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Abstract

Using Fedosov theory of deformation quantization of endomorphism bundle we construct

several models of pure geometric, deformed vacuum gravity. Deformations of Einstein-

Hilbert and Palatini actions are investigated. Field equations are derived, and in some cases

corrections to the metric are pointed out. The relation to the theory of Seiberg-Witten

map is also studied and the correspondence to the spacetime noncommutativity described

by Fedosov ∗-product of functions is explained.

1 Introduction

The present paper is dedicated to a study of some possible global and geometric models

of relativity on noncommutative spacetimes within the framework of Fedosov deformation

quantization of endomorphism bundle. The motivation for such investigation originates

in the conviction that whatever “noncommutative gravity” would be, it should preserve

the basic symmetry of the classical theory – the full diffeomorphism invariance. Presented

analysis aims at showing that Fedosov quantization of endomorphism bundle can serve as a

tool for building geometric field theories on noncommutative spacetimes.

The general strategy we are going to adopt can be summarized in the following steps.

1) Take some symplectic manifold and an action on it which leads to the general relativity.

2) Rewrite the action by representing Lagrangian as a product of endomorphisms of some

bundle.
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3) Replace the product of endomorphisms by Fedosov ∗-product of endomorphisms.

4) Replace the integral by Fedosov trace functional.

5) Do the variations to obtain field equations.

6) Observe that steps 3 and 4 together with results of [1] induce that the theory is locally

equivalent to the theory with Seiberg-Witten map applied on endomorphisms.

There is vast literature concerning construction of noncommutative gravity by means of

Moyal product and Seiberg-Witten map. Hence, one can point out series of works [2, 3, 4]

based on combination of infinitesimal so(3, 1) gauging with infinitesimal coordinate trans-

formations, preserving (at first order of deformation) constant deformation parameter θij .

Another approach is given by [5, 6, 7, 8], where SO(4, 1) (or U(2, 2)) symmetry is investi-

gated. In such setting gauge potential carries information about both tetrad field and the

usual SO(3, 1)-connection. The standard gravity is recovered by the procedure of contrac-

tion of the gauge group. There are also investigations based on some variants of SL(2,C)

symmetry [9, 10]. The common feature of all of these approaches are vanishing first order

corrections to the field equations. On the other hand, the common issue is the lack of dif-

feomorphism invariance. In [11] attempts were made to geometrize theories based on Moyal

product and Seiberg-Witten map. The resulting structure is explicitly diffeomorphism in-

variant, but at the price of nonassociativity of the corresponding ∗-product. One should also

mention some other approaches to noncommutative gravity related somehow to ∗-products
and Seiberg-Witten map. These are [12, 13, 14], where the method of Lie algebra twisting

has been used to represent deformation of diffeomorphism symmetry. Finally there are in-

vestigations which are strictly related to some particular models emerging in the context of

the string theory, e.g. [15, 16].

The paper is organized as follows. In section 2 a brief overview of results of Fedosov

construction is presented, and also some further conventions are fixed. In sections 3 and

4 deformations of Einstein-Hilbert and Palatini actions are investigated. Fifth section is

devoted to analysis of interrelation between presented models and the theory of Seiberg-

Witten map. We also clarify, how obtained results are related to the noncommutativity of

the spacetime described by Fedosov ∗-product of functions. Finally some concluding remarks

(section 6) are given.

2 Preliminaries

2.1 Fedosov construction

The main tool used in this paper is Fedosov construction of deformation quantization of

endomorphism bundle formulated in [17]. We are not going to concern technical or “internal”

2



details of this theory (which are interesting and beautiful on their own) but rather to make

use of some of its particular results. Interested reader may find short exposition of Fedosov

construction in its simplest, suitable for present pourposes form in [1]. Further geometric

and algebraic interpretations are provided by [18, 19]. Some other analysis and examples

can be found in [20, 21, 22]. Thus, we limit ourselves to the very brief, notation-fixing

description of Fedosov ∗-product.
The starting point is given by Fedosov manifold (M, ω, ∂S) i.e. 2n-dimensional symplec-

tic manifold (M, ω) with some fixed symplectic (torsionless and preserving ω) connection

∂S [23, 24]. The corresponding Poisson tensor (given by the inverse of ωij) is going to

be denoted as Λij . These data generate1 global, geometric and associative deformation of

product of functions on M. Its explicit form can be computed up to arbitrary power of

deformation parameter h (which has nothing to do with Planck constant in our context) by

means of Fedosov’s recursive techniques.

