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We present explicit results for the product of all horizon areas for general rotating multi-charge
black holes, both in asymptotically flat and asymptotically anti-de Sitter spacetimes in four and
higher dimensions. The expressions are universal, and depend only on the quantized charges, quan-
tized angular momenta and the cosmological constant. If the latter is also quantized these universal
results may provide a “looking glass” for probing the microscopics of general black holes.

Explaining the origin of the black hole entropy S = 1
4A

at the microscopic level, where A is the area of the
outer event horizon, is an outstanding problem for quan-
tum theories of gravity. Significant insights have been
achieved for supersymmetric, asymptotically flat, multi-
charged black holes in four and five dimensions [1], where
the microscopic degrees of freedom can be explained in
terms of a two-dimensional conformal field theory. More
recent work has focused on the microscopic entropy of
extreme rotating solutions [2]. By contrast, the detailed
microscopic origin of the entropy of non-extremal rotating
charged black holes remains an open problem, although
recently there has been some promising progress [3].

Greybody factors (i.e. absorption coefficients) and ra-
diation spectra provide another approach to probing the
black hole structure. An intriguing property of multi-
charged rotating black holes (in maximally supersymmet-
ric supergravity theories) is that their wave equations are
separable. The radial equation has poles at the locations
of the horizons, where the radial component of the met-
ric degenerates, with residues proportional to the inverse
squares of the surface gravities, and so the Green func-
tions are sensitive to the geometry near all the black hole
horizons, and not just the outermost one. The thermody-
namic properties, including the surface gravity and area
at each horizon, can therefore be expected to play a role
in understanding the entropy at the microscopic level.

Some of these ideas have been explored for asymptoti-
cally flat, rotating, multi-charged black holes in four and
five spacetime dimensions. (Explicit solutions were given
in [4, 5], as generating solutions of maximally super-
symmetric N = 4 (or N = 8) supergravities, obtained
as toroidal compactifications of the heterotic string (or
of Type IIA string or M-theory).) In addition to their
mass M , in four dimensions these solutions are specified
by four charges Qi (i = 1, · · · , 4) and one angular mo-
mentum J , and in five dimensions by three charges Qi

(i = 1, 2, 3) and two angular momenta J1,2. These black
holes have just two horizons, and the area of the outer

horizon has the tantalizing form [4]

S+ = 2π(
√

NL +
√

NR) . (1)

where the integers NL and NR may be viewed as the ex-
citation numbers of the left and right moving modes of a
weakly-coupled two-dimensional conformal field theory.
NL and NR depend explicitly on all the black hole pa-
rameters. It was pointed out, first in the static case [6]
and later for the general rotating black holes [7, 8], that
the entropy of the inner horizon, S− = 1

4A−, is

S− = 2π(
√

NL −
√

NR) . (2)

From this and (1), it follows that the product of the inner
and outer horizon entropies satisfies S+S− = 4π2(NL −
NR), which in terms of the underlying conformal field
theory would be interpreted in terms of a level-matching
condition. S+S− should therefore also be an integer [6–
8]. (This point was recently re-emphasized in [9].) It was
found that S+S− is indeed quantized, and intriguingly, it
is expressed solely in terms of the quantized charges and
quantized angular momenta. In particular, it is modulus-
independent, taking the forms

S+S− = 4π2(

4
∏

i=1

Qi + J2) (3)

S+S−=4π2(

3
∏

i=1

Qi + J2
R − J2

L)=4π2(

3
∏

i=1

Qi + JaJb) (4)

in four and five dimensions respectively. (These results
were implicit in [7, 8], though not explicitly evaluated.)
The solutions considered here can be viewed as “seed
solutions” from which the complete families can be gen-
erated. The expressions for S+S− would be expressed in
terms of S-, T- and U-duality invariants built from the
charges in the general case.
In a parallel development, Ansorg and collaborators

