically challeng-
ing problems have also been identified in the single galileon theory, such as Cherenkov-like
radiation in the solar system, superluminal propagation far away from a matter sauce and
very low strong coupling scales [5]. It turns out that these problems can be avoided by
adding another galileon (in a bi-galileon theory), meaning the theory space of the single
galileon model is actually too small [13]. A local bi-galileon description is also what one
might expect from co-dimension 2 braneworld models [12, 15, 17], as there are generally two
brane bending directions.

One would want to generalize the galileon description to have even more degrees of
freedom [11, 14–16]. To avoid a proliferation of possible terms in the theory, we can impose
internal (global) symmetries within the multiple galileons, so that the multiple galileons form
some representation of a group [14], π = (π1, ..., πN). That is, the multi-galileon Lagrangian
is imposed to be invariant under the internal transformation

πi → R j
i πj, (1)

whereR j
i is the representation matrix of a certain group and summation over repeated group

indices is implied. Notice that the internal symmetry could originate from braneworld sce-
narios, as has been identified for the SO(N) fundamental representation [14, 15]. For other
interesting field theoretical and cosmological implications of the galileon theory, see [18–22].

In [14], we wrote down all possible multi-galileon terms that are consistent with the
fundamental and adjoint representations of SO(N) and SU(N), and looked for soliton solu-
tions in multi-galileon theories; We did not consider coupling the symmetric multi-galileon
to gravity. In this paper, we will put the symmetric multi-galileon in the context of modified
gravity. In Section II, we will venture a tentative coupling, but we want to emphasize that
the main results of this paper are insensitive to this explicit coupling. In Section III, we
discuss the spontaneous symmetry breaking phenomenon of the symmetric multi-galileon
theory on a self-accelerating background. Starting from an example, we build up a new
version of Goldstone’s theorem in symmetric multi-galileon theories that for every broken
continuous symmetry a canonical kinetic degree of freedom is lost. In Section IV, we derive
the Hamiltonian formulation of a general multi-galileon theory (with or without internal
symmetry) and find it is not bounded below. We speculate whether this might be overcome
in more complete theories.
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II. MULTI-GALILEON MODIFIED GRAVITY

In the original galileon model [5], the galileon is coupled to graviton mainly via the kinetic
mixing

hµν = h̃µν + 2πηµν , (2)

where hµν and h̃µν are Jordan and Einstein frame (perturbative) metrics; π’s contribution to
the energy momentum tensor, or, its direct influence to the geometry is negligible. So in a
sense the galileon modified gravity is a “genuine” infrared modification of General Relativity,
differing from models such as quintessence [23], which has significant contribution to the
energy momentum tensor. In this paper, we stick to this paradigm and tentatively propose
the multi-galileon’s coupling to gravity as

S =

∫
d4x

[
−M

2
P

4
h̃µνE h̃µν +

1

2
h̃µνT

µν + (π1 + ...+ πN)T + Lπ
]
, (3)

where T ≡ ηµνT
µν and Lπ is the multi-galileon Lagrangian. For a general multi-galileon

theory without internal symmetries, we might want to redefine π′1 = π1 + ...+πN to simplify
the coupling, while keep the structure of Lπ unchanged. But this is usually not feasible in
symmetric multi-galileon models. For example, in the case of SO(N) fundamental represen-
tation, π = (π1, π2, ..., πN) can not be linked to π′ = (π′1, π2, ..., πN) by an internal SO(N)
transformation. (Note that the SO(N) invariant coupling P (π2)T , P (π2) being a general
function of πiπi, has been considered in [16], and the authors found gradient instability as
well as superluminal excitations for the spherically symmetric background.) We could argue
that from the viewpoint of braneworld scenarios the coupling (3) (instead of, say, π1T ) might
be what one might expect for symmetric multi-galileon models. In a braneworld setup, the
multiple galileon fields living on a brane usually descend from the extra dimension coordi-
nates as functions of the 4D brane volume coordinates [9, 15]. Since the symmetric multiple
galileon fields enjoy some internal symmetry, the extra dimensional coordinates must have
the corresponding symmetry at least near the brane. As the near brane geometry is expected
to plays a role in determining the coupling to gravity, we may expect the different multiple
galileons couple to gravity on a equal or similar basis.

