
ar
X

iv
:1

01
1.

01
54

v2
  [

he
p-

th
] 

 8
 N

ov
 2

01
0

M5-brane Defect and QHE
in AdS4 ×N(1, 1)/N = 3 SCFT

Mitsutoshi Fujita1

1Department of Physics, Kyoto University, Kyoto 606-8502, Japan

We study the d = 11 gravity dual AdS4 × N(1, 1) of the d = 3 N = 3 flavored Chern-Simons-
matter (CSM) theory. In the dual gravity side, we analyze the M5-brane making the edge on the
boundary of AdS4 and derive the quantized Hall conductivity of the dual gauge theory. In the gauge
theory side, this M5-brane intersects the gauge theory at the codimension-one defect.

INTRODUCTION — D = 3 N = 6 Chern-Simons-
matter theory with the levels (k,−k) [40] for each node
(the ABJM theory) [1] has recently been proposed as
the effective theory of multiple M2-branes on the singu-
larity of the orbifold C4/Zk. The ABJM theory could
also be explained from the IR limit of an elliptic brane
setup in Type IIB string theory. Through T-duality and
M-theory lift involving a 2-torus, the elliptic brane setup
can be interpreted as the M2-branes transverse to a d = 8
cone over S7/Zk. After including the backreaction of N
M2-branes in the d = 11 supergravity side, the grav-
ity dual [3–5] beomes a solution of d = 11 supergravity:
AdS4 × S7/Zk. Generalizing their idea to yield elliptic
N = 4 SCFTs is explored in [6].

Moreover, addition of the flavor degrees of freedom [7]
to the ABJM theory was investigated in [8–12] and for
N = 4 SCFT’s, it was investigated in [13]. In the
Type IIB string theory, adding massless flavors corre-
spond to further placing D5-branes on the elliptic brane
setup and preserve N = 3 superconformal symmetry.
Through T-duality and M-theory lift, the D5-branes be-
come the Kaluza-Klein monopole. The gravity dual of
these SCFT’s with flavors was proposed as the d = 11
supergravity on AdS4 ×M7 where the cone over M7 is
a d = 8 toric hyperKähler manifold [14, 15] with spe-
cial sp(2) holonomy and with 3/16 supersymmetry. Ac-
cording to [13], here, M7 was proposed to be the Es-
chenburg space [16] parametrized by three natural num-
bers (t1, t2, t3) = (pNF , qNF , kpq), where p, q, and NF

correspond to the charges of NS5-branes, (1, k)5-branes,
and D5-branes in the Type IIB elliptic brane setup, re-
spectively. In particular, the Eschenburg space with
t1 = t2 = t3 = 1 is interesting since it is equal to the reg-
ular tri-Sasaki manifold N(1, 1). The metric of N(1, 1)
can be easily written and the KK spectra of N(1, 1) was
obtained in [17–19]. However, the dual N = 3 SCFT has
been less known.

The purpose of this paper is to progress the study of
the AdS/CFT correspondence between the gravity dual
AdS4 ×N(1, 1) and N = 3 SCFT. According to [9, 13],
the flavored ABJM theory with the Chern-Simons levels
(1,−1) and a flavor is considered as the N = 3 SCFT
dual to the d = 11 supergravity on AdS4 × N(1, 1) by
analyzing its moduli space.

We are interested in the application of our AdS4/N =

3 SCFT correspondence to the Quantum Hall Effect
(QHE) [20] including the Fractional Quantum Hall Ef-
fect (FQHE) [21] in the condensed matter physics. Here,
the Hall conductivity in the QHE is quantized in units of
e2/h and the longitudinal conductivity vanishes near the
Plateau. There were holographic models describing the
QHE [22]-[25] and the recent holographic constructions
of the FQHE [10, 26, 27] inspired for M2-brane theories.
Moreover, non-abelian fractional Hall wavefunctions were
obtained from M5 theory compactification [28] (see also
[29]). Remind that the Hall current in the QHE doesn’t
flow in the 2-dimensional space where electrons are lo-
calized but flow on an edge called the edge states [20].
According to [26], we introduce an edge M5-brane mak-
ing the edge on the boundary of AdS4 where the Hall
current flows and derive the Hall conductivity of the
dual flavored ABJM theory in the strong coupling region
N ≫ k5 by analyzing the edge M5-brane. The M5-brane
intersection in respect to the brane configurations of the
11-dimensional theory is also interesting since M2-branes
corresponding to the N = 3 SCFT move the cone over
the Eschenburg space or N(1, 1).
This paper is organized as follows: 1) We briefly re-