[12–18] studied general axisymmetric stationary solu-
tions of Einstein-Maxwell theory in four dimensions, with
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sources external to the horizons. They obtained striking
“universal” formulae expressing the areasA± of the outer
and inner Killing horizons in terms of the total angular
momentum J and total charge Q. In particular, for Kerr-
Newman black holes, they found (in the normalisation
conventions we use in the remainder of this paper)

A2
+ ≤ A+A− = (8πJ)2 + (4πQ2)2 , (5)

in agreement (after conversion to our conventions) with
the result given above in the special case that the four
charges are set equal. Note the inequality (5) may be
interpreted as a general criterion for extremality, and has
been used to prove a No-Go theorem for the possibility
of force balance between two rotating black holes [20].
It is natural to enquire whether analogous properties

hold for more general classes of black holes; and espe-
cially, for those where the radial metric function has more
than two zeroes. Examples include charged or rotat-
ing black holes in four or five dimensional gauged su-
pergravity, and in more than five dimensions with or
without gauging. The wave equations in these back-
grounds will have dominant contributions associated with
poles at each of these zeroes. One can therefore again
expect that the thermodynamics associated with each

pole will play a role in governing the properties of the
black hole at the microscopic level. At event horizons
or Cauchy horizons, the metric at fixed radius has sig-
nature (0,+,+, · · · ,+); that is, it describes a null hy-
persurface. However, it may happen that the induced
metric has signature (0,−,+,+, · · · ,+); in other words
that the hypersurface is time-like, and the area of this
“pseudo-horizon” [10] is pure imaginary. The metric ra-
dial function may also have zeroes for complex values of
the radial variable; these occur in conjugate pairs. In
what follows, we shall just refer to zeroes of the radial
function as horizons, regardless of whether the areas are
real, imaginary or complex.
If it is indeed the case that geometries near all the hori-

zons are involved in governing the microscopic behaviour
of the black hole, one might expect that the formulae (3)
and (4) should generalise, for the more general black hole
examples, to expressions involving the products of all the
horizon entropies or areas. This would suggest the possi-
bility of an explanation for the microscopic behaviour of
such black holes in terms of a field theory in more than
two dimensions.
We shall present results for the products of horizon ar-

eas in examples that include certain rotating black hole
solutions in gauged supergravities in dimensions 4, 5, 6
and 7, and also Kerr-anti de Sitter rotating black holes in
arbitrary spacetime dimensions. For the sake of brevity,
we shall not present the details of our calculations in
all cases, and instead, we have selected one example,
namely the rotating black hole in five-dimensional min-
imal gauged supergravity, for which we present the cal-
culation of the area-product formula in more detail.
The formulae that we obtain for the area products are

universal; they depend only on quantized charges, quan-

tized angular momenta and the cosmological, or gauge-
coupling, constant. In the case that the latter is also
quantized (such as arises in compactifications of string
theory, as discussed, for example, in [11]), these results
are indeed suggestive of some underlying microscopics.
For example, one may speculate that asymptotically anti-
de Sitter black holes in four and five dimensions, for
which there are three horizons, may have a microscopic
origin in three-dimensional Chern-Simons theory.
We shall use normalisation conventions where the La-

grangian density for gravity and Maxwell field(s) is of the
form

L =
1

16πG

(

R−
∑

i

Φi(φ)F
i
µνF

i µν +(D− 1)(D− 2)g2
)

,

(6)
where the functions of scalar fields (if present) are such
that Φi(φ) tends to unity at infinity for the black-hole
solutions. We define charge(s) and angular momenta by

Qi =
1

4π

∫

Φi(φ)∗F i , Ji =
1

16π

∫

∗dKi , (7)

where Ki = Ki
µdx

µ and Ki µ∂µ = ∂/∂ψi, where ψ
i is

the azimuthal coordinate, with period 2π, in the 2-plane
associated with the angular momentum Ji.
Our results for the products of the horizon areas for ro-

tating black holes in gauged supergravities in dimensions
4, 5, 6, and 7 are as follows:

D = 4 ungauged 4-charge [4]:

A+A− = (8πJa)(8πJb) + 256π2
∏4

i=1Qi,

D = 4 gauged pairwise equal charges [21]:
∏4

α=1Aα = (4π)2 g−4 (8πJ)2 + 4g−4 (4πQ1)
2 (4πQ2)

2.