For the vector bundle E overM, equipped with a connection ∂E one can construct global,

geometric and associative deformation of product of sections of End(E). Locally it can be

understood as a deformation of product of matrices. Denoting by ∂ = ∂S ⊗ 1 + 1 ⊗ ∂E

the connection in TM ⊗ E (and by the same symbol its natural extension to any other

tensor product of TM, T ∗M, E and E∗) one may calculate that for arbitrary two sections

F,G ∈ C∞(End(E))[[h]] the Fedosov ∗-product is given up to h2 by the expression

F ∗G = FG− ih

2
Λab∂aF∂bG+

− h2

8
ΛabΛcd

(
{∂bF,RE

ac}∂dG+ ∂bF{RE
ac, ∂dG} + ∂(a∂c)F∂(b∂d)G

)
+O(h3) (1)

where RE
ab = ∂

∂xaΓ
E
b − ∂

∂xbΓ
E
a + [ΓE

a ,Γ
E
b ] (for ∂E

i = ∂
∂xi + ΓE

i ) is the curvature of ∂E , and

{· , ·} stands for the anticommutator. It is clear that in above formula usual product of

endomorphisms (noncommutative from the beginning) has been used. For the special case

of flat ∂E and the local frame with ΓE ≡ 0, the Fedosov ∗-product of endomorphisms becomes

product of matrices with commutative multiplication of entries replaced by noncommutative

Fedosov product of functions. Such product of matrices is going to be denoted as ∗S. (The
same symbol will be used for the Fedosov product of functions). If additionally ∂S is flat

and we work in local Darboux coordinates for which coefficients of ∂S vanish, then Fedosov

product of functions becomes Moyal product ∗T . Thus, in such special case, we are dealing

with multiplication used in [25] for the description of deformed gauge transformations.

The object which needs some more attention is Fedosov trace functional ([17] section

5.6). Given some Fedosov product ∗ one is able to construct trace functional tr∗ taking

1Precisely, one has also to fix curvature and normalizing condition for Abelian connection generating Fedosov

∗-product [17]. Within this paper, standard normalization µ ≡ 0 and curvature Ω = −ω are used.
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values in C[[h]] and acting on compactly supported sections belonging to C∞(End(E))[[h]],
with the property

tr∗(F ∗G) = tr∗(G ∗ F ). (2)

If one requires additionally, that for arbitrary (global or local) isomorphism M between

∗-algebras with products ∗1 and ∗2 (i.e. for M fulfilling M(F ∗1 G) = M(F ) ∗2 M(G)) the

relation

tr∗1(F ) = tr∗2(M(F )) (3)

holds, then it follows that the trace functional is unique up to a constant normalizing factor.

The proof of this fact relies on the observation that for the Moyal product ∗T the trace is

given by

tr∗T
(F ) = const

∫

R2n

Tr(F )
ωn

n!
(4)

where Tr stands for the trace of a matrix, and on possibility of representing tr∗ in terms

of traces on Moyal algebras by a partition of unity {ρi} and a compatible set of local

isomorphisms {Mi} between ∗ and the Moyal product. It turns out that tr∗ is independent

of particular choice of {ρi} and {Ai}. Unlike convention of [17], we fix the normalizing

constant to be equal 1. Construction presented in [17] enables calculation of explicit form

of tr∗. Up to h2 it reads2

tr∗(F ) =

∫

M

Tr

(
F +

ih

2
ΛabRE

abF + h2

(
− 3

8
Λ[abΛcd]RE

abR
E
cd + s21

)
F +O(h3)

)
ωn

n!
(5)

where 1 is the identity endomorphism and the scalar3

s2 =
1

64
Λ[abΛcd]

S

Rk
lab

S

Rl
kcd +

1

48
ΛabΛcd∂S

e ∂
S
a

S

Re
bcd

has been introduced for sake of simplicity of further notations. In above formula
S

Ri
jab

stands for the curvature tensor of ∂S . It is useful to write down explicit form of tr∗(F ∗G).

2The computation leading to (5) is quite laborious as one has to deal with connection coefficients which in

final step massively cancel and the remaining terms can be grouped to yield tensorial expressions. Large parts

of this work has been performed with the significant use of xAct tensor manipulation package [26].
3Index 2 corresponds to the presence s2 at h2. Such defined scalar is a symplectic part of what is called trace

density in [17]. With similar conventions s1 = 0.
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Substitution of (1) into (5) after some manipulations yields4

tr∗(F ∗G) =

∫

M

Tr

(
FG+

ih

4
ΛabRE

ab{F,G}+ h2

[
s2FG+

1

8
ΛabΛcd

(
RE

ab[∂cF, ∂dG]+

− ∂(a∂c)F∂(b∂d)G− 3

2
RE

[abR
E
cd]{F,G}

)]
+O(h3)

)
ωn

n!
(6)

2.2 Some further conventions

The important problem related to the programme presented in the introduction is the in-

compatibility of the volume forms. In (5) the symplectic volume form volS = ωn

n! must be

used, and in general relativity the metric one volM =
√−gdx1 ∧ · · · ∧ dx2n more or less

explicitly appears. Since the two must be proportional one can write volM = v volS defining

the function v : M → R this way. The above mentioned incompatibility should be han-

dled somehow, and in what follows two possible approaches are investigated. First, one can

simply rescale one of the endomorphisms by multiplying them by v. Thus, let us fix the

convention that F̆ = vF . The other option is given by introducing endomorphism V = v1

which multiplies endomorphism under the action. Both methods are completely equivalent

at the undeformed level, but become different after deformation.