At distances and time scales shorter than the Hubble length, the Friedmann-Robertson-
Walker metric can be considered as a perturbation above Minkowski spacetime. Due to the
kinetic mixing (3), the cosmic profile of the multi-galileon can be cast within the Hubble
length as [5]

Σπ = −1

4
(H2 −H2

gr)xµx
µ +

1

2
(Ḣ − Ḣgr)t

2, (4)

where Σπ ≡ π1 + ... + πN , H is the actual Hubble parameter for a given source Tµν and
Hgr is the hypothetical Hubble parameter in GR with the same Tµν as the source. Thus the
cosmic background configuration of Σπ is given by −1

4
(H2 − H2

gr)xµx
µ. Assuming all the

fields have similar coordinate dependence, the vacuum solution is given by

π̄i = −1

4
k̄ixµx

µ, Σk̄ ≡ k̄1 + ...+ k̄N = H2 −H2
gr. (5)

3



III. GOLDSTONE’S THEOREM IN SYMMETRIC MULTI-GALILEON MODI-

FIED GRAVITY

In this section we will see that the symmetric multi-galileon modified gravity exhibits
spontaneous breaking of symmetries on some vacuum solution, and for every broken con-
tinuous symmetry the theory loses a canonical kinetic term, which resembles the usual
Goldstone’s theorem in a scalar field theory. We will also discuss the implications of this
modified Goldstone’s theorem.

A. An Example

Let us first see a simple example of this theorem: spontaneous breaking of the SO(N)
fundamental representation. The most general SO(N) multi-galileon Lagrangian in the
fundamental representation is given by [14]

Lπ = −α ∂µπi∂µπi − β δ ρµλ[σντ ]∂ρπ
i∂σπi∂µ∂

νπj∂λ∂
τπj, (6)

where δ
ρµλ

[σντ ] ≡ 3!δρ[σδ
µ
ν δ

λ
τ ], and α and β are free parameters. Varying (3) with respect to πi,

we get the equations of motion:

2α�πi + 4β δ
ρµλ

[σντ ]∂ρ∂
σπi∂µ∂

νπj∂λ∂
τπj = −T. (7)

We would like to see whether there is any self-accelerating background (or vacuum) in this
theory. By a self-accelerating background, we refer to the case where the universe has a (at
least approximately) de Sitter solution without support of a cosmological constant, i.e., the
case where π̄i = −1

4
k̄ixµx

µ with Σk̄ = H2 > 0 and T = 0 is a solution to the equations of
motion (7). Substituting this profile into the equations of motion, we get

− 4k̄i(α + 3βk̄j k̄j) = 0, (8)

which reduce to
k̄i = 0, (9)

or
k̄j k̄j = − α

3β
. (10)

The former solution corresponds to Minkowski spacetime, while the later can be a self-
accelerating solution if α/β < 0 and Σk̄ = H2 > 0, which we assume to be satisfied. Note
that (10) is not an isolated solution, instead it is a continuum of possible solutions.

Then we would like to see whether the self-accelerating solution can be free of ghosts,
negative canonical kinetic terms. To this end, we expand the Lagrangian (6) above the
background (10), i.e., we do the transformation πi → π̄i + πi and neglect the background
part of the Lagrangian:

Lπ =− 6β ∂µ(k̄iπi)∂
µ(k̄jπj) + 4β k̄iδ

ρµ
[σν]∂ρπi∂

σπj∂µ∂
νπj

− β δ ρµλ[σντ ]∂ρπ
i∂σπi∂µ∂

νπj∂λ∂
τπj. (11)
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Requiring the self-accelerating background to be ghost free gives rise to β > 0, so the
conditions for a ghost free self-accelerating solution are

β > 0 and α < 0 and Σk̄ = H2 > 0. (12)

Therefore, in the SO(N) (fundamental) multi-galileon theory, when the self-accelerating
branch is ghost free, the Minkowski branch is inevitably haunted by ghosts, and vice versa.
Also, we see that there is just one canonical kinetic term on the self-accelerating background,
while on the Minkowski background there are N of them 1.