D = 5 ungauged 3-charge [5]:

A+A− = (8πJa)(8πJb) + 256π
∏3

i=1Qi,

D = 5 minimal gauged [22]:

∏2
α=0Aα = −2iπ2 g−3 (8πJa)(8πJb)− i g−3

(

8πQ√
3

)3

,

D = 5 gauged Q1 = Q2 6= Q3 [23]:
∏3

α=0Aα = − 2iπ2

g3 (8πJa)(8πJb)− i
g3 (8πQ1)

2 (8πQ3).

D = 6 gauged [24]:

∏6
α=1Aα = g−8

(

8π2

3

)2

(8πJa)
2 (8πJb)

2+g−6
(

8πQ
3

)6

.

D = 7 gauged [25]:
∏4

α=1Aα = π3 g−5
∏3

i=1(8πJi)− g−4 (2πQ)4.

Note that we have included the cases of the 4-charge
D = 4, and the 3-charge D = 5, solutions in ungauged
supergravities, which were already presented as entropy-
product formulae in the introduction. This is done for the
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sake of uniformity, using the normalisation conventions
that we follow in the rest of the body of the paper. The
citation in each heading above refers to the paper where
the black hole solution was constructed.
To illustrate how these calculations may be performed,

we shall present the example of the rotating black hole
in five-dimensionsal minimal gauged supergravity. The
horizons are located at the roots of the radial function

∆(r) = (1+g2r2)(r2+a2)(r2+b2)+q2+2abq−2mr2 (8)

that appears in the metric found in [22]. This is a cubic
polynomial in r2, and so there are six roots in total, oc-
curring in pairs for which r2 takes the same value. We
may view x = r2 as the radial variable, and thus just
consider 3 roots. We may write ∆ as

∆(r) = g2
2
∏

α=0

(r2 − r2α) . (9)

The horizon areas are

Aα =
2π2[(r2α + a2)(r2α + b2) + abq]

ΞaΞb rα
. (10)

Using (8) and ∆(rα) = 0, we can write this as

Aα = − 2π2 (2m+ abqg2)

ΞaΞb (1 + g2r2α)rα

[ q(q + ab)

2m+ abqg2
− r2α

]

. (11)

Noting from (8) and (9) that we may write
∏

α(c
2−r2α) as

g−2 ∆(c), for any c, it is then straightforward to evaluate
the product of the Aα. With the angular momenta and
the charge given in terms of the rotation parameters a
and b, the mass parameter m, and the charge parameter
q by [22]

Ja =
π [2am+ qb (1 + g2a2)]

4Ξ2
a Ξb

, (12)

Jb =
π [2bm+ qa (1 + g2b2)]

4Ξ2
b Ξa

, Q =

√
3π q

4ΞaΞb
,

where Ξa = 1−a2g2 and Ξb = 1−b2g2, a straightforward
calculation then gives the result we listed above. The
calculations for the other examples can be performed in
a similar manner.
For the Kerr-AdS metrics in arbitrary dimensions

[26, 27], it is necessary to separate the cases of even di-
mensions, D = 2N+2, and odd dimensions, D = 2N+1.
In each case there are 2N + 2 horizons and N angular
momenta Ji. When D = 2N + 1, the radial metric func-
tion is a function of r2, and the product over all horizons
is equivalently expressible as the square of the product
over just N +1 horizons corresponding to a single choice
of square root for each r2α. Our results for the horizon
area products in D-dimensional Kerr-AdS are

D = 2N + 2 :

2N+2
∏

α=1

Aα = g−4N (AD−2)
2

N
∏

i=1

(8πJi)
2 ,

D = 2N + 1 :