Let us also mention the following issue concerning the tangent bundle TM. In presented

models it appears in two distinct roles. First as a ”component” of bundle E , and then

as an object which carries information about the symplectic structure and the covariant

derivations producing quantization formalism. This distinction becomes important when

applying covariant derivation to tensors involving indices from both copies of TM. The

∂ connection acts in such case by means of ∂E (which is going to be chosen as a metric

connection) and the symplectic connection ∂S respectively. Thus, one needs some way of

“marking” indices which should be differentiated by ∂E and we are going to put prime at

them (e.g. REa′

b′lm). The ambiguity may be also postponed by using index-free notation

for endomorphisms, and this approach is also used. Finally, the primes are omitted in the

field equations, as they are no longer needed and may tend to obscure the result.

Finally, let us recall that all indices in subsequent sections are manipulated by means of

4The formula has been rearranged to explicitly exhibit symmetry tr∗(F ∗ G) = tr∗(G ∗ F ). For the term at

h this can be done quickly using integration by parts and definition of RE . For terms at h2 one can proceed in

a following manner. 1) Take what appears at h2 after simple substitution of (1) into (5). Let it call h2Q(F,G).

2) Rewrite it as h2/2(Q(F,G) +Q(G,F )) + h2/2(Q(F,G) − Q(G,F )). Drop the antisymmetric part. 3) Check

that discarded terms are indeed equal to zero (as it should be, by the construction). When integrated by parts,

the terms with single covariant derivative of RE vanish in virtue of Bianchi identity, while the ones with double

∂ can be replaced by RE and in turn, sum up with remaining terms to give 0. Such calculation can be treated as

an additional verification of the formula (5).
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corresponding metrices.

3 Einstein-Hilbert action

Now, let us analyze some possible applications of Fedosov theory in the general relativity

on noncommutative spacetime. We are going to proceed using programme sketched in the

introduction and to assume, that symplectic form ω and compatible symplectic connection

∂S are fixed. First, let us focus on the Einstein-Hilbert action. Thus, there is a metric

gab with determinant g, its torsionless Levi-Civita connection ∇, Riemann curvature tensor

Ra′

b′cd (also used with all indices primed5 Ra′

b′c′d′), Ricci tensor Ra′b′ = Rc′

a′c′b′ and Ricci

scalar R. Field equations are going to be derived by the variation of the metric.

Let us introduce the notation Ra′

b′ = Ra′

b′ and Ra′b′

c′d′
= Ra′b′

c′d′ . (This becomes

convenient when distinguishing between endomorphisms R, R and the scalar R). Also, let

Y ijk′l′ =Λ[ijΛab]Rk′l′

ab

X i′j′k′l′ =Λ[abΛcd]R
i′j′

abR
k′l′

cd = R
i′j′

abY
abk′l′

Z =
1√−g

ΛijΛkl∂S
i ∂

S
k ∂

S
j ∂

S
l

√−g

3.1 R̆ as an endomorphism of TM
The Einstein-Hilbert action can be quickly rewritten as

SEH1A =

∫

M

Tr R̆
ωn

n!

Thus, we are going to treat redefined Ricci tensor R̆
a′

b′ as an endomorphism of E = TM.

In order to define ∗-product of endomorphisms one needs some connection in E . Let us fix

∂E = ∇ and consequently RE is given by the Riemann tensor. The corresponding ∗-product
is going to be denoted by ∗EH1 . Under these assumptions the deformed action is given by6

ŜEH1A = tr∗EH1
(R̆) =

∫

M

Tr

(
R̆+ h2

(
− 3

8
Λ[abΛcd]RE

abR
E
cd + s2

)
R̆+O(h3)

)
ωn

n!

=

∫

M

(
R− 3

8
h2Xk′ l′

l′ m′ Rm′

k′ + h2s2R+O(h3)

)
volM

5As we use exactly the same frame (e.g. coordinate one) for both primed and unprimed indices we can

consistently define primed tensors from unprimed ones and vice versa. The prime is used only as a marking for

covariant derivation ∂.
6The term at h vanish due to Rk

labR
l

k = 0. The same stays true in further subsections.
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Variation of the metric yields the following field equations

Rab − 1

2
gabR+ h2

[
3

8

(
−R

(a
kX

b)kl
l +

1

2
Rk

lX
l m
m kg

ab +∇k∇(aX
b) lk

l − 1

2
∇l∇lXa kb

k

− 1

2
gab∇k∇lX

k ml
m − 2∇k∇l

(
R(a

mY
b)mk

l

)
+ 2∇k∇l

(
RkmY l(a b)

m

))
− 1

2
gabRs2

+Rabs2 + gab∇l∇ls2 −∇a∇bs2

]
+O(h3) = 0

3.2 R and V as endomorphisms of TM
Now, keeping unmodified ∗-product structure given by ∗EH1 , we are going to investigate

another possibility of forcing correct volume form at h = 0. The Einstein-Hilbert action

written as

SEH1B =

∫

M

TrRV
ωn

n!

may be deformed into7

ŜEH1B = tr∗EH1
(R ∗EH1 V )

=

∫

M

Tr

(
RV + h2

(
− 1

8
ΛabΛcd

(
∂(a∂c)R∂(b∂d)V + 3RE

[abR
E
cd]RV

)
+ s2RV

)
+O(h3)

)
ωn

n!