All of these would become apparent from a point of view of spontaneous symmetry break-
ing. To facilitate this approach, we would like to utilize the action polynomial introduced
in [13] 2:

L(k) = −4

∫
d4x Lπ∫

d4x xµxµ
(13)

= αkiki +
3

2
β(kiki)

2, (14)

where π is evaluated at −kixµxµ/4. By explicit calculation [13], we have shown that the
extrema of L(k) correspond to cosmic background solutions; also, the coefficient matrix of
the canonical kinetic terms of the N -galileon about a background (ki = k̄i) is equal to the
Hessian of L(k) about the background:

Kij(k̄) = Hij(k̄) ≡ ∂2L(k)

∂ki∂kj

∣∣∣∣
k=k̄

, (15)

meaning among the extrema only the (local) minima are ghost free ones. These properties of
L(k) allow us to treat L(k) as some kind of effective potential in finding ghost free vacua. As
an aside, note that in canonical field theories such as a scalar field theory, the Hamiltonian
of the theory provides an energy function to minimize to find stable vacua. However, due
to their non-trivial vacuum configurations and higher derivative nature, the Hamiltonian
formulation of multi-galileon theories does not give rise to such a clear energy function for
the background configuration π = −kixµxµ/4; see Section IV for details.

Now, we can easily recover the results of the SO(N) multi-galileon vacuum solutions
using L(k). The extrema of L(k) give rise to the Minkowski background k̄i = 0 and the
self-accelerating background k̄j k̄j = −α/3β. The background k̄j k̄j = −α/3β is a minimum
of L(k) only if α < 0 and β > 0. Also, since the continuum k̄j k̄j = −α/3β is a minimum,
topologically k̄i = 0 can not be a minimum, thus for the same set of parameters only one
of the two backgrounds can be stable. The Hessian of L(k) about the self-accelerating
background is given by Kij(k̄) = 12βk̄ik̄j, which has only one non-zero eigenvalue, so there
is just one canonical kinetic term on this background. Indeed, we might visualize L(k) with

1 The same result was also reached in [15] as we were preparing this paper.
2 Note that here we define a slightly different L(k) from that defined in our previous paper. This is because

here we write Lπ ∼ −∂π∂π∂∂π..., while in [13] we use L′π ∼ π∂∂ππ∂∂π.... These two forms are related

by integration by parts in the action, so they are physically equivalent. However, when π is evaluated at

π = −kixµxµ/4, total derivatives also give rise to terms proportional to xµx
µ , so they differ by a factor

of −2, i.e., L′π = −2Lπ at π = −kixµxµ/4.
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FIG. 1: The Mexican hat shape of the action polynomial L(k) of the SO(N) multi-galileon (plotted

for the case of SO(2)). The vacuum rests on the trough, spontaneously breaking SO(N) to SO(N−
1), therefore fluctuations along the N−1 flat directions of the trough do not have canonical kinetic

terms.

a ghost free self-accelerating background by a “Mexican hat” (Fig. 1). The trough of this
Mexican hat is an (N−1)-sphere, respecting SO(N). An (N−1)-sphere (or SO(N)) has
N(N−1)/2 independent rotational symmetries. The vacuum solution occupies one point on
the trough and thus only respects an SO(N−1) subgroup, which leaves a sub (N−2)-sphere
still rotational symmetric and breaks N−1 rotational symmetries. Only the radial direction
around the trough accommodates non-trivial “oscillations”, reflecting the presence of only
one canonical kinetic term. The N − 1 flat directions represent the loss of N − 1 canonical
kinetic terms.