N
∏

α=0

Aα = g−2N+1 cN AD−2

∏

i

(8πJi) ,

where cN = (−1)(N+1)/2, and AD−2 = 2π(D−1)/2/Γ[(D−
1)/2] is the volume of the unit (D − 2)-sphere.
The results presented above for black holes in gauged

supergravities, and for Kerr-AdS black holes in pure grav-
ity with a cosmological constant, admit straightforward
limits to the ungauged, or zero cosmological constant,
case. The radial functions in the metrics have a uni-
versal feature, as can be seen in (8) for the example of
five-dimensional gauged supergravity, that the degree of
the polynomial in r is reduced by 2 when the gauge cou-
pling g is set to zero. In this limit, the locations of these
two ”lost horizons” approach r = ±i g−1, and the areas of
the lost horizons in the cases of even and odd dimensional
black holes are

D = 2N + 2 : Alost = (−1)N g−2N AD−2 , (13)

D = 2N + 1 : Alost = ∓i (−1)N g−2N+1AD−2 .

If these areas are factored out from our previous ex-
pressions for the horizon area products, and then g
is sent to zero, we can obtain the analogous formulae
for the corresponding ungauged supergravities, and for
asymptotically-flat rotatating black holes in arbitrary di-
mensions. For the black holes in four and five dimensional
supergravities, the limits yield expressions encompassed
by those given above for the ungauged cases. For the
black holes in gauged six and seven dimensional super-
gravities, it is interesting to note that the electric charge
terms scale to zero in the ungauged limit. The resulting
expressions are then just the D = 6 and D = 7 speciali-
sations of the limiting forms for asymptotically-flat black
holes in arbitrary dimensions, which we find to be

D = 2N + 2 :

2N
∏

α=1

Aα =

N
∏

i=1

(8πJi)
2 ,

D = 2N + 1 :

N
∏

α=1

Aα =
∏

i

(8πJi) . (14)

We have also worked out the area product formulae for
a general class of charged rotating black holes in D > 5
ungauged supergravities [28], and we find the same phe-
nomenon as in the D = 6 and D = 7 ungauged limits
described above. Namely, the area products are inde-
pendent of the charges in D > 5, and are given simply
by the expressions (14) for uncharged asymptotically flat
rotating black holes.
In this paper, we have obtained formulae for the prod-

ucts of the horizon areas in a wide variety of black hole so-
lutions, showing that they are independent of moduli and
are expressed solely in terms of quantised charges, angu-
lar momenta and the gauge coupling constant. These
provide tantalising hints of a possible explanation for the
microscopic properties of the black holes in terms of field
theories in more than two dimensions.
We have not attempted here to address the question of

whether these formulae remain universal in the presence
of external fields, as was done in certain four dimensional
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examples in [12–18]. This may be relatively straightfor-
ward in four and five dimensions, since the symmetries
allow a reduction to a system of equations on a two-
dimensional quotient space. We hope to return to this
subject in the future. The four-dimensional results in
[12–18] are a promising indication that our quantisation
results may be robust, in the sense that they may survive
in the presence of external fields. This is the analogue for
black holes of the central idea of Old Quantum Theory,
associated with the names of Bohr, Wilson and Som-

merfeld, that it is adiabatic invariants that should take
quantised values because classically their values do not
change under slow perturbations.
Acknowledgements
We are grateful to David Chow and Finn Larsen for

useful discussions. M.C. is supported in part by DOE
grant DE-FG05-95ER40893-A020, the Slovenian Agency
for Research (ARRS) and the Fay R. and Eugene L.
Langberg Chair. C.N.P. is supported in part by DOE
grant DE-FG03-95ER40917.

[1] A. Strominger and C. Vafa, Microscopic origin of
the Bekenstein-Hawking entropy, Phys. Lett. B379, 99
(1996), hep-th/9601029.

[2] M. Guica, T. Hartman, W. Song and A. Strominger,
The Kerr/CFT correspondence, Phys. Rev. D80, 124008
(2009), arXiv:0809.4266 [hep-th].

[3] A. Castro, A. Maloney and A. Strominger, Hidden con-
formal symmetry of the Kerr black hole, Phys. Rev. D82,
024008 (2010), arXiv:1004.0996 [hep-th].
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