=

∫

M

(
R− 3

8
h2Xk′ l′

l′ m′Rm′

k′ − 1

8
h2ΛabΛcd∂S

b ∂
S
d ∂

S
a ∂

S
c R+ h2s2R+ O(h3)

)
volM

Then, the field equations become

Rab − 1

2
gabR + h2

[
3

8

(
−R

(a
kX

b)kl
l +

1

2
Rk

lX
l m
m k g

ab +∇k∇(aX
b) lk

l − 1

2
∇l∇lXa kb

k

− 1

2
gab∇k∇lX

k ml
m − 2∇k∇l

(
R(a

mY
b)mk

l

)
+ 2∇k∇l

(
RkmY l(a b)

m

))
+

1

8

(
−RabZ

+∇a∇bZ − gab∇l∇lZ +
1

2
gabΛjkΛlm∂S

k ∂
S
m∂S

j ∂
S
l R

)
− 1

2
gabRs2 +Rabs2

+ gab∇l∇ls2 −∇a∇bs2

]
+O(h3) = 0

3.3 R̆ as an endomorphism of TM⊗ TM
This time, we start with the action

SEH2A =

∫

M

Tr R̆
ωn

n!

7The term with ∂(a∂c)R∂(b∂d)V is integrated by parts twice, then the covariant derivatives are commuted

with the trace and the torsionless property of ∂S is used to get rid of symmetrizations.
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Here, the Riemann tensor is treated as an endomorphism of E = TM⊗TM whose action on

l ∈ TM⊗TM yields (Rl)a
′b′ = Ra′b′

c′d′ lc
′d′

. As a connection in E we take ∂E = ∇⊗1+1⊗∇.

Its curvature is given by RE
ab = R∇

ab⊗1+1⊗R∇
ab, with R∇

ab being the curvature of ∇ treated

as an endomorphism of TM. Let ∗EH2 be the corresponding ∗-product. Thus

ŜEH2A =tr∗EH2
(R̆) =

∫

M

Tr

(
R̆+ h2

(
− 3

8
Λ[abΛcd]RE

abR
E
cd + s2

)
R̆+O(h3)

)
ωn

n!

=

∫

M

(
R− 3

4
h2
(
Xk′ l′

l′ m′Rm′

k′ +Xk′ m′

l′ p′R
l′p′

k′m′

)
+ h2s2R+O(h3)

)
volM

yielding

Rab − 1

2
gabR+ h2

[
3

4

(
−R

(a
kX

b)kl
l +

1

2
Rk

lX
l m
m k g

ab +∇k∇(aX
b) lk

l − 1

2
∇l∇lXa kb

k

− 1

2
gab∇k∇lX

k ml
m − 2∇k∇l

(
R(a

mY
b)mk

l

)
+ 2∇k∇l

(
RkmY l(a b)

m

)
+R

l(a
km X

b)mk

l

+
1

2
∇k∇lX

k(ab)l + 2∇k∇l

(
Rmjk(aY

b)l
mj

)
+

1

2
Rlm

jkX
j k
l mgab

)
− 1

2
gabRs2 +Rabs2

+ gab∇l∇ls2 −∇a∇bs2

]
+O(h3) = 0

3.4 R and V as endomorphisms of TM⊗ TM
Analogously to section 3.2, one may keep the product ∗EH2 unchanged, but rewrite the

action using V

SEH2B =

∫

M

TrRV
ωn

n!

After the deformation the action takes form

ŜEH2B = tr∗EH2
(R ∗EH2 V )

=

∫

M

Tr

(
RV + h2

(
− 1

8
ΛabΛcd

(
∂(a∂c)R∂(b∂d)V + 3RE

[abR
E
cd]RV

)
+ s2RV

)
+O(h3)

)
ωn

n!

=

∫

M

(
R− 3

4
h2
(
Xk′ l′

l′ m′Rm′

k′ +Xk′ m′

l′ p′R
l′p′

k′m′

)
− 1

8
h2ΛabΛcd∂S

b ∂
S
d ∂

S
a ∂

S
c R+ h2s2R

+O(h3)

)
volM
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The field equations are given by

Rab − 1

2
gabR+ h2

[
3

4

(
−R

(a
kX

b)kl
l +

1

2
Rk

lX
l m
m k g

ab +∇k∇(aX
b) lk

l − 1

2
∇l∇lXa kb

k

− 1

2
gab∇k∇lX

k ml
m − 2∇k∇l

(
R(a

mY
b)mk

l

)
+ 2∇k∇l

(
RkmY l(a b)

m

)
+R

l(a
km X

b)mk

l

+
1

2
∇k∇lX

k(ab)l + 2∇k∇l

(
Rmjk(aY

b)l
mj

)
+

1

2
Rlm

jkX
j k
l mgab

)
+

1

8

(
−RabZ

+∇a∇bZ − gab∇l∇lZ +
1

2
gabΛjkΛlm∂S

k ∂
S
m∂S

j ∂
S
l R

)
− 1

2
gabRs2 +Rabs2

+ gab∇l∇ls2 −∇a∇bs2

]
+O(h3) = 0

3.5 Corrections to the metric

In all considered cases field equations are of the form Gab = Wab + O(h3), where Gab =

Rab− 1
2Rgab is the Einstein tensor, and the termWab is of h

2 order i.e. Wab = h2
(2)

Wab+O(h3).