view the N = 3 SCFT dual to d = 11 supergravity on
AdS4 × N(1, 1). 2) We give the short review for the
N = 3 AdS4/SCFT correspondence. 3) We derive the
QHE from the M5-brane worldvolume action in the dual
gravity background.
d = 3 N = 3 SCFT — In the gauge theory side,

we consider the d = 3 N = 3 flavored ABJM theory
with C-S levels (1,−1) and a flavor proposed in the pa-
pers [8–10]. First, the ABJM theory without flavors con-
sists of two gauge multiplets for the two copies of gauge
group U(N)1 × U(N)2 and bi-fundamental chiral multi-
plets (A1, A2) and (B̄1, B̄2) in the (N1, N̄2) representa-
tion. The global symmetry of the ABJM theory at the
classical level is baryonic U(1)b and SU(4)R R-symmetry.
D = 3 N = 3 flavored ABJM theory with C-S levels
(1,−1) and a flavor can be constructed by adding the

D-term for the fundamental chiral-multiplets (Q1, ¯̃Q1)
transforming under the first gauge group as N1 to the
ABJM theory and by modifying the superpotential. R-
symmetry is now broken to SU(2)R, but the baryonic
U(1)b stays unchanged, and the conformal symmetry is
preserved.
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The moduli space of N = 3 flavored ABJM theory
which has C-S levels (1,−1) and a flavor is discussed
in [9]. This theory has the ring of chiral operators trans-
forming as 8 under the flavor SU(3) and so has the global
SU(3)×SU(2)R symmetry. That is, the isometry of these
theory is the same as that of N(1, 1).
N = 3 AdS4/SCFT — We briefly review the dual

d = 11 supergravity on AdS4×N(1, 1). We start with the
Ricci-flat M-theory background R1,2 × M8 without the
backreaction of N M2-branes. Here, M8 is the cone over
the Eschenburg space S(1, 1, 1)(= N(1, 1)). Since the
transverse geometry is d = 8 cone over N(1, 1), after the
backreaction ofN M2-branes we have supersymmetry en-
hanced to a fraction 3/8 and are left with AdS4×N(1, 1)
under the normalization

ds211D = R2

4 ds
2
AdS4

+R2ds27, (1)

N = 1
(2πℓp)6

∫

N(1,1)
∗F4, F4 = 3

8R
3volAdS4

, (2)

6R6vol(N(1, 1)) =
3

4
π4R6 = (2πℓp)

6N. (3)

Also, we have required Rab = 6gab for the N(1, 1) metric.
Note that R = 2RAdS is the radius of N(1, 1). This
background is regarded as the gravity dual of our N = 3
flavored ABJM theory.
We write the metric of AdS4×N(1, 1) [30, 31] and the

background flux F4 as

ds2 =
[dz2 + dxpdxp

4z2
+ ds2N(1,1)

]

, F4 = 6e0e1e2e3,(4)

where ep̄ (p̄ = 0, 1, 2, 3) is the vierbein of the AdS4 space-
time and we set the N(1, 1) radius 1. Here, ds2

N(1,1) is

the following metric on the manifold of an SO(3) bundle
over CP2:

2ds2N(1,1)

= dα2 +
1

4
sin2 α(σ2

1 + σ2
2) +

1

4
sin2 α cos2 ασ2

3

+
1

2

[

(Σ1 − cosασ1)
2 + (Σ2 − cosασ2)

2

+(Σ3 −
1

2
(1 + cos2 α)σ3)

2
]

, (5)

σ1 = sinφdθ − cosφ sin θdψ, (6)

σ2 = cosφdθ + sinφ sin θdψ, σ3 = dφ+ cos θdψ, (7)

with 0 ≤ α ≤ π/2, 0 < θ < π, 0 < φ < 4π and 0 <
ψ < 2π. Here, Σi are right-invariant 1-forms on SO(3),
and σi are right-invariant 1-forms on SU(2). According
to [31], Σi must be of these forms in order for the part
orthogonal to CP

2 metric to be regular. 7-dimensional
metric ds2

N(1,1) is scaled as Rmn = 6gmn.

In N(1, 1), there are two important submanifolds S3 at
α = 0, Σi = 0 and S3/Z2 at α = 0, σi = 0. Since both
submanifolds are in α = 0 where the base CP

2 metric
vanishes, vierbeins of both submanifolds are also in the

SO(3) bundle direction. The position of S3 and S3/Z2

in N(1, 1) is investigated precisely in [30].