B. General Proof

This is of course reminiscent of Goldstone’s theorem for a canonical scalar field theory
with a potential. Here we are able to prove an analogous theorem for a symmetric multi-
galileon theory with an arbitrary internal group that the number of canonical kinetic terms
that are lost is equal to the number of spontaneously broken symmetries, which in turn
equals the dimension of the total symmetry group minus that of the unbroken subgroup.
Again it is sufficient to use the action polynomial L(k) to prove this.

Let k = k̄i be a (local) minimum of L(k), so it is a sensible background to expand the
theory. Since k = k̄i is a minimum, Kij(k̄i) should only have non-negative eigenvalues.
The eigenvectors of positive eigenvalues correspond to the canonical kinetic terms, while
the eigenvectors of zero eigenvalues correspond to the degrees of freedom without canonical
kinetic terms.

To prove the theorem, we must show that every spontaneously broken symmetry gives
rise to an independent zero-eigenvalued eigenvector. Under an infinitesimal group action,
for the configuration πi = −kixµxµ/4, we have

ki → ki + ε ∆i(k), (16)

where ε is an infinitesimal. Since Lπ is invariant under a group transformation, from (13),

6



we infer that L(k) is also invariant. So we have

L(k) = L(k + ε ∆(k)) = L(k) + ε
∂L(k)

∂ki
∆i(k), (17)

which leads to the identity
∂L(k)

∂ki
∆i(k) = 0. (18)

Differentiating it with respect to ki and evaluating it at the vacuum of the theory (ki = k̄i)
gives

Kij(k̄)∆j(k̄) = 0, (19)

where Kij(k̄) is the coefficient matrix of the canonical kinetic terms, as defined in (15).
Now, if the transformation (16) belongs to the unbroken subgroup, the vacuum ki = k̄i is
invariant under the transformation and the relation (19) is trivial as we have ∆j(k̄) = 0. If
the transformation (16) belongs to a spontaneously broken symmetry, the vacuum is changed
along the flat directions of the continuous minimum of L(k) and so we have ∆j(k̄) 6= 0. In
this case, Kij(k̄) has a zero eigenvalue and the eigenvector ∆j(k̄), or ∆j(π), is the degree of
freedom that loses its canonical kinetic term.

C. Implications

In multi-galileon theories, due to the presence of higher order kinetic terms, absence of
a canonical kinetic term does not necessarily mean loss of a dynamical degree of freedom.
Taking the SO(N) multi-galileon theory for example, by integration by parts the cubic term
of the Lagrangian above the self-accelerating background (11) can be cast as

L(3)
π = −4β∂a∂a(k̄

jπj) π̇
iπ̇i − 8β∂a∂a(k̄

jπi) π̇
iπ̇j + 4β δ

ac
[bd]∂aπ

i∂bπi ∂c∂
d(k̄jπj), (20)

where a, b, c, d are spatial indices (rather than group indices), and the theory has N cubic
kinetic terms. The conjugate momenta of π̇i(x, t) is non-vanishing and the canonical phase
space is non-trivial for all the N degrees of freedom. So there are N genuine dynamical
degrees of freedom on the self-accelerating background. However, above the relevant strong
coupling length scale, since N−1 of them only begin to propagate at cubic order, or through
the 3-point correlation function, these N−1 degrees of freedom would not be as “active”
as the one with a canonical kinetic term. That is, in the region where perturbative theory
applies, the dynamical degrees of freedom without a canonical kinetic term effectively get
“frozen”.

