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In this paper we use trivial defects to define global taffy-like operations on string world-
sheets, which preserve the field theory. We fold open and closed strings on a space X into
open strings on products of multiple copies of X , and perform checks that the “taffy-folded”
worldsheets have the same massless spectra and other properties as the original worldsheets.
Such folding tricks are a standard method in the defects community; the novelty of this paper
lies in deriving mathematical identities to check that e.g. massless spectra are invariant in
topological field theories. We discuss the case of the B model extensively, and also derive the
same identities for string topology, where they become statements of homotopy invariance.
We outline analogous results in the A model, B-twisted Landau-Ginzburg models, and phys-
ical strings. We also discuss the understanding of the closed string states as the Hochschild
homology of the open string algebra, and outline possible applications to elliptic genera.
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1 Introduction

Defects in two-dimensional theories are forms of domain walls, boundaries which connect
open strings on potentially different spaces, and so act as some type of two-dimensional
domain wall, see for example [1, 2, 3, 4, 5, 6]. Defects have appeared in numerous papers in
the physics literature recently, for a sample see for example [7, 8, 9, 10, 11, 12, 13, 14, 15]
and references therein. They also seem to be implicit in parts of the mathematics literature,
in connection with “enriched” topological field theories described by higher categories (see
e.g. [16]), as we shall review.

In this paper we use ‘identity’ (‘trivial’) defects to perform taffy-like reparametrizations of
string worldsheets, folding worldsheets over themselves to create new, physically-equivalent
but different-looking, worldsheet theories.

Using folding tricks locally around a defect is not new, indeed is a standard method
for computing spectra of operators in the defects community. What is (we believe) novel
to this paper is the development of explicit mathematical identities required to carefully
demonstrate that global foldings of worldsheets leave the physics invariant. For example,
given an open string on X , we develop mathematical identities required to show that one
gets physically-equivalent open strings on products of any number of copies of X by folding
and flattening along multiple identity defects. One case of this is illustrated below:

X
E F

E

F

X ×X ×X
E ⊗∆ F ⊗∆

The diagram above illustrates an open string on X3 corresponding to an open string on X ,
with boundaries determined in part by ∆, a diagonal corresponding to the identity defect.
From the general principles of folding, one expects that these diagrams should describe
equivalent physics. We check that statement by comparing, for example, massless spectra in
the B model, deriving the identity

Ext∗X (E ,F) = Ext∗X3

(

Lπ∗
1E ⊗L ∆∨

23,∆12 ⊗L Lπ∗
3F

)

confirming that the topological field theory is unchanged, at the level of e.g. D-branes
described as objects in the derived category Db(X). We can also fold closed strings along
identity defects and flatten; for example,
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X

X6∆3 ∆3

gives an open string on X6 corresponding to a closed string on X . In the case of the B
model, we check the identity above by comparing massless spectra:

H∗ (X,Λ∗TX) = Ext∗X6

(

∆∨
12 ⊗L ∆∨

36 ⊗L ∆∨
45,∆14 ⊗L ∆23 ⊗L ∆56

)

checking that topological field theories are, indeed, invariant under this operation. We can
also include twists as we fold; for example,

X

X6∆3 ∆3

gives a different open string on X6 corresponding to the same closed string on X . In this
case, demanding that B model states be invariant under this operation implies the identity

H∗ (X,Λ∗TX) = Ext∗X6

(

∆∨
12 ⊗L ∆∨

36 ⊗L ∆∨
45,∆13 ⊗L ∆24 ⊗L ∆56

)

which we check rigorously.

As these operations involve folding worldsheets over onto themselves, we refer to them
as taffy operations.

For readers not acquainted with such folding tricks, the philosophy is that inserting
identity defects is, in principle, a trivial operation, so these global foldings, these taffy
operations we describe, are no more than global reparametrizations, and so should encode
equivalent physics. Much of this paper is devoted to carefully checking that hypothesis.

One important special case of these constructions involves taking a closed string on X
and constructing a physically-equivalent open string on X × X by folding and flattening
along two identity defects:
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X

X

X ×X
∆ ∆

(a manipulation well-known in the defects community). The resulting identity relates Hoch-
schild (co)homology (describing closed string states) to endomorphisms of the open string
algebra, and for the B model is a well-known mathematical result, the “Hochschild-Kostant-
Rosenberg isomorphism.” Physically, this identity is a special case of the taffy operations;
mathematically, this identity (and its analogues in other field theories) is one of the foun-
dations on which these taffy identities are constructed. We discuss this in detail, and in
particular argue that closed string states are more closely identified with Hochschild homol-
ogy, instead of Hochschild cohomology, of the open string algebra.

The mathematical work in this paper for justifying taffy operations amounts to using
homological algebra identities to reduce more complicated cases to the one above. An im-
portant point is homotopy invariance, as explained in section 5, which in some sense for
this purpose is more fundamental than the Hochschild-Kostant-Rosenberg isomorphism or
its analogues. The homological algebra identities we derive are the expressions of topological
identities resulting from homotopy invariance.

Let us briefly illustrate what we mean by homotopy invariance. Consider the B-model
on a Calabi-Yau manifold X . In that model, D-branes correspond to elements E of the de-
rived category Db(X) of bounded complexes of quasi-coherent OX -modules. Given two such
complexes E and F , the massless states of open strings emanating from E and terminating
on F are measured by RHom(E ,F), while closed string states should be measured by the
Hochschild cohomology HomX×X(OX ,OX). These two observations are simply related as
follows. Consider a “closeable configuration” of open strings of the form

E0

E1

E2

E3

E4

E5

Given that the massless states for a string from E to F are given by RHom(E ,F), it is
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natural to mathematically associate to this configuration the group

RHom(E0, E1)×RHom(E1, E2)× · · · ×RHom(E5, E0). (1)

There is a certain redundancy in this description: products of open string states derived
from

E0
E1

E2

E3

E4

are related to those of the form (1) by the composition1

RHom(E4, E5)×RHom(E5, E0)→ RHom(E4, E0)

in one direction, and by setting E5 = E4 and inserting the identity in the other. There is a
standard mathematical way for encoding all this data, and, as we recall in §5.2, Keller and
McCarthy [17, 18, 19] show that one can extract the Hochschild homology of X from these
data. This is part of what we mean by ‘homotopy invariance,’ above.

This observation raises several questions. For example, do diagrams of the form above
have any physical sense? And can one use physical ideas to be more explicit about the
relationship to Hochschild homology? We shall address these issues in this paper.

We begin in section 2 by briefly reviewing defects in two-dimensional quantum field the-
ories. In section 3 we work through the taffy operations in detail for the B model, giving
explicit descriptions and rigorously checking identities for relating folded strings to the orig-
inal strings. Carefully studying these identities for the B model occupies the bulk of this
paper. In section 4 we quickly rederive the same results in the context of ‘string topology,’ a
mathematical abstraction of bosonic string field theory. In section 5 we discuss old lore relat-
ing closed string states to Hochschild homology (instead of cohomology) of the open string
algebra, and briefly outline some generalizations. In sections 6, 7, 8, we outline analogous
results and conjectures in the A model, B-twisted Landau-Ginzburg models, and critical
strings, respectively. We conclude in section 9 by outlining some conjectural applications of
this technology to elliptic genera.

1It is essential to use RHom instead of Ext here. As a related matter, composition of RHom is defined
only up to homotopy, as we discuss in section 3.1.
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2 Review of defects

2.1 Physics basics

A defect (see for example [1, 2, 3, 4, 5, 6]) is an open string boundary that connects open
strings on two potentially distinct spaces. Let X , Y be two spaces, then a defect is an
open-string-type boundary defined by a submanifold of X × Y , together with a bundle with
connection over that submanifold.

X Y

Supersymmetry enforces the same conditions on that submanifold and bundle as one would
have in an ordinary open string – for example, in the B model topological field theory, one
has a complex submanifold of X × Y with a holomorphic vector bundle.

Let us work through some examples. Work locally on the complex plane, with a defect
along the x-axis. Consider for example a string with target C on each side of the defect.
We can describe this as a single complex boson φ defined over the complex plane, or a pair
(φU , φL) on the upper-half-plane. Boundary conditions such as, for example,

lim
y→0+

∂nφ = 0, lim
y→0−

∂tφ = 0

or equivalently
[

∂n 0
0 ∂t

] [

φU

φL

]

= 0

which would be described more formally in the B model by a sheaf on C2 with support along
(C, 0) ⊂ C2. Boundary conditions such as

lim
y→0+

∂nφ = λ lim
y→0−

∂nφ

would be described more formally by a sheaf onC2 with support along {(λx, x)|x ∈ C} ⊂ C2.

Special cases of these boundary conditions can be described by giving separate boundary
conditions on X and Y , and a map between the corresponding branes, but the general case
is described by a sheaf on X × Y .

One central idea from the study of defects, which we will use repeatedly throughout this
paper, is that of folding tricks (see for example [2] and references therein). We have already
used these implicitly in giving the data defining a defect. Given open strings on X , Y ,
meeting along a defect, as
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X Y

we fold the combination of strings

X

Y

or

X

Y

into a single open string on the product X × Y ,

X × Y

so that the defect now appears as an ordinary boundary of an ordinary open string on X×Y .
This is one efficient way to understand why the data defining the defect should be ordinary
Chan-Paton factors on the product of the spaces, and why the conditions for supersymmetry
are the usual conditions, but applied to Chan-Paton factors over the product of spaces.

There is one particular distinguished defect, the ‘identity’ or ‘trivial’ defect, which joins
open strings on X to open strings also on X . The trivial defect is defined by trivial rank one
Chan-Paton factors along the diagonal embedding in X×X . It is so named because one can
insert it into a string worldsheet without changing the physics of that worldsheet theory.

In this paper, we insert identity defects and apply folding tricks globally on worldsheets,
not just locally in the neighborhood of a defect, to give alternate (and physically equivalent)
reparametrizations of worldsheets. We will check these methods extensively in the case of
the B model, at the level of boundaries defined by branes, antibranes, and tachyons, as
described mathematically by derived categories. (In fact, not only will this allow us to work
in significant generality, but in addition, the formal manipulations required to check that
massless spectra are preserved become significantly easier when working in derived categories
than when working in, for example, an ordinary category of coherent sheaves.)

It is unclear at present whether defects can be consistently coupled to worldsheet gravity.
One potential problem is that for general defects, one often gets infinite-dimensional mod-
uli spaces of curves. For example, for a defect that starts in the middle of a closed string
worldsheet, the shape of the defect is itself a modulus. If one could consistently couple to
worldsheet gravity, and define critical string theories, the consequences appear to be some-
what radical. For example, defects link open strings on distinct spaces, and so, if (conformally
invariant) defects can be consistently coupled to worldsheet gravity, and energy/momentum
can flow across those defects, then those defects would define nonlocal interactions in quan-
tum gravity. Just as a nonlocal interaction in ordinary quantum field theory violates local
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energy/momentum conservation, this example of a nonlocal interaction in quantum grav-
ity would violate local energy/momentum conservation across multiple spacetimes. In any
event, we shall not attempt to couple defects to worldsheet gravity in this paper, and leave
such considerations for other work.

2.2 Typical mathematics application: higher categories

A typical mathematical application of defects is to give a physical realization of descriptions
of topological field theories using higher categories, as in e.g. [16, 20]. In this section we will
briefly review such constructions and applications, partly to contrast with the focus of this
paper, which will be on taffy operations with defects.