Let us investigate how Wab influences the metric. For this pourpose one can rewrite gab as

a formal power series with respect to h

gab =
(0)

gab + h
(1)

gab + h2(2)

gab + . . .

Coefficients of Levi-Civita connection corresponding to gab can be written as

Γa
bc =

(0)

Γa
bc + h

(1)

Γa
bc + h2

(2)

Γa
bc + . . .

One can quite easily calculate that

(0)

Γa
bc =

1

2

(0)

g ak

(
∂
(0)

gkb

∂xc
+

∂
(0)

gkc

∂xb
− ∂

(0)

gbc

∂xk

)
, (7a)

(1)

Γa
bc =

1

2

(0)

g ak

(
(0)

∇c

(1)

gkb +
(0)

∇b

(1)

gkc −
(0)

∇k

(1)

gbc

)
, (7b)

(2)

Γa
bc =

1

2

(0)

g ak

(
(0)

∇c

(2)

gkb +
(0)

∇b

(2)

gkc −
(0)

∇k

(2)

gbc

)
−(0)

g ak (1)

gkl
(1)

Γ l
bc, (7c)

where
(0)

∇ denotes Levi-Civita connection of metric
(0)

gab. Observe that
(1)

Γa
bc and

(2)

Γa
bc are

tensorial objects. Hence, for the Riemann tensor

Ra
bcd =

(0)

Ra
bcd + h

(1)

Ra
bcd + h2

(2)

Ra
bcd + . . .

one obtains

(1)

Ra
bcd = 2

(0)

∇[c

(1)

Γa
d]b, (8a)

(2)

Ra
bcd = 2

(0)

∇[c

(2)

Γa
d]b + 2

(1)

Γa
k[c

(1)

Γk
d]b, (8b)
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and
(0)

Ra
bcd is the Riemann tensor of metric

(0)

gab. Substituting above relations into field

equations and analyzing terms at h0 and h1 one calculates that

(0)

Rab = 0, (9a)

(0)

g kl

(
(0)

∇k

(0)

∇a

(1)

gbl +
(0)

∇k

(0)

∇b

(1)

gal −
(0)

∇k

(0)

∇l

(1)

gab −
(0)

∇a

(0)

∇b

(1)

gkl

)
= 0, (9b)

where
(0)

Rab is zeroth order term in power series expansion of Rab and also Ricci tensor of
(0)

gab.

For h2 the following relation can be derived

(0)

g kl

(
(0)

∇k

(0)

∇a

(2)

gbl +
(0)

∇k

(0)

∇b

(2)

gal −
(0)

∇k

(0)

∇l

(2)

gab −
(0)

∇a

(0)

∇b

(2)

gkl

)
=

= 2
(2)

Wab −
1

n− 1

(0)

gab
(2)

W − 4
(1)

Γk
l[k

(1)

Γl
b]a + 4

(0)

g rk
(0)

∇[r

(
(1)

Γl
b]a

(1)

gkl

)
, (9c)

where
(2)

W =
(0)

g rs
(2)

Wrs. The term
(2)

Wab is given by the following formulae8:

– for ŜEH1A

(2)

Wab =− 3

8

(
(0)

∇k

(0)

∇(a

(0)

X lk
b)l − 1

2

(0)

∇l

(0)

∇l
(0)

X k
ak b −

1

2

(0)

gab
(0)

∇k

(0)

∇l

(0)

Xk ml
m

)

−(0)

gab
(0)

∇l

(0)

∇ls2 +
(0)

∇a

(0)

∇bs2,

(9d)

– for ŜEH1B

(2)

Wab =− 3

8

(
(0)

∇k

(0)

∇(a

(0)

X lk
b)l − 1

2

(0)

∇l

(0)

∇l
(0)

X k
ak b −

1

2

(0)

gab
(0)

∇k

(0)

∇l

(0)

Xk ml
m

)

− 1

8

(
(0)

∇a

(0)

∇b

(0)

Z −(0)

gab
(0)

∇l

(0)

∇l
(0)

Z

)
−(0)

gab
(0)

∇l

(0)

∇ls2 +
(0)

∇a

(0)

∇bs2,

(9e)

– for ŜEH2A

(2)

Wab =− 3

4

(
(0)

∇k

(0)

∇(a

(0)

X lk
b)l − 1

2

(0)

∇l

(0)

∇l
(0)

X k
ak b −

1

2

(0)

gab
(0)

∇k

(0)

∇l

(0)

Xk ml
m +

(0)