The spontaneous symmetry breaking and the subsequent inertness of some dynamical de-
grees of freedom will be reflected in modification to gravity force in perturbation theory. We
still take the SO(N) multi-galileon for example. First, note that the one particle exchange
amplitude between two conserved sources Tµν and T ′µν in GR schematically is given by

AGR ∼ −
2

M2
P

(
T µν

1

�
T ′µν −

1

2
T

1

�
T ′
)
. (21)

For simplicity, we assuming k̄i ∼ k̄, so we have Nk̄2 ∼ −α/3β. When the vacuum is
spontaneously broken and rests on the self-accelerating branch (10), from (11) we can see
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that the SO(N) multi-galileon gives rise to a leading correction

δASA = A−AGR ∼
N

2α
T

1

�
T ′. (22)

This is compared to the case without spontaneous symmetry breaking, when the leading
correction on the Minkowski branch (9) is given by

δAM ∼ −
N

α
T

1

�
T ′. (23)

On the other hand, when testing the multi-galileon modification to gravitational force
upto leading order, we have to deal with degeneracy between a multi-galileon theory with an
internal symmetry and a multi-galileon theory without internal symmetries. Again taking
the SO(N) example and assuming k̄i ∼ k̄, the leading correction from the SO(N) multi-
galileon on the self-accelerating branch (22) is the same as that from a multi-galileon theory
without internal symmetries and with canonical kinetic terms −α(∂π1∂π1+...+∂πN/2∂πN/2),
provided N is an even number.

Notice that although the symmetric multi-galileon on the self-accelerating vacuum loses
a certain number of canonical kinetic terms, all the dynamical degrees of freedom would
reacquire quadratic kinetic terms on some non-trivial background such as a spherically sym-
metric one. Also, in the strong coupled regime, all the “frozen” degrees of freedom become
active since the interaction terms start to dominate the dynamics. Nevertheless, we expect
Vaishtein effect should kick in below a certain length scale and all the multiple galileons
should self-screen themselves to evade solar system GR tests.

IV. HAMILTONIAN FORMULATION OF MULTI-GALILEON THEORIES

In this section, we deviate from our main plot of the paper and briefly introduce a subplot:
the Hamiltonian approach of multi-galileon theories. First, we derive the Hamiltonian for a
general multi-galileon theory with or without internal symmetries.

As the Lagrangian of a multi-galileon theory contains terms with more than 2 spacetime
derivatives, one might expect the Hamiltonian formulation of a multi-galileon theory should
involve Ostrogradski’s prescription for high order derivative theories (see for example [24]).
However, a bell should be certainly rung to this naive thinking once we notice the fact that
the equations of motion of a multi-galileon theory has only second order derivatives. We will
see that a general multi-galileon Lagrangian can be cast to have only up to first order time
derivatives. A general multi-galileon theory without a tadpole term can be written as [14]

L̂π = −
5∑

n=2

αi1...in δ
µ2...µn

[ν2...νn] ∂µ2πi1∂
ν2πi2∂µ3∂

ν3πi3 ...∂µn∂
νnπin , (24)

where δ µ2...µn[ν2...νn] ≡ (n − 1)!δ µ2[ν2
...δµnνn], i1, ..., in label different galileons (not necessarily inter-

nal group indices) and summation over repeated ik is understood. αi1...in are free pa-
rameters of the theory, and can be chosen as symmetric in exchanging the indices since

δ
µ2...µn

[ν2...νn] ∂µ2πi1∂
ν2πi2∂µ3∂

ν3πi3 ...∂µn∂
νnπin can be made symmetric in exchanging the galileon

indices by integration by parts.
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To see what the derivative structure is, we should unfold the anti-symmetrisation. Since
the Hamiltonian formulation only requires the knowledge of the time derivative structure,
we only need to separate the time derivatives from the spatial ones. A useful relation for
the separation is