In the B model, a defect defines a Fourier-Mukai transform. The data of the defect, an
object E in Db(X × Y ), defines the kernel of a Fourier-Mukai transform, hence a functor

FE(−) ≡ RpY ∗

(

E ⊗L Lp∗X−
)

Such transforms can act on closed string states on either space to generate closed string
states on the other: one pulls back a polyvector field to the product, wedges with the Chern
character of the object along the defect, then pushes forward to the other space. (This has
been previously proposed in e.g. [6][pp 43-44].)

Given a defect on X×Y and another on Y ×Z, if those two defect lines collide in parallel,
the result is a defect along X × Z. In the B model, which will be a focus of this paper, this
composition is believed to be defined as follows [21][prop. 5.1]. Consider X × Y × Z with
its projections p12 to X × Y , p13 to X × Z, p23 to Y × Z. Given E an object in Db(X × Y )
and F an object in Db(Y × Z), the composition is defined by the object

p13∗ (p
∗
12E ⊗ p∗23F)

in Db(X × Z) (taking all operations to be derived).

In this language, there is an ‘identity’ defect, defined by the diagonal [21][section 6.5]. If
∆Y is the diagonal on Y × Y , then for any E on X × Y ,

p13∗ (p
∗
12E ⊗ p∗23∆Y ) ∼= E

Suppose a defect line ends in the middle of a disk, as outlined below:
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In the B model, if one is describing maps into a space X , then along the defect line one has
an object E ∈ Db(X×X). At the endpoint one naturally has a boundary-condition-changing
operator defined by an element2 of

Ext∗X×X (∆∗OX , E)

This has a natural categorical interpretation in terms of traces3 in 2-categories. If we view
Db(X) as a higher-categorical version of a vector space (a 2-vector space), then Db(X×X) is
some version of the space of endomorphisms of Db(X), and a trace map should be a map to
the analogue of the ground field, which in this case is Db(C− vect), the derived category of
complex vector spaces. In this language, the trace functor sends any object E in Db(X ×X)
to

Tr E ≡ RHomX×X (∆∗OX , E)
and any morphism f : E → F in Db(X ×X) is mapped to a morphism Tr(f) defined by

Tr(f)(φ) ≡ f ◦ φ

This is a special case of the Ganter-Kapranov categorification of the notion of trace to any
2-category [22].

We should also note that open string defect diagrams seem to naturally correspond to
“string diagram” pictures of 2-category structures (see for example [23] for a discussion
of the mathematical notion of string diagrams). Briefly, in what mathematicians call a
string diagram, objects are represented by 2-dimensional areas, 1-morphisms by boundaries

2 As a check, boundary-condition-changing operators inserted at the intersection of the defect and the
boundary would be counted, in the B model, by elements of Ext∗X2 (π∗

1F ⊗ π∗

2F∨, E), where F ∈ Db(X)
defines the disk boundary, and all operations assumed derived, conventions as explained later in this text. If
we reel in the defect line, shrinking it to zero length, then the states at the triple intersection are composed
with the states at the endpoint, namely elements of Ext∗X2 (E ,∆∗OX) (which for X Calabi-Yau matches the
groups above), to form elements of

Ext∗X2 (π∗

1F ⊗ π∗

2F∨,∆∗OX) = Ext∗X (F ,F)

as expected for insertions along the disk boundary, using a mathematical identity we shall derive later in
this paper.

3 E.S. would like to thank T. Pantev for explaining this material on 2-category traces.
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between those areas, and 2-morphisms by boxes or marked points along the boundaries. Let
us work through a simple example, both to illustrate string diagrams and to display their
correspondence to physics. In the language of string diagrams, a commutative diagram in
2-categories

X

F

((

G

66⇓ α Y

would be represented by the (mathematical) string diagram

X Y

G

F

α

Physically, given open strings on X and Y , defects joining the open strings are defined (in
the B model, say) by objects F ,G ∈ Db(X × Y ), each of which defines a Fourier-Mukai
transform (hence a functor)

F ,G : Db(X) −→ Db(Y )

Furthermore, along the defect, one can insert an operator α, which will be an element of

Ext∗X×Y (F ,G) = H∗ (RHomX×Y (F ,G))

and so will define a natural transformation between the two functors defined by F and G.
Clearly the mathematical ‘string diagram’ above corresponds very closely to the physical
picture of corresponding open strings joined along defects.

Although we will not work with mathematical string diagrams per se further in this
paper, the picture above lends itself to higher categorical structures: a defect along a k-
codimensional submanifold defines a k-morphism, and operators on the defect and smaller
defects define higher-order morphisms. There is, in fact, a mathematical definition of (“en-
riched”) topological field theories (see e.g. [16, 20, 24]), which involves representations not
just of the category of d-dimensional bordisms of d − 1-manifolds, but of appropriate d-
categories (0, d)–Bord (actually, “(∞, d)-categories”) of bordisms of manifolds of dimension
0 through d.

The Baez-Dolan cobordism hypothesis (now a family of theorems of Lurie [16]) says that
an enriched topological field theory is determined by its value on a point. That is, to specify
a representation of (0, d)–Bord in a d-category C is equivalent to specifying an object of C,
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which is required to satisfy some hypotheses depending on the precise flavor of enriched field
theory one considers.

For example, ([16, Theorem 4.2.11]) to specify a 0—2-dimensional symmetric monoidal
TFTs is equivalent to specifying a “Calabi-Yau” object in a symmetric monoidal 2-category
(actually symmetric monoidal (∞,2)-category). This is an object X with a dual X∨, an
evaluation map

ev : X ⊗X∨ −→ 1,

a coevaluation map
coev : 1 −→ X ⊗X∨

(satisfying various properties), and so a map, sometimes labelled

dim(X) = coev ◦ ev : 1→ 1

This (strangely labelled) object dim(X) automatically carries an S1-action (because, despite
the name, it represents the massless states of a closed string). Finally, one should have an
S1-equivariant evaluation map

η : dim(X)→ 1.

It is often equivalent ([16, 4.2.17]) to consider an S1-invariant cotrace 1→ dim(X).

To obtain the B model on a Calabi-Yau X , consider the 2-category of differential graded
categories, and for an object in it, take the (∞, 1)–category of complexes of quasi-coherent
OX-modules on X (whose homotopy category is the derived category). We interpret 1 as
OX , the open string algebra, and the holomorphic top-form on the Calabi-Yau defines a map
1 → dimX . For details, and an explanation of why ∞-categories are required, see §4.2 of
[16].

In this paper, we will be concerned with naively distinct mathematical structures arising
from defects, namely taffy operations.

3 String states and taffy operations in the B model

In this section we will describe string states in strings with defects, in the topological B
model. We will compute the spectrum of string states using folding tricks for defects. Folding
tricks have been widely discussed in the defects literature previously, see for example [2]
and references therein. Moreover, some of the mathematical consequences of applying such
folding tricks to topological field theories have been previously described elsewhere, see for
example [24]. Our contribution is to work out and check explicit detailed expressions relating
various (folded) open and closed strings.
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We should emphasize at this point that this ‘folding’ is actually a trivial operation on the
string worldsheet – in particular, despite the name, no folds in the sense of non-differentiable
structures are being introduced into the maps into the target space. Rather, this is merely
a reparametrization of the string worldsheet.

The result of this folding is to create physically-equivalent (but different-looking) string
diagrams. As a consistency check, we will demonstrate that massless spectra of various
physically-equivalent configurations agree.

3.1 Operations on derived categories

In our discussion of taffy-esque identities in the B model, we will be working extensively with
objects in derived categories. When we perform operations such as duals, tensor products,
and homomorphisms, we necessarily mean derived duals, derived tensor products, and so
forth. As these concepts are not widely used in the physics community, in this section we
briefly recall some of the basic facts about derived categories and the derived operations we
use in this paper. We would also like to take this opportunity to thank A. Caldararu for
numerous discussions of the identities in this and the next subsection.

Let X be a ringed space, such as a Calabi-Yau manifold, with structure sheaf OX . By
“OX-module” we will always mean a quasi-coherent sheaf of OX -modules. We write Mod(X)
for the category of OX -modules. If E, F , and G are OX-modules, then we can form the
OX -modules E ⊗X F , HomX(F,G), and E∗ = HomX(E,OX). The sheaf HomX(F,G) is
sometimes called the “internal hom”, because it is itself an OX -module: it is internal to the
category of OX-modules. Also, we can form the ring R = Γ(X,OX) and the R-module ΓE.
The essential properties of these operations are expressed by the identities

HomX(E ⊗X F,G) ∼= HomX(E,HomX(F,G))

E∗ ⊗X F ∼= HomX(E, F ) if E is finitely generated

(E∗)∗ = E if E is finitely generated

E∗ ⊗ F ∗ = (E ⊗ F )∗ if E and F are finitely generated

E ∼= HomX(OX , E)

HomMod(X)(E, F ) ∼= Γ(X,Hom(E, F )) and so

Γ(X,E) ∼= Γ(X,Hom(OX , E)).

(2)

Let f : X → Y be a map of ringed spaces. Associated to these we have operations

Mod(Y )

f∗

//
Mod(X)

f∗
oo
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Some essential properties of these operations are4

f∗E(U) = E(f−1(U)) if U is an open set of Y. In particular

f∗E ∼= Γ(X,E) if Y is a one-point space.

HomMod(X)(f
∗E, F ) ∼= HomMod(Y )(E, f∗F )

f ∗(E ⊗ F ) = f ∗E ⊗ f ∗F

f ∗(E∗) = (f ∗E)∗

Let Db(X) be the the derived category of bounded complexes of quasi-coherent OX-
modules. An OX-module E gives rise to an object of Db(X), namely the complex . . . 0 →
E → 0 · · · which is E in degree 0 and 0 in other degrees. We simply write E for this object
of Db(X). The morphisms in the derived category from E to F form a cochain complex,
denoted RHomX(E ,F). The derived category has a tensor product, denoted E ⊗L

X F , an
internal Hom, denoted RHomX(E ,F), and a dual E∨ = RHom(E ,OX). Moreover, given a
complex of OX -modules E we can form the chain complex of Γ(X,OX)-modules RΓ(X, E).
These constructions are related by identities much like those for Mod(X), namely

RHomX(E ⊗X F ,G) ≃ RHomX(E ,RHomX(F ,G))
E∨ ⊗L

X F ≃ RHomX(E ,F) if E is finitely generated

E ≃ RHomX(OX , E)
RHomX(E ,F) ≃ RΓRHom(E ,F)

RΓE ≃ RΓRHom(OX , E).

In the above, the symbol ≃ denotes quasi-isomorphism, meaning the cochain complexes
have isomorphic cohomology. Familiar cohomological invariants may be accessed via the
identities

ExtiX(E ,F) = H iRHomX(E ,F)
H i(X ; E) = H iRΓ(E) ∼= Exti(OX , E).

Remark 3. The classical derived category Db(X) is obtained from the classical category
Ch(X) of cochain complexes in Mod(X) by inverting the quasisomorphisms, and it is a
triangulated category. The symbol ≃ therefore indicates an isomorphism in the derived
category.

These leads to some subtlely in viewing RHomX(E ,F) as the morphisms of Db(X).
The problem is that, first of all, even to build RHomX(E ,F) involves a choice of injective

4 The second line is a slight abuse of notation. The point is that if ∗ is a point, then O∗ is the sheaf
whose value global sections are just the complex numbers. Taking global sections is an equivalence of
categories between O∗-modules and C-modules. On the left one has an OC -module, on the right one has the
corresponding C-module.
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resolution of F . This choice interacts with the definition of the composition

RHomX(E ,F)×RHomX(F ,G)→ RHomX(E ,G). (4)

Homological algebra implies that RHomX(E ,F) is well-defined up to quasi-isomorphism,
and so the groups ExtX(E ,F) and the composition

ExtX(E ,F)× ExtX(F ,G)→ ExtX(E ,G)
are well-defined on the nose.