R l
km (a

(0)

X mk
b) l

+
1

2

(0)

∇k

(0)

∇l

(0)

Xk l
(ab) + 2

(0)

∇k

(0)

∇l

(
(0)

R
mjk

(a

(0)

Y l
b) mj

)
+

1

2

(0)

R lm
jk

(0)

X
j k
l m

(0)

gab

)

−(0)

gab
(0)

∇l

(0)

∇ls2 +
(0)

∇a

(0)

∇bs2,

(9f)

8In equations (9d–9g) indices are manipulated by means of metric
(0)
gab.
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– for ŜEH2B

(2)

Wab =− 3

4

(
(0)

∇k

(0)

∇(a

(0)

X lk
b)l − 1

2

(0)

∇l

(0)

∇l
(0)

X k
ak b −

1

2

(0)

gab
(0)

∇k

(0)

∇l

(0)

Xk ml
m +

(0)

R l
km (a

(0)

X mk
b) l

+
1

2

(0)

∇k

(0)

∇l

(0)

Xk l
(ab) + 2

(0)

∇k

(0)

∇l

(
(0)

R
mjk

(a

(0)

Y l
b) mj

)
+

1

2

(0)

R lm
jk

(0)

X
j k
l m

(0)

gab

)

− 1

8

(
(0)

∇a

(0)

∇b

(0)

Z −(0)

gab
(0)

∇l

(0)

∇l
(0)

Z

)
−(0)

gab
(0)

∇l

(0)

∇ls2 +
(0)

∇a

(0)

∇bs2,

(9g)

where
(0)

X ijkl,
(0)

Y ijkl ,
(0)

Z are zeroth order terms in power series expansion of Xijkl , Yijkl and

Z, which can be expressed by means of
(0)

Ri
jkl and

(0)

gab.

Thus, in all cases equations which describe deformed metric are of the same structure.

At h0 one is dealing with arbitrary Ricci-flat metric
(0)

gab. The h1 correction
(1)

gab can be

understood as a classical9 (undeformed) first order perturbation of
(0)

gab, governed by the linear

homogeneous equations (9b). Noncommutativity appears for the first time at h2. Correction
(2)

gab is given by linear, inhomogeneous equations (9c). The inhomogeneity consists of two

parts – the one describing interaction with first order perturbation
(1)

gab, and the other given

by Wab, with purely noncommutative origin. Discarding first order classical perturbation

by putting
(1)

gab = 0, we are able to point out special solution of (9c) for actions ŜEH1A and

ŜEH1B . It reads
(2)

gab = −3

8

(0)

X k
ak b −

1

n− 1

(
s2 −

3

16

(0)

X km
mk

)
(0)

gab (10)

for ŜEH1A , and

(2)

gab = −3

8

(0)

X k
ak b −

1

n− 1

(
s2 −

1

8

(0)

Z − 3

16

(0)

X km
mk

)
(0)

gab (11)

for ŜEH1B . (Here, like in (9d) – (9g), indices at
(0)

X are manipulated by
(0)

gab). Let us observe

that the difference between above solutions and arbitrary other solution of (9c) with
(1)

gab =

0 must be a solution of homogeneous variant of (9c). Thus, such a difference may be

interpreted as a classical perturbation of metric
(0)

gab. For this reason one can regard (10) and

(11) as the solutions carrying full information about considered noncommutativity at h2.

4 Palatini action

Now, let us switch to the Palatini formalism with the connection and the tetrad field as

separate dynamical variables. Thus, one is dealing with the vector bundle L for which

9Arguments leading to (9b) is essentially identical to standard calculations concerning small perturbations of

classical vacuum relativity, e.g. in shortwave formalism ([29] §35.13).
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SO(3, 1) transformations preserve the canonical form of the Lorentzian metric ηAB . The

bundle L is equipped with some metric-compatible connection ∂L . Its local coefficients

are denoted as Γ
˜
AB

i and are antisymmetric in AB. The corresponding curvature is given

by R
˜
A
Bij . The bundle E is taken to be L ⊗ TM. The tetrad field θAb′ induces the metric

ga′b′ = θAa′ηABθ
B
b′ and the metric connection ∇ in TM (not necessarily torsionless). Local

coefficients of ∇ can be computed from the expression Γi′

j′k = θ i′

A Γ
˜
A
Bkθ

B
j′ + θ i′

A
∂

∂xk θ
A
j′ .

The curvature tensors are related by Ri′

j′kl = θ i′

A R
˜
A
Bklθ

B
j′ . As a connection in E we

choose ∂E = ∂L ⊗ 1 + 1⊗∇. These data encode the ∗-product ∗P .
We are going to make use of the following two endomorphisms of E : R

˜
A a′

B b′ (defined

by the curvature of ∂L and the tetrad which raises index a′

), and ΘA a′

B b′ = θAa′

θBb′ . As a

starting point one may take the following version of Palatini action10

SP =

∫

M

Tr R̆
˜
Θ

ωn

n!