δ
µ2...µn

[ν2...νn] T
ν2...νn
µ2...µn

= δ
a2...an

[b2...bn] T
b2...bn
a2...an

+
n∑
i=2

n∑
j=2

δ
a2...an

[b2...bn] T
b2...bn
a2...an

∣∣∣ ai→ t1
bj→ t2

, (25)

where T ν2...νnµ2...µn
is an arbitrary tensor, t1 and t2 are time indices, and ai and bi are spatial

indices. The double summation is over replacement of one up spatial index with t1 and one
down spatial index with t2, so there are (n− 1)2 terms with time derivatives. Applying this
formula to (24) and repeatedly integrating by parts, we can see that for n-th order a term

with δ...t1ai......t2bi...
gives rise to αi1...inδ

a3...an
[b3...bn] π̇i1π̇i2∂a3∂

b3πi3 ...∂an∂
bnπin , while a term with δ...t1ai......bit2...

only gives rise to half of that, with all the other terms cancelling each other. Therefore the
Lagrangian (24) can be cast as

L̂π =
5∑

n=2

αi1...in
[
C2
nδ

a3...an
[b3...bn] π̇i1π̇i2− δ

a2...an
[b2...bn] ∂a2πi1∂

b2πi2

]
∂a3∂

b3πi3 ...∂an∂
bnπin , (26)

where C2
n ≡ n(n− 1)/2. The appearance of the combinatorial number C2

n is what one might
expect, since the indices i1, ..., in are symmetric and so there are C2

n ways to pick out two
πis with first order time derivatives. Due to the first order structure in time derivatives, we
can simply take πi(x, t) canonical coordinates and define the conjugate momenta as

φi(x, t) =
∂L̂π

∂π̇i(x, t)

= 2
5∑

n=2

αii2...inC2
nδ

a3...an
[b3...bn] π̇i2∂a3∂

b3πi3 ...∂an∂
bnπin . (27)

Defining the matrix

M ij ≡ 2
5∑

n=2

αij...inC2
nδ

a3...an
[b3...bn] ∂a3∂

b3πi3 ...∂an∂
bnπin , (28)

we can reverse (27) and get
π̇i = (M−1)ijφ

j. (29)

To get the Hamiltonian of the multi-galileon theory, we perform the Legendre transformation

Ĥπ =

∫
d3x

[
π̇iφ

i − L̂π
]

=

∫
d3x Ĥπ, (30)

where the Hamiltonian density is given by

Ĥπ =
5∑

n=2

αi1...in
[
C2
nδ

a3...an
[b3...bn] π̇i1π̇i2 + δ

a2...an
[b2...bn] ∂a2πi1∂

b2πi2

]
∂a3∂

b3πi3 ...∂an∂
bnπin

=
1

2
(M−1)ijφ

iφj +
5∑

n=2

αi1...inδ
a2...an

[b2...bn] ∂a2πi1∂
b2πi2∂a3∂

b3πi3 ...∂an∂
bnπin . (31)
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Now, we would like to know what the Hamiltonian looks like for the vacuum configuration
πi = −kixµxµ/4:

Hπ =
1

4

∫
d3x

[
(t2 + x2)L(2)(k) + (3t2 +

2

3
x2)L(3)(k) + (6t2 +

1

3
x2)L(4)(k)

+ (10t2)L(5)(k)

]
, (32)

where L(i)(k) are the i-th order terms of the action polynomial L(k). In a canonical field
theory with a constant field background, since the Hamiltonian is an (infinitely) extensive
quantity, we can divide the Hamiltonian by the volume of the space to extract an energy
function of the constant field, which can be minimized to find the vacua of the theory. Here
we find the same procedure is not applicable to a multi-galileon modified gravity theory, as
we can see from (32) that the “volume factor” is different for different orders of ki. This
of course originates from the high derivative nature of multi-galileon theories and the non-
trivial background configuration πi = −kixµxµ/4. Note that for a multi-galileon action with
the configuration πi = −kixµxµ/4, a total derivative (say, ∂t(π1∂

tπ2∂i∂
iπ3)) will actually give

rise to nontrivial contribution (−3k1k2k3(3t2 − x2)/16). Indeed, from (24) to (26) we have
performed a series of integration by parts and neglected the subsequent total derivatives,
which is responsible for the different “volume factors” in (32).