For many purposes it is essential to deal with the category Ch(X) in a way that recognizes
the special importance of quasi-isomorphisms without passing immediately to the derived
category. The theory of ∞-categories provides a convenient framework for doing so. A key
feature of ∞-categories is that they allow the cochain complex RHomX(E ,F) of morphisms
to be defined only up to quasi-isomorphism, and they recognize that the composition of
morphisms (4) is necessarily an A∞ operation: the choices involved in building an explicit
model for the composition are analogous to the choice of how to divide up the unit interval
to building a concatenation-of-paths operation

Map([0, 1], X)×Map([0, 1], X)→ Map([0, 1], X).

The upshot is an ∞-category Db
∞(X) of chain complexes of OX -modules, whose “homotopy

category” is the classical triangulated derived category Db(X) of Verdier. J. Lurie develops
the theory of the derived category from this point of view in [25].

In this paper, when we speak of the derived category we often implicitly mean the ∞-
category Db

∞(X) associated to Mod(X): For example, when we speak of RHomX(E ,F) as
the morphisms in the derived category, we really mean the ∞-category. When we use the
symbol ≃, we are indicating an equivalence in the∞-category which becomes an isomorphism
in Db(X).

This∞-category plays an prominent role in the current mathematical study of topological
field theories. For example, Costello [20, Section 2.2] emphasizes that it is essential to use
Db

∞(X) to obtain the B-model in his framework.

Associated to a map f : X → Y of ringed spaces we have operations

Db(Y ) Lf∗ // Db(X)
Rf∗

oo

f!oo

By construction, these operations satisfy properties analogous to those for f∗ and f ∗ above:

Rf∗E ≃ RΓE if Y is a one-point space

RHomX(Lf
∗E ,F) ≃ RHomY (E ,Rf∗F)

RHomX(E ,Lf ∗G) ≃ RHomY (f!F ,G)
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In particular, if f : X → ∗, then

Rif∗E ∼= H i(X ; E).

We recall a number of additional properties enjoyed by these operations.

The projection formula

Via their tensor products Db(X) and Db(Y ) can be thought of as categorical versions of
commutative rings5. The pull-back Lf ∗ preserves the tensor product, and so gives Db(X) in
this sense the structure of a module over Db(Y ). The projection formula says that Rf∗ is a
homomorphism of modules over Db(Y ) : for E ∈ Db(X) and F ∈ Db(Y ), we have

Rf∗(E ⊗L

X Lf ∗F) ≃ (Rf∗E)⊗L

Y F . (5)

Flat base change

Suppose that

X ′ g′−−−→ X

f ′





y





y

f

Y ′ g−−−→ Y.

is a pull-back diagram: that is, f ′ : X ′ → Y ′ is obtained from f : X → Y by base change
along g : Y ′ → Y .

Proposition 6 ([26], prop. III.9.3; [21], section 2.7). If g is flat, then so is g′, and so

Lg∗ = g∗ and (Lg′)∗ = (g′)∗. Moreover

g∗Rf∗ ≃ (Rf ′)∗(g
′)∗ : Db(X)→ Db(Y ).

Grothendieck-Serre duality

The Grothendieck Duality theory describes the relationship between the derived dual and the
derived pushforward. If X is a smooth projective variety of dimension d, let SX = Ωd

X [d] =
KX [d] be its “dualizing complex.” If E is a complex of coherent (=finitely generated quasi-
coherent) OX -modules, let

ED = E∨ ⊗L

X SX ≃ E∨ ⊗X SX ≃ RHomX(E , SX).

5 More generally, symmetric monoidal categories are categorical analogues of commutative rings. The
category of OX modules is a symmetric monoidal category, and, because of the tensor products mentioned
above, the derived category Db(X) can also be given the structure of a symmetric monoidal category.
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(if X is smooth then Ωd
X is projective, and so ⊗L and ⊗ coincide). If f : X → Y be a proper

map of smooth projective varieties, then the duality theory says that6

Rf∗(ED) ≃ (Rf∗E)D. (7)

Remark 8. More generally, the Grothendieck Duality theory concerns the existence and
properties of a right adjoint f ! of the functor f∗, so that, for E ∈ Db(X) and F ∈ Db(Y ),

Rf∗RHomX(E , f !F) ≃ RHomY (Rf∗E ,F). (9)

For example, the theory asserts that if f is proper and smooth of dimension d, then

f !F ≃ (f ∗F)⊗L Ωd
X/Y [d] ≃ (f ∗F)⊗ Ωd

X/Y [d].

If f : X → Y is such that f ! exists and is of the form

f !F ≃ (f ∗F)⊗L SX/Y

for some element SX/Y of Db(X), then SX/Y is called a dualizing complex for the map f. If
X and Y are themselves smooth, then

SX/Y ≃ SX ⊗ f ∗S−1
Y . (10)

Assuming that E is finitely generated, and taking F = OY , (9) becomes

Rf∗(E∨ ⊗ SX ⊗ f ∗S−1
Y ) ≃ (Rf∗E)∨.

Using the projection formula (5), this becomes

Rf∗(E∨ ⊗ SX)⊗ S−1
Y ) ≃ (Rf∗E)∨,

so Rf∗(ED) ≃ (Rf∗E)D, as asserted at (7).

Example 11. Consider for example the case that X is compact and smooth and Y = ∗ is
a the one-point space. Then SY = C, considered as a sheaf over a point, and (7) becomes

RHomX(E , KX [d]) ≃ HomY (RΓE ,C).

Taking cohomology, we find that

Extd−i
X (E , KX) ∼= Hom(H i(X ; E),C),

which is Serre duality.

6We learned this formulation of Grothendieck duality from A. Neeman and A. Caldararu.
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3.2 Comparison of derived and underived operations

In this paper, our arguments for taffy identities in the B model will technically revolve
around manipulations in derived categories, where it becomes very simple to make strong
statements. However, in many cases of physical interest, one really is using nonderived
operations on sheaves, not derived operations. In this section, we will compare derived and
underived operations, to uncover the physics hidden in the technology of derived categories.

In particular in this section we study derived operations in the special case that the
derived category objects are pushforwards along embeddings of vector bundles of finite rank,
which is the simplest description of a single set of D-branes. We shall discuss the relation
between

1. Derived pushforwards Rp∗ and ordinary pushforwards p∗

2. Derived pullbacks Lp∗ and ordinary pullbacks p∗

3. Derived duals ∨ and ordinary duals ∗

4. Derived tensor products ⊗L and ordinary tensor products ⊗

for such special objects in derived categories. We shall see, for example, that the Freed-
Witten anomaly [27] is implicit in derived duals.

Before specializing to pushforwards of vector bundles, we mention in passing the simplest
relationships of the derived operations to their underived analogues:

1. Rf∗E ≃ f∗E if E is injective or if f is affine (e.g. a closed embedding);

2. Lf ∗E ≃ f ∗E if E is projective or if f is flat;

3. RHomX(E, F ) ≃ HomX(E, F ) if either E is projective or F is injective;

4. E ⊗X F ≃ E ⊗L

X F if either E or F is projective (e.g. free).

Derived pushforwards

In the B model we can consider a D-brane on a closed submanifold i : S → X described by
the sheaf i∗E, with E a finite rank vector bundle over S. Since i is a closed embedding, it
follows that

Ri∗E ≃ i∗E

19



(and indeed for any sheaf on S). We shall make considerable use of the particular case

∆ : X → X ×X

of the diagonal embedding: R∆∗ ≃ ∆∗.

Derived pullbacks

In this paper we shall be considering primarily pullbacks along projections, e.g. p : X×Y →
X . Projections are flat, and so derived pullbacks match ordinary pullbacks.

In addition, we sometimes use pullbacks along other maps in derivations. However,
in other cases, derived and ordinary pullbacks typically do not match. For example, we
occasionally discuss pullbacks along closed embeddings, such as the diagonal map ∆ : X →
X×X . In the special case of pullbacks of vector bundles, the derived and ordinary pullbacks
(along closed embeddings) do match. On the other hand, for more general sheaves, the
derived and ordinary pullbacks do not match, essentially because closed embeddings are not
flat. For example, ∆∗O∆ = OX ; however, L∆

∗O∆ 6= OX , as there are nonzero cohomology
sheaves (roughly Ωi in position −i).

Derived duals

Given a vector bundle of finite rank E over a submanifold i : S →֒ X of codimension d,
consider the derived dual

(Ri∗E)∨ ≡ RHom(Ri∗E,OX) ≃ RHom(i∗E,OX).

(As we noted above, Ri∗ ≃ i∗, as i the inclusion of a submanifold.) We shall see that it is
related to i∗(E

∗) by a combination of grading shifts and tensoring with canonical bundles.
Specifically,

(i∗E)∨ ≃ Ri∗(E
∗ ⊗ SS/X) (12)

where SS/X is the dualizing sheaf of the embedding, and ∗ denotes the ordinary vector bundle
dual. To see this, note that, using (7), we have

(i∗E)D ≃ i∗(E
D).

That is,

(i∗E)∨ ≃ (i∗E)D ⊗ S−1
X

≃ i∗(E
D)⊗ S−1

X

≃ i∗(E
∨ ⊗ SS ⊗ i∗S−1

X )

≃ Ri∗(E
∗ ⊗ SS/X).
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In the preceding, we used the fact that X and S are smooth, so SS and SX are projective:
thus derived tensor products and pull-backs reduce to ordinary ones. We used the fact that
E is a vector bundle, and so locally free, to conclude that

E∨ = RHomX(E,OX) ≃ HomX(E,OX) = E∗.

We used the projection formula to conclude that

i∗(F)⊗L S−1
X ≃ i∗(F ⊗L Li∗SX) ≃ i∗(F ⊗ i∗SX).

It remains to compute SS/X . From equation (10), we know that

SS/X = SS ⊗ i∗S−1
X = KS[dim S]⊗ i∗ (KX [dimX ])−1 = KS ⊗ (KX |S) [−d]

where recall d is the codimension of S in X . For completeness, note from the short exact
sequence

0 −→ N∗
S/X −→ Ω1

X |S −→ Ω1
S −→ 0

it is straightforward to show that

ΛtopNS/X
∼= KS ⊗ (KX |S)−1

hence
SS/X = ΛtopNS/X [−d].

Putting this together, we have that

(i∗E)∨ ∼= i∗
(

E∗ ⊗KS ⊗ (KX |S)−1) [−d] ∼= i∗
(

E∗ ⊗ ΛtopNS/X

)

[−d]. (13)

Example 14. Consider the diagonal embedding ∆ : X → X × X . Then NX/X×X
∼= TX ,

KX×X = π∗
1KX ⊗ π∗

2KX , KX×X |X = K⊗2
X , and (13) becomes

(∆∗OX)
∨ ≃ ∆∗

(

OX ⊗KX ⊗
(

K⊗2
X

)−1
)

[−dimX ] = ∆∗K
−1
X [−dimX ]. (15)

(See also [23] for a discussion of the dual of the diagonal.)

Now, let us return to our discussion of the derived dual of i∗E. In this case, for X a
Calabi-Yau, equation (13) becomes

(i∗E)∨ = i∗ (E
∗ ⊗KS) [−d].