The deformation procedure yields particularly simple expression due to ∂iΘ = 0, Tr(RE
ab{R˜

,Θ}) =
0 and Tr(RE

abR
E
cd{R˜

,Θ}) = 0.

ŜP = tr∗P
(R̆
˜
∗Θ) =

∫

M

Tr
(
R
˜
Θ + h2s2R˜

Θ +O(h3)
)
volM

The variation with respect to δθ leads to the equations

(1 + h2s2)

(
Rab −

1

2
gabR

)
+O(h3) = 0 (12a)

clearly equivalent (up to h2) to the condition Rab = 0. The variation of the connection field

δΓ
˜
produces11

(1 + h2s2)Q
a
bc =

h2

n− 1
δa[b

∂s2

∂xc]
+O(h3) (12b)

where Qa
bc = Γa

cb − Γa
bc is the torsion tensor of the connection ∇. Thus, one obtains the

theory with vanishing Ricci tensor and nonvanishing torsion generated by the scalar s2. A

quick calculation shows that the trace-free part of Qc
ab is equal to zero. Equation (12b)

means that for

Qa
bc =

(0)

Qa
bc + h

(1)

Qa
bc + h2

(2)

Qa
bc + . . .

10The function v modifying R
˜

is taken with respect to the metric gab induced by the tetrad. Obviously volM

and the volume form given by the determinant of θ coincide in such case.
11The variation gives

w(Γc

ab − Γc

ba) = δca

(
∂w

∂xb
− Γd

bdw

)
− δcb

(
∂w

∂xa
− Γd

adw

)

with the tensor density w =
√
−g(1 + h2s2). Contraction of this relation enables expressing Γd

ad in terms of

Γd

da, leading in turn to (12b).
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one has
(0)

Qa
bc =

(1)

Qa
bc = 0 and

(2)

Qa
bc =

1

n− 1
δa[b

∂s2

∂xc]
.

Connection coefficients for ∇ are given by

Γa
bc =

1

2
gak

(
∂gbk

∂xc
+

∂gck

∂xb
− ∂gbc

∂xj
+Qbkc +Qckb −Qkbc

)
.

Hence,
(0)

Γa
bc and

(1)

Γa
bc are still expressed by relations (7a) and (7b). For

(2)

Γa
bc one computes

that

(2)

Γa
bc =

1

2

(0)

g ak

(
(0)

∇c

(2)

gkb +
(0)

∇b

(2)

gkc −
(0)

∇k

(2)

gbc

)
−(0)

g ak (1)

gkl
(1)

Γ l
bc +

1

2(n− 1)

(
δac

∂s2

∂xb
−(0)

gbc
(0)

g ak ∂s2

∂xk

)
.

(13a)

Corrections to Riemann tensor are again given by (8). Substituting them to Rab = 0 we

obtain that for h0 and h1 relations (9a) and (9b) remain valid. However, equations for
(2)

gab

take the following form

(0)

g kl

(
(0)

∇k

(0)

∇a

(2)

gbl +
(0)

∇k

(0)

∇b

(2)

gal −
(0)

∇k

(0)

∇l

(2)

gab −
(0)

∇a

(0)

∇b

(2)

gkl

)
=

= 2
(0)

∇a

(0)

∇bs2 +
1

n− 1

(0)

gab
(0)

g kl
(0)

∇k

(0)

∇ls2 − 4
(1)

Γk
l[k

(1)

Γl
b]a + 4

(0)

g rk
(0)

∇[r

(
(1)

Γl
b]a

(1)

gkl

)
. (13b)

Like in the case of Einstein-Hilbert action, one can easily guess special solution of (13b) by

requiring that
(1)

gab = 0, i.e. that classical first order perturbation vanish. It reads

(2)

gab = − 1

n− 1
s2

(0)

gab (14)

For such case the correction
(1)

Γa
bc is equal to zero, and

(2)

Γa
bc is given by

(2)

Γa
bc = − 1

2(n− 1)
δab

∂s2

∂xc
. (15)

Repeating arguments of the previous section, one can observe that arbitrary other solution

of (13b), with
(1)

gab = 0, differs from (14) by a classical perturbation of
(0)

gab.

5 Relation to the theory of Seiberg-Witten map

Let us explain how proposed models can be understood in terms of the theory of Seiberg-

Witten map. This becomes quite straightforward when one combines results of [1] with the

property (3). Indeed, what [1] states is that Seiberg-Witten map is an local isomorphism of

∗-product algebras, while the relation (3) says that the trace functional is invariant on such

isomorphisms.