We also note that, due to the presence of higher than quadratic multi-galileon terms, the
Hamiltonian (30) is not bounded below. This should be easy to see. For example, even for the
configuration πi = −kixµxµ/4 the Hamiltonian density is not bounded below if the quintic
galileon terms are nonvanishing. The perturbative Hamiltonian above some self-accelerating
background (ki = k̄i) can also be cast in the form (30) with the parameters αi1...in replaced by
a new set of parameters βi1...in(k̄) (as polynomials of k̄i) (see e.g. [13]), so it is also unbounded
below. In a fundamental theory, this of course signals instabilities. However, the multi-
galileon modified gravity is only supposed to be the decoupling limit of some underlying full
theory, so one should really check whether the Hamiltonian of the underlying full theory is
well behaved or not. The underlying theory presumably has 4D diffeomorphism invariance,
so the corresponding naive 4D Hamiltonian (excluding the part from extra dimensions) is
tuned to zero by 4 constraint equations, similar to that in GR. A useful 4D Hamiltonian
arises when the theory is “deparameterized” [25], but from the experiences in GR, even
checking the positivity of the background solution could be nontrivial 3.

On the other hand, due to the derivative structure of the multi-galileon theories, the
most negative Hamiltonian value is achieved by setting the gradients close to the cutoff of
the theory, i.e., ∂ ∼ Λcutoff . This kind of being unbounded below pushes the limit of a
classical theory, as it relies on a small region of the canonical phase space, so one might
also doubt whether quantum corrections can alther the picture. A famous example of this is
the Hydrogen atom: The classical Coulomb potential for this system (−e2/r) can be made
arbitrarily negative by placing the electron close to the nucleus, but the Hydrogen atom is
stable upon quantisation of electrodynamics.

3 Nevertheless, for the case where the multi-galileon Hamiltonian density (30) is included in the constraint

equations, the multi-galileon Hamiltonian (30) being unbounded below is irrelevant to the stability issue

of the full theory.
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V. CONCLUSION

We have coupled the multi-galileon theory with internal symmetries studied in [14] to
conventional General Relativity (GR) and proposed it as a modified gravity theory in the
decoupling limit where the multi-galileon modifies GR only by mixing with the transverse
graviton. We have discussed the phenomenon of spontaneous symmetry breaking of these
theories on (classical) self-accelerating vacua. We point out that, similar to that in canonical
scalar field theories, the pattern of the symmetry breaking is governed by a new version of
Goldstone’s theorem that for every broken continuous symmetry the theory loses a canonical
kinetic term. Note that as the energy-nomentum tensor T µν by definition vanishes in the
self-accelerating vacuum, this theorem is largely insensitive to the coupling to GR. But we
do assume the background configuration of the multi-galileon is given by πi = −kixµxµ/4.
We have also discussed implications of this theorem. In particular, we suggest that the
degree of freedom that loses the canonical kinetic term, while still dynamical, becomes inert
in linearized theory. This would result in different gravitational force in the linearized region
compared to what one would naively expect from the Lagragian with the broken vacuum
hidden. Also, there would be degeneracy among a multi-galileon theory with or without
internal symmetries.

We have also derived the Hamiltonian of a general multi-galileon theory. We find the
Hamiltonian with the configuration πi = −kixµxµ/4 does not give rise to a good “effective
potential” to minimize to find the background solution. Besides, we find the Hamiltonian
is not bounded below because of the higher order multi-galileon terms. We speculate this
pathology might arise from the decoupling limit or the classical nature of multi-galileon
theories and argue that the underlying full theory for the multi-galileon or even its quantum
version should be investigated to decide whether this is a real problem or not. There are a
few attempts to put the galileon description in a more formal framework [5, 7, 9, 15], and
it is interesting to see whether the vacua Hamiltonian in these models is bounded below,
which we leave for future work.
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