Note that the factor of KS is ultimately due to the Freed-Witten anomaly [27]. Recall
from [28] that because of the Freed-Witten anomaly, the sheaf i∗E is associated with D-brane
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Chan-Paton factors7 E ⊗K
−1/2
S . If we dualize the Chan-Paton factors, they become

(

E ⊗K
−1/2
S

)∗

= E∗ ⊗K
+1/2
S = E∗ ⊗K

−1/2
S ⊗KS;

which means that the appropriate dual of the sheaf i∗E (modulo grading shifts) should be
i∗(E

∗ ⊗ KS) ≃ i∗(E
D) ≃ (i∗E)D. In effect, this means that the Freed-Witten anomaly is

baked into the formalism of derived categories, as it is automatically encoded in the natural
dual in the sense of derived categories (the derived dual).

Derived tensor products

Next, let us compare the derived tensor product ⊗L to the ordinary tensor product ⊗.
Consider two D-branes wrapped on i : S →֒ X and j : T →֒ X , S, T , and X all assumed
smooth. If the intersection of S and T is transversal (e.g. codimS/X + codimT/X =
codim (S ∩ T )/X), then it is a result of Serre that

(i∗E)⊗L (j∗F ) ≃ (i∗E)⊗ (j∗F ) .

(The point is to show that the sheaf Torp(i∗E, j∗F ) is zero for p > 0, which is precisely
when the derived and underived tensor products will match. One reduces to the case that
the ring of functions on X is A, on S is A/I, and T is A/J for prime ideals I and J. With
our hypotheses TorA(A/I, A/J) can be computed by a Koszul complex, and the transverse
intersection assumption implies that this complex is acylic. The relevant results are p. 54
Prop 2, and p. 55 Cor 2 of [29].)

More generally, however, for non-transversal intersections, the derived tensor product will
differ from the ordinary tensor product. Let k : S ∩ T →֒ X denote the natural embedding
of the intersection, then the extra contributions arise from

k∗ (E|S∩T ⊗ F |S∩T ⊗ Λ∗B)

where
B∗ = TX|S∩T/ (TS|S∩T + TT |S∩T )

(a bundle which also appeared in [28]). The bundle B expresses the amount by which the
intersection fails to be transversal.

In this paper, we shall only need the simple transverse case. In every case in which we are
initially reading off string states from a diagram, the sheaves will be supported on different

7 It has been suggested by A. Caldararu that an alternative approach to the Freed-Witten anomaly would
be, in part, to define a “good” dual to a sheaf E by, E∗ ≡ E∨ ⊗

√
SX , when this makes sense. We shall not

follow that path here, but thought it warranted mentioning.
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factors in a product. Let E be a vector bundle on i : S →֒ X , and F be a vector bundle on
j : T →֒ Y . Then the ordinary and derived tensor products match [31]:

p∗1i∗E ⊗ p∗2j∗F = p∗1i∗E ⊗L p∗2j∗F

and if we let k denote the inclusion S × T →֒ X × Y , then they both match

k∗ (p
∗
1E ⊗ p∗2F )

In the bulk of the rest of this paper, we will study examples of taffy-like foldings of
string worldsheets, and derive mathematical identities to check that such taffy operations
give alternative descriptions of physically-equivalent string worldsheets.

Our constructions in the B model necessarily take place in the derived category, and
as such, all operations will necessarily be derived. For notational simplicity, in the rest of
this paper after this subsection, we will use underived notation to implicitly mean derived
constructions. In other words, we will omit the R and the L from the notation: thus Hom
means RHom, ⊗ means ⊗L, i∗ means Ri∗, and so forth.

3.3 Open string states

Let E , F be objects in Db(X), defining boundaries in the open string B model on X .

Here is our first example of a taffy operation. Consider folding an oriented open string

E F

along a trivial defect inserted at the center into a U-shape:

E

F

We mean by the diagram above (and other such in this paper) to indicate that the original
open string has been folded over and then collapsed onto a single new open string on X×X ,
with one boundary determined by E and F , and the other boundary determined by the
identity defect, as represented by a diagonal embedding ∆ : X → X ×X :

E ,F ∆
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In order to convey more information, the previous diagram was ‘expanded’ vertically, to show
the different layers of the original open string, though the reader should always interpret such
diagrams to mean that a vertical contraction onto a single-layer open string on multiple copies
of X has taken place.

In effect, we are encoding worldsheet geometry in D-branes. See also [30] where something
analogous was done in a different theory.

We are not quite done. We need to uniquely specify Chan-Paton factors on the folded
string (e.g. F versus F∨), and we also need to specify an orientation on the folded open
string. It is straightforward to see that different reasonable choices differ only by grading
shifts, so this is a matter of picking a convention, not something essential to the physics. We
shall follow the following convention (which was chosen specifically to preserve gradings):

1. For diagonals, if the orientation on the folded string points towards the diagonal, we
describe the Chan-Paton factors by the object ∆∗OX in the derived category, which
(because it will appear commonly) we shall abbreviate ∆. If the orientation on the
folded string points away from the diagonal, we use instead the object ∆∨. (Recall
from equation (15) that on a Calabi-Yau, ∆ differs from ∆∨ merely by a grading shift,
∆∨ = ∆[−dimX ], so we are merely choosing conventions so as to preserve gradings.)

2. For other objects present before the fold (in the example above, E , F), if the orientation
on the folded string is parallel to the orientation on the part of the original string going
into that boundary, we use the original object; if antiparallel, we use its dual.

For example, if we pick the orientation on the folded string to be

E ,F ∆

then the left Chan-Paton factors are described by the derived category object π∗
1E ⊗ π∗

2F∨,
and the right Chan-Paton factors are described by the derived category object ∆. In this
case, the string states in the new (folded) open string are counted by

Ext∗X×X (π∗
1E ⊗ π∗

2F∨,∆)

Applying the identities from section 3.1, we have

RHomX×X(π
∗
1E ⊗X×X π∗

2F∨,∆∗OX)

≃ RHomX(∆
∗(π∗

1E ⊗X×X π∗
2F∨),OX)

≃ RHomX(E ⊗ F∨,OX) ≃ RHomX(E ,F).

and taking cohomology yields the equality

Ext∗X×X (π∗
1E ⊗ π∗

2F∨,∆) = Ext∗X (E ,F) (16)
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so we see that in this convention, the open string states on the folded string precisely match
the original open string states, without even a grading shift.

If we had picked the opposite orientation on the folded string:

E ,F ∆

then the left Chan-Paton factors would be described by the derived category object π∗
1E∨ ⊗

π∗
2F , and the right Chan-Paton factors would be described by the derived category object

∆∨. In this case, the open string states in the folded open string would be given by

Ext∗X×X (∆∨, π∗
1E∨ ⊗ π∗

2F)
but a trivial application of section 3.1 and identity (16) implies

Ext∗X×X (∆∨, π∗
1E∨ ⊗ π∗

2F) = Ext∗X×X (π∗
1E ⊗ π∗

2F∨,∆) = Ext∗X (E ,F)
so again we recover the states of the original open string, without even a grading shift.

One technical point is that in the description above, the diagonal defect ∆ is implicitly
assumed to have (trivial, rank 1) Chan-Paton factors. The fact that the boundaries have
support along the diagonal corresponds to the fact that they correspond to folds, but, folds
do not have Chan-Paton factors. However, the open string spectrum with trivial line bundles
along the defect ∆ : X → X × X is the same as the open string spectrum with no Chan-
Paton factors added at all (a trivial consequence of e.g. [28]). Thus, we can equivalently
interpret the Ext groups above as computing open string spectra between boundaries with
no added Chan-Paton factors.

Now, let us perform a consistency check of our description of folded open strings. Consider
the folded open string with orientation

E ,F ∆

so that the string states are

Ext∗X×X (π∗
1E ⊗ π∗

2F∨,∆) = Ext∗X (E ,F)
Now that we have fixed an orientation on the folded open string corresponding to the ori-
entation on the original string, we can ask about the effect of flipping the orientation. If we
were to traverse the folded string in the opposite direction, the string states would be

Ext∗X×X (∆, π∗
1E ⊗ π∗

2F∨) = Ext∗X×X (π∗
1E∨ ⊗ π∗

2F ,∆∨)

= Ext∗X×X (π∗
1E∨ ⊗ π∗

2F ,∆[−dimX ]) (for X Calabi-Yau)

= Ext∗X (E∨,F∨[−dimX ])

= Ext∗X (F , E [−dimX ])
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which, up to an irrelevant grading shift, are precisely the states one would get from traversing
the original unfolded string in the opposite direction, as expected.

For completeness, let us also consider folding in the opposite direction:

F

E

If we collapse this to an open string on X ×X with the following orientation:

E ,F∆

then following our usual convention, string states are given by

Ext∗X×X (π∗
1E ⊗ π∗

2F∨,∆)

and we have already seen that this matches Ext∗X (E ,F). Similarly for the opposite orienta-
tion convention on the folded string.

In order to show that similar results apply for more complicated folds, we will need a slight
generalization of the identity (16), whose proof we learned from [31]. For any E ∈ Db(X)
and any finitely generated S ∈ Db(X × Y ), we have

Ext∗X×X×Y (π∗
1E ⊗ π∗

23S∨, π∗
12∆) = Ext∗X×Y (π∗

1E ,S) (17)

This is our first “taffy identity.” Intuitively, it allows us to equate the two diagrams

E

S
S E

(where S is being used to encode any number of additional foldings) and hence can be used
to unfold foldings.

To prove (17), note first of all that

Ext∗X×X×Y (π∗
1E ⊗ π∗

23S∨, π∗
12∆) = Ext∗X×X×Y (π∗

1E , π∗
23S ⊗ π∗

12∆)

Let
∆12 : (x, y) 7→ (x, x, y), ∆ : x 7→ (x, x).
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We have the pull-back diagram

X × Y
π1 //

∆12

��

X

∆
��

X ×X × Y
π12 // X ×X

with π12 flat, and so by flat base change (prop. 6) we have

π∗
12∆∗OX ≃ ∆12∗π

∗
1OX = ∆12∗OX×Y .

Now using the projection formula (equation (5)) and the fact that π23 ◦ ∆12(x, y) = (x, y),
we have

π∗
23S ⊗ π∗

12∆ ≃ π∗
23S ⊗∆12∗OX×Y

≃ ∆12∗(∆
∗
12π

∗
23S)

≃ ∆12∗S.

Thus (noting that π1 ◦∆12 = π1)

Ext∗X×X×Y (π∗
1E ⊗ π∗

23S∨, π∗
12∆) = Ext∗X×X×Y (π∗

1E ,∆12∗S)
= Ext∗X (E , π1∗∆12∗S)
= Ext∗X (E , π1∗S)
= Ext∗X×Y (π∗

1E ,S) ,

which is (17).

One trivial application of the result above is to recheck the U-shaped-strings discussed
previously. There, we argued that

Ext∗X×X (π∗
1E ⊗ π∗

2F∨,∆) = Ext∗X (E ,F)

directly from homological algebra. If instead we apply (17), taking Y to be a point and
S = F , then we immediately recover the same result.

A more interesting example is to fold an ordinary open string on X with boundaries E ,
F into an S-shape,

E

F
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Pressing this down into a single open string on X3, and picking an orientation on the folded
string, we recover

E ,∆23 ∆12,F

with states
Ext∗X×X×X (π∗

1E ⊗ π∗
23∆

∨, π∗
12∆⊗ π∗

3F) .
In order for the folded string to be equivalent to the original, we conjecture

Ext∗X (E ,F) = Ext∗X×X×X (π∗
1E ⊗ π∗

23∆
∨, π∗

12∆⊗ π∗
3F) . (18)

(See also e.g. [2][fig. 6a] for a different discussion of this same diagram.)