More precisely, suppose that one prescribes to each frame e in E ∗-product isomorphism

M〈e〉 which transforms the initial global product ∗ to the local one ∗S. (Recall that ∗S is

13



nothing but matrix multiplication with commutative product of entries replaced by Fedosov

∗-product of functions). Thus

M〈e〉(F〈e〉 ∗G〈e〉) = M〈e〉(F〈e〉) ∗S M〈e〉(G〈e〉)

where F〈e〉, G〈e〉 are matrices representing endomorphisms F and G in the frame e. It turns

out ([1] section 3.1) that if we switch to different frame ẽ = eg−1 then M〈e〉 and M〈ẽ〉 are

related by

M〈ẽ〉(F〈ẽ〉) = ĝ〈e〉(g,Γ
E) ∗S M〈e〉(F〈e〉) ∗S ĝ−1

〈e〉(g,Γ
E) (16)

with ĝ〈e〉(g,Γ
E) = g+O(h) dependent both on g and connection one-forms ΓE

i in the frame

e and their derivatives. Moreover, if we combine two gauge transformations, then ĝ fulfills

“consistency conditions” (compare [27, 28]) given by

ĝ〈e〉(g
′g,ΓE) = ĝ〈ẽ〉(g

′, gΓEg−1 + gdg−1) ∗S ĝ〈e〉(g,Γ
E). (17)

Thus, M and ĝ behave exactly like Seiberg-Witten map [25]. Indeed, if M is set up with

Fedosov’s techniques of generating ∗-product isomorphisms, then one can compute12 M and

ĝ, and for the case of ∗S given by Moyal product ∗T obtain results which are well-known

expressions for Seiberg-Witten map ([1] section 4).

We are going to rewrite investigated actions in terms of Seiberg-Witten map. Let

M(F ) = F̂ , as it is justified by relations (17) and (16). Also, let us separately distin-

guish Moyal case of ∗S = ∗T , for which ∂S is flat, one works in Darboux coordinates with

coefficients of ∂S equal to zero, and the trace functional tr∗T
is given by the integral (4).

Due to property (3), actions considered in this paper can be locally (for endomorphisms

with support small enough to be covered by a single frame in E , and – in Moyal case – by

a single Darboux coordinates) rewritten as follows.

arbitrary ∗S ∗S = ∗T

ŜEH1A = tr∗S
(
̂̆
R )

∫

R2n

Tr(
̂̆
R ) d2nx

ŜEH1B = tr∗S
(R̂ ∗S V̂ )

∫

R2n

Tr(R̂ ∗T V̂ ) d2nx

ŜEH2A = tr∗S
(
̂̆
R )

∫

R2n

Tr(
̂̆
R ) d2nx

ŜEH2B = tr∗S
(R̂ ∗S V̂ )

∫

R2n

Tr(R̂ ∗T V̂ ) d2nx

ŜP = tr∗S
(
̂̆
R
˜

∗S Θ̂)

∫

R2n

Tr(
̂̆
R
˜

∗T Θ̂) d2nx

12Fedosov construction enables computation of Seiberg-Witten map, up to arbitrary order in h, by its recursive

techniques. This situation is rather different from the usual framework, where the Seiberg-Witten equations must

be solved.
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Let us observe that such setting clarifies how considered models are related to the spacetime

noncommutativity described by ∗S. Indeed, due to (2), above mentioned local versions of

action functionals are invariant with respect to gauge transformations (16) realized by means

of ∗S. Thus, one is able to reasonably claim that models considered in this paper correspond

to noncommutativity of spacetime generated by Fedosov product of functions ∗S .

6 Discussion

We have obtained number of nonequivalent geometric deformations of vacuum Einstein rel-

ativity. They have been analyzed at h2 order, starting from the action functional, through

field equations, up to corrections to the metric which have been explicitly given for the

case of ŜEH1A , ŜEH1B and ŜP . Using results of [1], we have pointed out the relation be-

tween proposed models, the theory of Seiberg-Witten map, and the noncommutativity of the

spacetime described by Fedosov ∗-product generated by symplectic form ω and symplectic

connection ∂S .

The multiplicity of models arises as a consequence of ambiguity in translating traditional

action functionals to the language of traces of endomorphisms of some bundle. From the

gauge simplicity point of view, actions ŜEH1A and ŜEH1B seem to be most straightforward as

they correspond to the natural GL(2n,R) gauging. On the other hand, action ŜP produces

especially simple expressions for deformed field equations and for corrections to the metric.

The fundamental problem related to presented models concerns incompatibility of the

volume forms – metric and symplectic ones. Both proposed solutions (rescaling one of the

endomorphisms and multiplication by V ) seem to be a bit unnatural. One can suspect

that this problem is related to fixing symplectic structure as a nondynamical background.

(Notice however, that Fedosov construction provides natural framework for the variation of

the symplectic data). Moreover, it could turn out that some refinements to the Fedosov

theory should be made, to put the metric into the internal structure of the deformation

quantization procedure. Such considerations are hoped to be covered in author’s subsequent

work.

Due to the symmetries of the Riemann tensor, in all considered cases imaginary terms

at h1 have vanished. It must be however stressed, that we have no clear evidence that

the same stays true for other odd powers of h. Thus, some further analysis of the reality of

proposed actions should be performed. This suggests deeper investigation of the structure of

the trace functional, which seems to be rather hard task (but not hopless, as it can inferred

from Fedosov’s results [30, 31] on relating tr∗(1) to integrals of characteristic classes of TM
and End(E)). On the other hand, construction of some appropriate involution operator in
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the Fedosov algebra may be useful13 and it is also matter of author’s further interest.
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