The identity above can be derived by repeatedly applying identity (17). For notational
convenience, define

∆ij ≡ π∗
ij∆∗OX

where πij is the projection onto the ith, jth factors of X in a product of several copies. Then
the massless states associated to the S-shape above are given by

Ext∗X3 (π∗
1E ⊗∆∨

23,∆12 ⊗ π∗
3F) = Ext∗X3 (π∗

1E ⊗∆∨
23 ⊗ π∗

3F∨,∆12)

= Ext∗X3 (π∗
1E ⊗ π∗

23(∆⊗ π∗
2F)∨,∆12)

Applying the identity (17), which means, unrolling the bottommost U-shape, this becomes

Ext∗X2 (π∗
1E ,∆⊗ π∗

2F) = Ext∗X2 (π∗
1E ⊗ F∨,∆) ,

or graphically

E

F

We have already seen that the massless states in this diagram are just Ext∗X(E ,F), hence we
recover (18).

The pattern can now be repeated ad infinitum, repeatedly folding open strings over
themselves to produce open strings on higher-dimensional spaces. To drive home that point,
let us work through one last example of these manipulations. Consider refolding an open
string over itself into a five-layer pattern, as shown:
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E

F

The result of this folding is an open string on the product of five copies of X , with states
counted by

Ext∗X5 (π∗
1E ⊗∆∨

23 ⊗∆∨
45,∆12 ⊗∆34 ⊗ π∗

5F)
Since this is just a folded version of a string between E and F , the states should be counted
by Ext∗X (E ,F), which we shall now check by successive unfolding operations. We can begin
by unfolding the bottommost U-shape, using identity (17), revealing that the states above
are the same as

Ext∗X4 (π∗
1E ,∆12 ⊗∆34 ⊗∆23 ⊗ π∗

4F) = Ext∗X4 (π∗
1E ⊗∆∨

12 ⊗∆∨
34,∆23 ⊗ π∗

4F)

or graphically

E

F

Unrolling the next bottom U-shape, applying identity (17), we see that the states above are
the same as

Ext∗X3 (π∗
1E ⊗∆∨

23,∆12 ⊗ π∗
3F)

or graphically

E

F
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This is identical to the S-shape discussed earlier, so we can now conclude that the states in
this folded open string are indeed counted by Ext∗X(E ,F), as expected.

It should be clear that this process can be continued for arbitrarily many folds; regardless
of the number of foldings introduced, if we start with an open string from E to F , then after
foldings the open string states will still be given by Ext∗X(E ,F).

3.4 Closed string states

Now, let us apply the same ideas to closed strings. Begin with a closed string on X ,

X

X

with trivial defects inserted as shown. By flattening the diagram above, as

∆ ∆

and picking an orientation, say,

∆ ∆

we predict that the closed string states are the same as elements of

Ext∗X×X (∆∨,∆)

As we shall discuss in section 5, this is the “Hochschild homology” of X , and for smooth
X , the Hochschild-Kostant-Rosenberg (HKR) isomorphism [21][theorem 6.3] says that

Ext∗X×X (∆∨,∆) =
⊕

p−q=∗

Hp (X,Ωq
X)
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and so we see that the Ext groups on X × X are differential forms, as expected for closed
string states. Using the fact that

Ωq
X = KX ⊗ Λn−qTX

where n is the dimension of X , we have that

Hp (X,Ωq
X) = Hp

(

X,KX ⊗ Λn−qTX
)

and so

Ext∗X×X (∆∨,∆) =
⊕

p−q=∗

Hp (X,Ωq
X) =

⊕

p+q=n−∗

Hp (X,KX ⊗ ΛqTX)

When X is Calabi-Yau, the states above are well-known to match closed string states on
X [32].

The Hochschild-Kostant-Rosenberg (HKR) theorem above will form the intellectual basis
of the taffy identities for closed strings. In effect, we will use homological algebra to reduce
all diagrams obtained by folding and twisting closed strings to the diagram above, then apply
HKR to argue that the results match closed string states.

For our first example of a folded closed string, consider folding a closed string into a
U-bar shape, as

then we get a prediction that the closed string states are given by

Ext∗X×X×X×X (∆∨
14 ⊗∆∨

23,∆12 ⊗∆34) . (19)

More generally, for S ∈ Db(X2 × Y ), it can be shown that

Ext∗X4×Y (∆∨
12,∆14 ⊗∆23 ⊗ π∗

34Y S) = Ext∗X2×Y (∆∨
12,S) (20)

which is our second “taffy identity” (and, for Y a point and S = ∆, together with the HKR
isomorphism, implies that the states (19) match closed string states).

The second taffy identity (20) can be checked as follows [31]. First, the left-hand-side
can be written as the cohomology of

RΓ
(

X4 × Y,∆12 ⊗∆23 ⊗∆14 ⊗ π∗
34Y S

)

31



However,
∆12 ⊗∆23 ⊗∆14 = ∆small ∗OX×Y

where
∆small : (x, y) 7→ (x, x, x, x, y)

(Intuitively, this ∆small is at least analogous to a small loop between the various copies of
X .) Furthermore,

∆small ∗OX×Y ⊗ π∗
34Y S = ∆small ∗ (∆

∗
smallπ

∗
34Y S)

Thus, the left-hand-side of (20) is the cohomology of

RΓ (X × Y,∆∗
smallπ

∗
34Y S)

Similarly, the right-hand-side of (20) can be written

RΓ
(

X2 × Y,∆12 ⊗ S
)

where ∆12 ≡ ∆12∗OX×Y and
∆12 : (x, y) 7→ (x, x, y)

Now,
S ⊗∆12∗OX×Y = ∆12∗ (∆

∗
12S)

so the right-hand-side of (20) is
RΓ (X × Y,∆∗

12S)
Finally, the left- and right-hand-sides match because π34Y ◦∆small = ∆12:

X × Y
∆small//

∆12 %%L

L

L

L

L

L

L

L

L

L

X4 × Y

π34Y

��
X2 × Y

Thus, we have established our second taffy identity.

Note that as a special case, if we take Y to be the empty set, and S = ∆, then identity (20)
reduces to

Ext∗X4 (∆∨
14 ⊗∆∨

23,∆12 ⊗∆34) = Ext∗X2 (∆∨,∆) (21)

as expected, which together with HKR verifies that (19) describe closed string states.

For another application of the second taffy identity, consider folding twice, to get
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and press down to form an open string on X6, then we get a prediction that the closed string
states are given by

Ext∗X6 (∆∨
14 ⊗∆∨

23 ⊗∆∨
56,∆12 ⊗∆36 ⊗∆45)

We can show this by repeatedly applying identity (20) to successively unfold the diagram
above. Applying it once yields

Ext∗X6 (∆∨
14 ⊗∆∨

23 ⊗∆∨
56,∆12 ⊗∆36 ⊗∆45) = Ext∗X4 (∆∨

12,∆34 ⊗∆23 ⊗∆14)

which we have already demonstrated to match closed string states.

It is straightforward to check that additional folds can be straightened; we leave the
details as an exercise for the reader.

In addition to folds, we can also stretch out sections. For example, consider the diagram

The string states in this case are

Ext∗X6 (∆∨
16 ⊗∆∨

23 ⊗∆∨
45,∆12 ⊗∆34 ⊗∆56)

We can apply identity (20) to show that the states above match closed string states. First,
relabel the states above by exchanging 4 and 6, to get

Ext∗X6 (∆∨
14 ⊗∆∨

23 ⊗∆∨
65,∆12 ⊗∆36 ⊗∆54)
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then, identity (20) implies that this is the same as

Ext∗X4 (∆∨
12,∆34 ⊗∆14 ⊗∆23)

which we have already shown matches closed string states.

Next, consider the three-pointed star:

On the one hand, we can contract this to three open strings joined at the center, with
diagonal defects at each outer corner and a more complicated diagonal defect at the center:

On the other hand, we can ‘rolodex’ this star into the fat E-shape figure described previously,
which gives us the states and also tells us that they do match closed string states, as expected.

More generally, given an n-pointed star of the form above, the states are given as

Ext∗X2n

(

⊗n
i=1∆

∨
2i,2i−1,⊗n

j=1∆2j−1,2j−2

)

and by repeatedly unravelling with identity (20), we can show that these match closed string
states, as expected.

In addition to folds, we can also twist strings. Consider first flattening a circle into a
long flat oval, then twisting the oval into a figure eight. To understand the spectrum, fold
at the twist to get a diagram of the form8

8 There is no information pertinent for these considerations contained in whether lines cross over or under
one another, hence we have not tried to distinguish crossings in the picture shown.
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then we get a prediction that the closed string states are given by

Ext∗X4 (∆∨
13 ⊗∆∨

24,∆12 ⊗∆34) (22)

which we will show momentarily to be correct. More generally, it can be shown that [31]

Ext∗X4×Y (∆∨
12,∆13 ⊗∆24 ⊗ π∗

34Y S) = Ext∗X2×Y (∆∨
12,S) (23)

for any S ∈ Db(X2 × Y ). This is our third taffy identity. This can be derived in almost
exactly the same fashion as the second taffy identity (20); the only difference is that we
utilize the result that

∆12 ⊗∆13 ⊗∆24 = ∆small

When Y is the empty set and S = ∆34, this implies that

Ext∗X4 (∆∨
12,∆13 ⊗∆24 ⊗∆34) = Ext∗X2 (∆∨,∆)

which is precisely the conjecture (22).

For another example, consider taking a closed string, squeezing to a flattened oval, then
twisting twice and folding at each twist. The resulting diagram is

and the corresponding open string states are

Ext∗X6 (∆∨
13 ⊗∆∨

24 ⊗∆∨
56,∆12 ⊗∆35 ⊗∆46)

We can repeatedly apply the identity (23) to successively unroll and untwist layers to show
that these are the same as closed string states on X . After one application, one has that the
states above are the same as

Ext∗X4 (∆∨
12,∆34 ⊗∆13 ⊗∆24)
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which is the case previously discussed, and so matches closed string states.

Because the taffy identities are insensitive to crossings, no knot invariants can be built
from these constructions.

3.5 More general open-closed strings from defects

For completeness, and later applications, let us make some easy general observations on
other more general examples of defects in the B model.

Consider, for our first example, the case of a closed string on X with a single defect
inserted:

E

defined by E ∈ Db(X). We can compute the open string states in this case by inserting a
trivial fold at the opposite side of the circle:

E ∆

then from the previous analysis, we see that the open string specturm is given by

Ext∗X×X (∆∗E ,∆)

Next, let us generalize to “closed strings” formed from gluing together open strings on
distinct spaces along defects. To begin, consider an infinite cylinder split lengthwise into a
pair of semi-infinite strips joined along two edges, one string on X and the other on Y , so
that a spacelike cross-section is
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X

Y

with defects defined by S1,S2 ∈ Db(X × Y ). This is physically equivalent to an ordinary
open string on X × Y :

X × Y
S1 S2

In particular, in both cases the open string states (inserted in the infinite future or past) are

Ext∗X×Y (S1,S2) (24)

It is somewhat tempting to incorrectly speculate that the open string states in the first
picture arise from both

Ext∗X (π1∗S1, π1∗S2) , Ext∗Y (π2∗S1, π2∗S2) (25)

however, this is incorrect, as the corresponding operators are inserted at points where X
and Y come together, so one cannot meaningfully distinguish in the form implied in (25).
(Moreover, there is no mathematical equivalence between (24) and (25).)

With larger numbers of segments, additional folding tricks are possible. Suppose there
are four segments, so that a cross-section of the partitioned cylinder is

X1X2

X3 X4

E14

E12

E23

E34

where Eij ∈ Db(Xi ×Xj), which folds into the equivalent diagram

X2 ×X3 X1 ×X4
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with middle defect on
π∗
12E12 ⊗ π∗

34E34
which folds again into an open string on

Y ≡ X1 ×X2 ×X3 ×X4

with open string states

Ext∗Y (π∗
12E12 ⊗ π∗

34E34, π∗
23E∨23 ⊗ π∗

14E14)

Another folding trick involves a cylinder formed from three open strings:

X1

X2 X3

We first split the top open string by inserting ∆∗OX1
, as

X1X1

X2 X3

∆

and then fold it into

X1 ×X2 X1 ×X3

which, after another fold, has states counted by

Ext∗Y ′ (π∗
12E12 ⊗ π∗

31E∨31, π∗
23E23 ⊗ π∗

11∆∗OX1
)
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where
Y ′ ≡ X1 ×X1 ×X2 ×X3

Note that we can efficiently specify locations of parallel defects along a cylinder through
a simplex: specify the location of each defect by what fraction of the circumference it sits
at, relative to the previous defect. If there are k defects, then that gives us k real numbers
between 0 and 1 whose sum is necessarily 1, which is precisely a simplex.

Another folding trick involves a diagram that cannot be understood as just a cylinder,
with cross section

X1

X2

X3

FE

where E ,F ∈ Db(X1×X2×X3). This folds into the equivalent open string on X1×X2×X3:

X1 ×X2 ×X3
FE

from which we see that the string states arising from this diagram are

Ext∗X1×X2×X3
(E ,F)

3.6 Correlation functions

So far we have only checked that massless states match after performing taffy operations.
In this section, we shall outline how correlation function matching should occur. Unlike the
case of massless states, for correlation functions we do not have rigorous proofs, so we will
only outline conjectures.

Let us begin by considering correlation functions on a disk, describing an open string on
X , with the same boundary conditions everywhere along the edge of the disk, corresponding
to a object E in Db(X).
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Now, split the disk in half along the identity defect, as

E E∆

To perform such a splitting, we need to insert boundary-condition-changing operators at top
and bottom intersection points, which in the present case will be elements of

Ext∗X×X (π∗
1E∨ ⊗ π∗

2E ,∆) (26)

This group is the same as
Ext∗X (E , E) (27)

which matches the intuition that inserting the diagonal defect is equivalent to doing nothing,
since if we did not insert the defect, the boundary operators would have been counted by (27).

We can then fold the diagram above, to obtain the disk diagram

π∗
1E∨ ⊗ π∗

2E ∆

on X ×X .

In principle, we expect correlation functions on the folded disk to match correlation
functions on the original disk.
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Conjecture: The open string theory formed by taking a closed string worldsheet and
triangulating into open strings with defect boundaries, is equivalent to the original closed
string theory.

This would be in analogy with the behavior of two-dimensional QCD (see for example
[33]). In the two-dimensional QCD story, one triangulates a Riemann surface, roughly,
by inserting traces over group representations along edges. Here, by contrast, one is not
inserting a complete set of states, but rather is merely inserting a trivial defect, creating a
trivial reparametrization of the worldsheet, no more.

The conjecture above implies that one could fold all closed string diagrams into open
string disk diagrams. For example, a sphere on X could be flattened to a disk on X × X
with the diagonal ∆ along the edge:

X

∆

X ×X

Similarly, a two-torus on X can be flattened into an annulus on X ×X :

X

∆∆

X ×X

which can then be folded into a disk on X4:

∆ ∆

X ×X

∆1,2 ⊗∆3,4 ∆1,2 ⊗∆3,4

∆12,34

∆12,34

X4
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Similar manipulations can be performed at higher genera, reducing all such diagrams to disk
diagrams on products of copies of X .

4 String topology

The taffy identities in §3 arose from studying the homological algebra of the category of chain
complexes of OX -modules, where X was a Calabi-Yau manifold. The ingredients which lead
to these identities are available in other contexts. In this section we shall outline the details
for the case of ‘string topology.’ This can be described as a mathematical abstraction of
bosonic string field theory (see e.g. [35, 36]), that is well-known in the homotopy community.
In this section we shall derive precise analogues of the taffy identities for string topology.

Let X be a manifold, and let LX be its free loop space. For simplicity, we will assume
in this section that X is simply-connected [34]. (See [16][remark 4.2.17] for an outline of the
non-simply-connected case.) Costello ([20]; see also [16, section 4.2]) explains how the string
topology operations of Chas and Sullivan on C∗LX , the rational cochains on the free loop
space, can be understood as arising from an open-closed TFT on C∗X. In this language, the
closed string states are9 H∗(LX).

Let C∗X be its algebra of rational singular cochains, which plays the role of the open
string algebra. There is an ∞-category MX of C∗X-modules, which plays the role for C∗X
analogous to the∞-category D∞

b (X) of quasi-coherent sheaves, whose homotopy category is
the derived category (see Remark 3). In other words, (complexes of) D-branes are elements
of MX , C∗X modules. In this language, open string states between two (complexes of)
D-branes E ,F ∈MX are given by

RHom(E ,F)
(Unlike algebraic geometry, here there is no distinction between local and global Hom; work-
ing over rational cochains is more closely analogous to working on an affine scheme, where
the module defining the sheaf is the same as the global sections. Therefore, we use the same
Hom to describe both MX modules and also the derived functor of global sections.)

Now, we shall start working out taffy identities. If f : X → Y is a map of spaces, then
associated to the pull-back of singular cochains

f ∗ : C∗Y −→ C∗X

we have the derived pushforward

f∗ : MX −→ MY ,

9 We have not constructed vertex operators to physically realize such in a CFT; rather, we are saying
that formally, the object playing the role of closed string states is H∗(LX). A similar statement is true for
open string states here.
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which has a left adjoint
f ∗ : MY −→ MX .

If E and F are C∗X-modules, then we write RHomX(E ,F) for RHomMX
(E ,F); it is again

a C∗X-module. Moreover, we can define E∨ = RHomX(E , C∗X). Provided that E is in
a suitable sense finitely generated over C∗X (we will use the term “dualizable”), we have
equivalences

(E∨)∨ ≃ E
E∨ ⊗ F ≃ RHomX(E ,F).

Let E and F be dualizable C∗X-modules, and let ∆ : X → X×X be the diagonal. Then

RHomX×X(π
∗
1E ⊗ π∗

2F∨,∆∗C
∗X) ≃ RHomX(∆

∗(π∗
1E ⊗ π∗

2F∨), C∗X)

≃ RHomX(E ⊗ F∨, C∗X)

≃ RHomX(C
∗X, E∨ ⊗F)

≃ RHomX(E ,F),

which is the analogue of the taffy identity (16).

The analogue the projection formula (5) holds in this context. If f : X → Y , E is a
C∗X-module, and G is C∗Y -module, then

f∗(E ⊗X f ∗G) ≃ (f∗E)⊗Y G,

and, at least for products, the Eilenberg-Zilber Theorem provides the analog of the flat
base change theorem (Prop 6). These considerations immediately yield the taffy identity
analogous to (17)

RHomX×X×Y (π
∗
1E ⊗ π∗

23S
∨, π∗

12∆) ≃ RHomX×Y (π
∗
1E, S)

for any dualizable C∗(X × Y )-module S.

Similarly, if S is a C∗(X2 × Y )-module, and if ∆ refers to the C∗(X2 × Y )-module

∆ = ∆∗(C
∗(X × Y ))

obtained by pushing forward along (x, y) 7→ (x, x, y), and if

∆ij = π∗
ij∆

with πij projection to the indicated factors

πij : X
4 × Y → X2 × Y,
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then the taffy identities (20) and (23) become

RHomX4×Y (∆
∨
12,∆14 ⊗∆23 ⊗ π∗

34S) ≃ RHomX2×Y (∆
∨, S)

RHomX4×Y (∆
∨
12,∆13 ⊗∆24 ⊗ π∗

34S) ≃ RHomX2×Y (∆
∨, S).

The proofs follow the same pattern as the proof we gave of (20), using the projection formula
and the flat base change theorem already mentioned.

A more compelling observation is that the the closed string taffy identity associated to
the flattening

∆ ∆

predicts that the closed string algebra associated to C∗X should be

RHomX×X(∆
∨,∆) ≃ ∆⊗L

C∗(X×X) ∆.

As we shall outline below, it is well-known that this chain complex is equivalent both to
the Hochschild chains on C∗X , HC∗(C

∗X ;C∗X), and to the cochains on the free loop
space LX = Map(S1, X), C∗(LX). This will give us the string-topology-analogue of the
Hochschild-Kostant-Rosenberg isomorphism, that played a crucial role in the B model.

Let us consider this situation mathematically. It turns out that the mathematics of the
situation is quite close to the defects we discuss here. By introducing two points (defects)
on the closed string word sheet, we can identify the space of closed strings (“loops”) in X
with the space of pairs of paths in X , joined at their endpoints. That is, the loop space
LX = Map(S1, X) is the pull-back of the diagram

PX

ev01
��

PX
ev01 // X ×X.

(28)

Here PX = Map([0, 1], X) is the space of maps of the unit interval toX , and evij : PX → X2

is the map obtained by evaluating the 0-endpoint into the i factor, and the 1-endpoint into
the j factor in the product.

Homotopically, it is equivalent to shrink the paths to constant length, yielding the dia-
gram

X

∆
��

X
∆ // X ×X.

(29)
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The point-set pull-back in the diagram (29) is not LX , but merely X . Since homotopy
functors, such as cohomology, K-theory, and the derived category, view these diagrams as
equivalent, they cannot possibly preserve pull-backs. It is necessary to consider in this
situation a homotopy-invariant “derived pull-back”.

It turns out that one can construct an object which encodes all possible homotopy de-
formations of the diagram (29): it is the “cosimplicial space” B•(X,X ×X,X),

. . .

X × Y 2 ×X

OOOOOOOO

X × Y ×X

OOOOOO

X ×X

OOOO

Here we have written Y for X ×X . The maps are

d0(x0, y1, . . . , yn−1, xn) = (x0,∆(x0), y1, . . . )

dn(x0, y1, . . . , yn−1, xn) = (x0, y1, . . . , yn−1,∆(xn), xn)

di(x0, y1, . . . , yn−1, xn) = (x0, y1, . . . , yi, yi, . . . , yn−1, xn) 1 ≤ i ≤ n− 1.

A basic theorem in homotopy theory ([37],[38, esp. p. 268],[39]) implies that the situation
gets no more complicated than the pull-back diagram (28):

Proposition 30. If X is simply connected, then

B•(X,X ×X,X) ≃ LX.

By applying a homotopy functor which preserves derived pull-backs, we get more familiar
results. For example, applying singular cochains C∗(−), we find that

B•(C
∗X,C∗(X ×X), C∗X) ≃ C∗(LX). (31)

The left-hand side in (31) refers to the bar complex which calculates Tor, and so taking
cohomology on both sides yields

TorC
∗(X×X)(C∗∆, C∗∆) = H∗(LX).

Using the relation between Tor and Ext groups, we can rewrite this as

RHomX×X (C∗∆∨, C∗∆) = H∗(LX)
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Moreover, it is a theorem of Cartan and Eilenberg [40][section IX.6] that the chain complex
associated to B•(C

∗X,C∗(X×X), C∗X) is equivalent to the cyclic complex which calculates
Hochschild homology:

HC∗(C
∗X) ≃ B•(C

∗∆, C∗(X ×X), C∗∆),

and so we have the following (well-known, see for example [41][theorem 1.5.1], [42, 43]) result.

Proposition 32. If X is simply connected, then

HH∗(C
∗X) = H∗(LX) = TorC

∗(X×X)(C∗∆, C∗∆) = RHomX×X (C∗∆∨, C∗∆) .

This is precisely the analogue of the Hochschild-Kostant-Rosenberg isomorphism, ex-
pressing closed string states on X in terms of open string states on X ×X , and in terms of
the Hochschild homology of the open string algebra C∗X .

Hopkins and Lurie ([16, 24]; see also Blumberg, Cohen, and Teleman [44]) have shown
that C∗X is the open string algebra of an open-closed TFT, whose closed string algebra is
C∗(LX); and they have shown that the resulting structure on C∗(LX) includes the string
topology operations of Chas and Sullivan.

We emphasize that the identification of LX as the derived-pull back of

X
∆−→ X ×X

∆←− X

encodes the closed string taffy identities we consider in §3, at the level of topological spaces:
they then have instances in many algebraic settings by applying homotopy functors. To give
an example, consider a loop in X viewed as assembled from four paths, as in

12

41

34

23

That is, the loop space is the pull-back in the diagram

PX × PX

ev12×ev34
��

PX × PX
ev14×ev23 // X4.
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But this diagram is homotopy equivalent to

X ×X

∆12×∆34

��
X ×X

∆14×∆23 // X4.

The same analysis as Proposition 30 shows that, if X is simply connected, then

B•(∆12 ×∆34, X
4,∆14 ×∆23) ≃ LX,

and so by applying singular cochains we find that

TorC
∗(X4)(C∗(∆12)⊗ C∗(∆34), C

∗(∆14)⊗ C∗(∆23)) = TorC
∗(X2)(C∗(∆), C∗(∆)) = H∗(LX),

with all of these agreeing with the Hochschild homology of the signular cochains, HH∗(C
∗X).

This is the analogue, for string topology, of the taffy identity (21) for closed strings in the
B-model.

5 Hochschild (co)homology and closed string states

It is sometimes said that closed string states are the Hochschild (co)homology of the open
string algebra. In the physics literature, closed string states are often related to Hochschild
cohomology; see for example [45][section 2], [46][section 3.3] and references therein. In the
mathematics community, closed string states are often related to Hochschild homology10,
see work of e.g. Kontsevich, Costello, Hopkins–Lurie11, Blumberg–Cohen–Teleman [16, 20,
24, 44]. In this section we shall examine this correspondence. Among other things, we shall
argue that, based on the taffy identities, the natural relation is between the closed string
states and Hochschild homology instead of cohomology.

It is also worth pointing out specifically that Costello, Hopkins, and Lurie [16, 20, 24] have
developed an approach to topological field theory in which the rotational symmetry of the
closed string states is reflected in Connes’ cyclic structure on the Hochschild complex, and
so cyclic homology also naturally appears in their framework (see e.g. [16][section 4.2]). In
physics, the relationship between cyclic homology and closed (bosonic) strings was recently
discussed in [47]. (As string topology is a mathematical extraction of bosonic string field
theory, there are close parallels between their work and parts of our discussion of string
topology; our proposition 32, for example, is essentially [47][equ’n (95)].)

10 M.A. first learned that closed string states are related to open string states in this way from D. Berenstein
in 2001.

11 The work of Hopkins and Lurie places this relationship in the context of enriched topological field
theory, which we outlined in section 2.2.

47



5.1 B model

In the language of the B model topological field theory, closed string states can be related
to Hochschild (co)homology via the “Hochschild-Kostant-Rosenberg (HKR) isomorphism,”

H∗ (X,Λ∗TX) = Ext∗X×X (∆,∆)

for a Calabi-Yau X . One, somewhat vague, reason sometimes stated for this relationship
between closed and open strings is that if one accepts that closed strings should be derived
from open strings, then closed string states should arise as some sort of cohomology operation
on the open string algebra, and Hochschild cohomology arises very naturally in this role. A
more refined intuition is sometimes stated, in terms of folding closed strings into open strings.

In section 3.4 we learned how to make such intuitions physically precise for the B model.
In the process, we learned that the closed string states are naturally given by Hochschild
homology, not cohomology. In this section we will review Hochschild homology and coho-
mology, and their relationship.

In general, for an algebra A, the Hochschild homology is [48][prop. 1.1.13]

HH∗(A) = TorA⊗Aop

∗ (A,A)

and the Hochschild cohomology is [48][prop. 1.5.8]

HH∗(A) = Ext∗A⊗Aop (A,A)

In the case of the B model, the open string algebra is OX , as the B-branes are coherent
OX -sheaves. Since the local Ext groups reduce to Hochschild cohomology for algebras, one
defines the Hochschild cohomology of X to be [21][def’n 6.2]

Ext∗X×X (∆,∆)

where, as usual, ∆ denotes ∆∗OX . A natural guess would be that the Hochschild homology
should be defined similarly as a global Tor group; however, global Tor groups for sheaves do
not seem to be consistently defined. It is true, however, true that

Ext∗X (A∨, B) = RΓ (X,A⊗B)

for any two elements A,B ∈ Db(X), and the right-hand-side of that expression is morally,
if not literally, a global Tor group. Thus, the reader should not be surprised to learn that
Hochschild homology of X is defined to be [21][def’n 6.2]

HH∗(X) = Ext−∗
X×X (∆∨,∆)
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(The change in sign of the grading is the convention in this context. Although Hochschild
cohomology of a space is always in positive degrees, Hochschild homology is in both positive
and negative degrees.)

In section 3.4 we saw from folding operations that the closed string states in the B model
are given by Hochschild homology,

HH∗(X) = Ext−∗
X×X (∆∨,∆)

ultimately because a closed string can be flattened into an open string on X × X with
diagonal boundary conditions. Let us compare this to more standard expressions for states
in the closed string B model.

The Hochschild homology and cohomology can be related to differential forms [21][section
6.4], thanks to the “Hochschild-Kostant-Rosenberg isomorphism” [49, 50, 51, 52], which says
that for X a smooth quasi-projective variety over C,

HHn(X) ≡ ExtnX×X (∆,∆) ∼=
⊕

p+q=n

Hp (X,ΛqTX) (33)

HHn(X) ≡ Ext−n
X×X (∆∨,∆) ∼=

⊕

q−p=n

Hp (X,Ωq
X) (34)

Using the fact that
Ωq

X = KX ⊗ Λn−qTX

where n is the dimension of X , we see that

Hp (X,Ωq
X) = Hp

(

X,KX ⊗ Λn−qTX
)

and so

HH∗(X) =
⊕

q−p=∗

Hp (X,Ωq
X) =

⊕

q−p=∗

Hp
(

X,KX ⊗ Λn−qTX
)

=
⊕

p+q=n−∗

Hp (X,KX ⊗ ΛqTX)

When X is Calabi-Yau, we see from the above that

HH∗(X) = HHn−∗(X)

If KX is nontrivial but 2-torsion, then the Hochschild homology and cohomology no longer
have a simple relationship.
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5.2 String topology

In §3 we used taffy identities built from defects to explain why the closed string in a topo-
logical field theory should be the Hochschild homology of the open string states.

We discussed an analogue of the Hochschild-Kostant-Rosenberg isomorphism for string
topology in section 4. Specifically, we argued there that

HH∗(C
∗X) = H∗(LX) = RHomX (C∗∆∨, C∗∆)

This tells us, in part, that open string states on X×X match closed string states on X , but
more to the point, it identifies closed string states with the Hochschild homology (instead of
Hochschild cohomology) of C∗X , the open string algebra. Just as in the B model, the closed
string states are naturally associated to Hochschild homology instead of cohomology, in this
framework.

5.3 Generalized cohomology

Our analysis of the relationship between Hochschild homology and closed strings has the
virtue that one can insert other homotopy functors which preserve derived pull-backs, yield-
ing potentially other topological field theories. For example, replacing singular cochains with
maps to Z×BU , one can hope to build a topological field theory based on K-theory, whose
closed string algebra is the Hochschild homology HH∗(K

X). In fact Hopkins announced a
result like this at the Fields Institute [24]. Note that some care must be taken in interpret-
ing this assertion: for example the usual analysis of Hochschild homology and loop spaces
requires the space X to be simply connected; in this context, it also suggests that one might
have to use “connective” K-theory.

One situation to which this analysis of Hochschild homology does not apply directly is
the B-model considered in §3. We could analyze that case in this language by using the
ideas outlined in the introduction. Specifically, consider a “closeable” configuration of n
open strings of the form

E0

E1

E2

E3

· · ·

En
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to which we associate

Hom(E0, E1)× Hom(E1, E2)× · · · ×Hom(En, E0)

(Note this is not the same thing as the massless spectrum of the diagram, but rather is
a more abstract quantity. Also note that in this discussion, the Homs should be taken in
the ∞-category D∞

b (X): they are really RHoms.) A similar configuration containing only
n− 1 open strings should be associated a product of Hom’s related to the one above via the
composition

Hom(En−1, En)×Hom(En, E0) −→ Hom(En−1, E0)
in one direction, and by setting En = En−1 with the identity operator in the other direction.
This gives rise to a complex

⊕

E0,...,En
Hom(E0, E1)×Hom(E1, E2)× · · · × Hom(En, E0)

. . .

⊕

E0,E1,E2
Hom(E0, E1)× Hom(E1, E2)×Hom(E2, E0)

�� �� ��

⊕

E0,E1
Hom(E0, E1)×Hom(E1, E0)

�� ��
⊕

E0
Hom(E0, E0)

In this complex the structure maps are those of the Hochschild complex, and (modulo im-
portant technical subtleties) McCarthy and Keller [17, 18, 19] use this complex to define the
Hochschild homology of the category of OX -modules, in such a way that HH∗(Mod(OX)) is
the Hochschild homology of X .

6 A model

So far we have discussed the B model and string topology in this paper. Let us now turn to
the analogous constructions in the A model, and briefly outline the highlights. A complete
analysis would involve working through the analogous constructions in derived Fukaya cat-
egories, which we have not done; instead, we will work solely in a large-radius limit (hence
turning off quantum corrections), and only consider a few special cases.
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Let us first consider folds in the A model. Open strings in the A model have boundaries
on either Lagrangian or co-isotropic submanifolds, depending upon the Chan-Paton factors.
If we let ω denote the symplectic form on X , then because the folding operation reverses the
orientation on the second sheet12, the symplectic form on X ×X is

π∗
1ω − π∗

2ω

With respect to this13 symplectic form on X ×X , the diagonal embedding ∆ : X → X ×X
defines a Lagrangian14 submanifold of X × X for any X , and so partly as a result that
submanifold together with a trivial line bundle define a supersymmetric boundary for the A
model. That boundary will play the same role here that it did for the B model, i.e. it will
play the role of an identity in folding operations.

For the moment, let us assume all boundaries are on Lagrangian submanifolds, for sim-
plicity. Omitting worldsheet instanton corrections, the massless spectrum of an A model
open string between boundaries (L1, E1) and (L2, E2), where L1, L2 are Lagrangian sub-
manifolds of X , and E1, E2 are flat vector bundles with connection over those Lagrangian
submanifolds, is given by

H i
d (L1 ∩ L2, E∗1 ⊗ E2)

Let us first consider open string states and folding tricks, and try to re-derive a few of
our results from the B model and string topology.

Consider first a closed string on X in the A model. If we crush it to an open string on
X ×X , as

then (ignoring orientation issues on the boundaries for the moment), we would expect that
closed string states should match

H∗
d (∆,O) = H∗

DR(X)

where ∆ : X →֒ X×X is the diagonal in X×X . Such a case has been considered previously
in [53]. In fact, that reference also considered the effect of quantum corrections (meaning, for

12 We can see this by following the orientation on a string; across a fold, the direction flips. In the B
model, this is a complex conjugation, and this is one way of understanding why the Chan-Paton factors on
one sheet are defined by the dual bundle.

13 It is straightforward to check that without the relative sign, i.e. for π∗

1
ω + π∗

2
ω, the diagonal is not

Lagrangian.
14 More generally, if W , Y are Lagrangian in X , then W × Y is Lagrangian in X ×X .
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example, that open string states are Hom’s in a derived Fukaya category), and conjectured
that the product structure on open string Hom’s should match the quantum cohomology
ring of X .

Let us also outline some of the basic manipulations of open strings, also for simplicity in
a large-radius limit where worldsheet instanton corrections have been turned off. Start with
an oriented open string

1 2

between (L1, E1) and (L2, E2), with states given by

H∗
d (L1 ∩ L2, E∗1 ⊗ E2)

Now, fold this into a U-shape:

1

2

Following the usual procedure, open string states on the U-shaped diagram should be given
by

H∗
d (L ∩∆, π∗

1E∗1 ⊗ π∗
2E2)

where L is the Lagrangian submanifold of X ×X given by

L = { (x1, x2) ∈ X ×X | x1 ∈ L1, x2 ∈ L2 }

i.e., L = L1 × L2 ⊂ X ×X .

As the physics matches, it should be true that

H∗
d (L1 ∩ L2, E∗1 ⊗ E2) = H∗

d (L ∩∆, π∗
1E∗1 ⊗ π∗

2E2)

and indeed, this is trivial to check.

Similarly, if we fold the same oriented string in the opposite direction to get

2

1
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then the corresponding open string states should again be

H∗
d (L ∩∆, π∗

1E∗1 ⊗ π∗
2E2)

So far we have merely outlined how the simplest taffy manipulations would work in the
A model, in the large-radius limit. More generally, we conjecture that there exist analogues
of the B model taffy identities (17), (20), (23) for derived Fukaya categories.

One quick check that we shall mention is to compare to open string Gromov-Witten
invariants. We are implicitly predicting that open string Gromov-Witten invariants of open
strings on X ×X , with the boundary conditions determined by the diagonal, should match
closed string Gromov-Witten invariants. (For example, a rational curve on X would be
a calzone-shaped object on X × X .) Furthermore, this would also test whether the same
ideas are applicable after coupling to worldsheet gravity. We have been informed [54] that,
indeed, open string Gromov-Witten invariants on X ×X as above do in fact match closed
string Gromov-Witten invariants on X , and that there also it is merely an unravelling of
definitions.

7 Matrix factorizations

In a Landau-Ginzburg theory, we can understand a defect joining two open strings as follows
[4, 5]. If one space is X with superpotential WX , and the other space is Y with superpotential
Y , then denoting the projections from X × Y to X , Y by pX , pY , respectively, the defect is
defined by a matrix factorization in the superpotential

p∗XWX − p∗YWY

over X × Y .

We can understand the identity defect as follows. Over the image of the diagonal em-
bedding ∆ : X →֒ X ×X , the superpotential

W ≡ p∗1WX − p∗2WX

vanishes. A matrix factorization is defined over a submanifold S by a pair of vector bundles
E , F over S with maps f : E → F , g : F → E such that f ◦g = (W |S) IdE , g◦f = (W |S) IdF .
In the present case, for S the diagonal submanifold, W |S = 0, so we can take E = OX , F = 0,
and f = g = 0.

Given the structure above, we make the following conjectures for matrix factorizations:

1. The hypercohomology groups

H∗
(

X, · · · −→ Λ2TX
dW−→ TX

dW−→ OX

)
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which count closed string states in Landau-Ginzburg models [55] match RHom’s on
X ×X in the category of matrix factorizations

RHomX×X,p∗1W−p∗2W
((∆∗OX , 0), (∆∗OX , 0))

as would be suggested from the general considerations of section 5. This has been
confirmed for the local case (meaning, affine X , isolated critical points) in [56] in the
mathematics literature and [45] in the physics literature. The more general form above
has also been conjectured by others.

2. Analogues of the taffy identities (17), (20), (23) hold.

8 Critical strings, supercritical dimensions

So far we have spoken exclusively about two-dimensional topological field theories, but iden-
tical ideas apply, with some caveats, to full string theories. After all, the folding operation is
trivial, it is an artifact of the worldsheet description, and does not itself convey any physics.
(The catch, the caveat, is the coupling to worldsheet gravity. We do not understand how to
couple theories with defects to worldsheet gravity. In this section, we will consider physical
untwisted strings, but not coupled to worldsheet gravity.)

This does lead to some counterintuitive results, however. For example, consider a closed
string on a 10-manifold X . If we fold the closed string to an open string on X ×X , then we
have discovered that, for certain special boundary conditions, open strings on 20-dimensional
spaces behave like critical strings.

If we track through the physics in detail, we find that this is largely correct (albeit with
subtleties involving coupling to gravity). Consider an ordinary closed string bosonic field
φµ, canonically quantized as

φ̂(τ, σ) = x +
p

4π
+

i√
4π

∑

n 6=0

1

n

(

αne
−in(τ−σ) + α̃ne

−in(τ+σ)
)

Suppose these describe a local description of some manifold X of dimension k. An open
string on X ×X with boundary conditions in the diagonal would be described by operators

φ̂µ(τ, σ) = xµ +
pµ

4π
+

i√
4π

∑

n 6=0

1

n

(

αµ
ne

−in(τ−σ) + α̃µ
ne

−in(τ+σ)
)

with µ ∈ {1, · · · , 2k}, and the boundary conditions

φ̂µ>k(σ = 0, π) = φ̂µ−k(σ = 0, π)
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force
xµ>k = xµ−k, pµ>k = pµ−k, αµ>k

n = αµ−k
n , α̃µ>k

n = α̃µ−k
n

With these constraints, however, φ̂ is equivalent to a closed string field on X .

So far we have demonstrated that in canonical quantization on the worldsheet, operators
on an open string on X ×X with diagonal boundary conditions are equivalent to operators
on closed strings on X . It is tempting to therefore conclude that physical open strings on
X ×X as above are therefore equivalent to physical closed strings on X ; however, the result
should be interpreted with a certain amount of care. For example, the computation of the
bulk central charge in the open string theory is unaffected by the boundary conditions, and
so will be twice its value for the corresponding closed string theory. In the present case, that
might possibly signal15 that the number of ghost fields on the open string worldsheet should
also be doubled, also with diagonal boundary conditions.

To properly understand the issues above would involve understanding how defects are
coupled to worldsheet gravity, which we shall not attempt here.

In passing, we feel we should mention the tangentially-related fact that there exist
tachyon-free closed string theories in dimensions 8k + 2 [57][section 5].

9 Conjectures on elliptic genera

Let us now apply some of these ideas to try to gain some insight into elliptic genera. Phys-
ically, an elliptic genus is the torus partition function of a (half-twisted) closed string on a
space X . Now, insert two identity defects along the sides, along which the torus can be cut
open like a bagel, and glue together the two sides to get an annulus diagram on X ×X .

Now, from the Cardy condition, an annulus diagram can be thought of as either a closed
string propagating between two boundary states, or an open string propagating in a loop,
and furthermore that either method of computation should give the same result.

For example, for an ordinary annulus diagram in the B model, the Cardy condition
reduces to Hirzebruch-Riemann-Roch [23]. In the present case, we have a half-twisted closed
string one-loop diagram on X , represented as an annulus diagram on X ×X . Following the
same philosophy of annulus diagrams, it is natural to try to interpret the partition function
of the annulus as describing an index computation on X ×X .

For the right notion of open string states, index theory should recover elliptic genera.

15 We would like to thank S. Hellerman for suggesting this possibility.
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For example, following [58], a prototype for the elliptic genus is the expression

∑

qk/2Rk =
⊗

k=1/2,3/2,5/2,···

ΛqkTX
⊗

ℓ=1,2,3,···

SqℓTX

where

R0 = 1

R1 = TX

R2 = Λ2TX ⊕ TX

R3 = Λ3TX ⊕ (TX ⊗ TX)⊕ TX

and so forth. The Ri are defined by the string states; the expression above defines an index
of the form

∑

i,k

qk/2(−)idimH i(X,Ri) =

∫

X

Td(TX) ∧ ch





⊗

k=1/2,3/2,5/2,···

ΛqkTX
⊗

ℓ=1,2,3,···

SqℓTX





The right-hand side we could interpret as closed strings on X ×X propagating between two
copies of the diagonal; the left-hand side we could interpret as the partition function of open
string states.

So far, however, this picture of elliptic genera is not particularly noteworthy. We can try
to significantly generalize this picture as follows. Instead of starting with an ordinary closed
string, begin with n open strings onX joined together along defects, defined by pushforwards
along the diagonal of n elements of K theory of X (and so sitting on the diagonal embedding
in X ×X).

We can understand those n elements of K theory as giving a finite approximation to K
theory on the loop space, in the spirit of [43]. (Given that elliptic genera are understood [58]
in terms of index theory on loop spaces, this is already pertinent.)

Now, imagine propagating those defects around in a circle, to form a torus with slanted
sides. We can use the folding tricks discussed earlier in this paper to collapse such a diagram
down to an annulus, with collections of K theory elements on the boundaries. If one could
compute those annulus amplitudes explicitly, and furthermore ‘trace over’ the boundary K
theory elements, then one would be able to construct an explicit map to ordinary elliptic
genera, giving an new way to understand the relationship between elliptic genera and K
theory on loop spaces.

Although we do not have anything definitive to say here, we feel we should observe that
the work [59] may be relevant to such questions.
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10 Conclusions

In this paper we have worked out mathematical identities to verify that B model and string
topology are invariant under taffy-like operations, which involve folding and twisting world-
sheets into different-appearing yet physically-equivalent forms. Those identities are essen-
tially consequences of homotopy invariance of the underlying theory. We have also out-
lined analogous results and conjectures in other contexts, including the A model, B-twisted
Landau-Ginzburg models, and physical strings, and presented some conjectured applications
to the study of elliptic genera.

One natural speculation for future work concerns other applications of trivial defects.
For example, although one typically only thinks of using differential forms to compute (real-
valued) cohomology on manifolds, differential forms can also be applied to more general
topological spaces, see for example [60]. It is natural to speculate whether ideas similar to
those of [60] might be applied physically to understand string states in higher-order defect
junctions.

Another direction for future work is to apply the same ideas to topological field theo-
ries in higher dimensions, where defects have also appeared. Are there analogous taffy-like
constructions there?

Yet another directions is to understand whether the taffy identities presented here are a
consequence of general mathematical axiomatic frameworks for (enriched) topological field
theories.

In a different direction, U-shaped branes have appeared in discussions of holographic
duals to chiral symmetry breaking, see e.g. [61] and references therein. We do not see a
direct connection – our work is concerned with worldsheet reparametrizations and alternate
descriptions, whereas there a brane is physically being bent – but it would certainly be
interesting if a direct link could be found.
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