Lastly, we want to comment on the M-circle. As stated
in [9], the position of the M-circle is the same as that in
the GGPT geometry for the ABJM theory [14]. Accord-
ing to [9], moreover, the dilaton in the IIA supergravity
(or the coefficient of the M-circle) should not be constant
in the internal manifold. Thus, the variables in S3/Z2

should not be identified as the M-circle and so we regard
the M-circle as an angular variable in S3 [41].

QHE from the M5-brane worldvolume action — In
this section, we analyze the M5-action [33–35] on AdS3×
S3 and derive the Quantum Hall Effect (QHE). Since we
use the dimensional reduction, our analysis is valid in the
low energy limit and a part of d = 11 metric reduces to an
1-form as seen in the reduction to the IIA supergravity.
We also break the gauge symmetry U(N)×U(N) to the
N copies of U(1)×U(1) since the QHE will be described
by the U(1) Chern-Simons theory.

The M5-brane is wrapped on the submanifold AdS3 ×
S3 parametrized by α = Σ1 = Σ2 = Σ3 = 0. The 6-
dimensional worldvolume coordinates are parametrized
by ξm̂ (m̂ = 0, ..., 5): ξ0 = t, ξ1 = x1, ξ2 = z, ξ3 =
ψ, ξ4 = θ, ξ5 = φ′ = φ/2. The induced metric and the
gauge field a on the M5-brane are given by

ds2 =
1

4
ds2AdS3

+
1

4

(

dθ2 + sin2 θdψ2) +
(

dφ′ +
1

2
cos θdψ

)2

,

a =
1

2
cos θdψ, (8)

where
∫

S2 F
′ = 2π (F ′ = da).

The 6-dimensional metric Gm̂n̂ contains 5-dimensional
pieces Gmn, Gm5, G55. By setting G5,5 = 1 and ξ5 =
φ′(= X11), we can represent Gm̂n̂ by using the 6 × 6
matrix

Gm̂n̂ =

(

G
(6)
mn + aman a

a⊤ 1

)

, (9)

where we have rewritten G5m as am for convenience since
after the dimensional reduction, am become 1-forms.
We introduce the self-dual tensor gauge field by Bmn

and Hmnr = 3∂[mBnr]. Dual of H3 becomes H̃mn =

ǫmnrlsHrls/6, where ǫ
mnrls is the 5-dimensional flat ep-

silon symbol. It is convenient to define H3 = H3 − b3,
where b3 is the 3-form in the 11-dimensional supergravity.
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The action of the M5-brane [34, 35] is L1 + L2 where

L1 = −
√
−G

√

1 + z1 +
1

2
z21 − z2, (10)

L2 =
1

8
ǫmnrls

G5r

G55
H̃mnH̃ ls, (11)

z1 =
GmnH̃

nrGrlH̃
lm

2(−G5)
≡ Tr(GH̃GH̃)

2(−G5)
, (12)

z2 =
Tr(GH̃GH̃GH̃GH̃)

4(−G5)2
. (13)

Here, G is the 6-dimensional determinant, G5 is the 5-
dimensional determinant written with Gmn + aman, and
Gm̂n̂ is the inverse of Gm̂n̂. We have not written WZ
term, since we don’t need it for later analysis.
By dropping all dependence on ξ5, we obtain the fol-

lowing 5-dimensional action:

S = − 1

(2π)4
∫

d5ξ
(√

−G
√

1 + z1 +
z21
2

− z2

+
ǫmnlsta

mH̃nlH̃st

8(1 + a2)

)

. (14)

This action is equal to the following action [35] with
the Lagrange multiplier

S5d = − 1

(2π)4
∫

d5ξ
(

√

− det(Gmn + 2πFmn) +

∫

(

2πH ∧F − (2π)2

2
a ∧ F ∧ F

))

, (15)

where F2 is the worldvolume 2-form field strength as-
sumed to be the 2-form on AdS3. Note that the EOM of
F gives H̃ as the following function of F and a:

H̃ =
2π

2

√

− det(Gµν + 2πFµν)Fµν + 2π∗̂a ∧ F , (16)

where ∗̂ is the 5-dimensional flat epsilon symbol.
By integration by parts and by integrating F ′ = da,

the 5-dimensional action (15) reduces to the DBI+Chern-
Simons action

S5d = − 1

(2π)4
∫

d5ξ
√

− det(Gmn + 2πFmn)

+
1

4π

∫

A ∧ F

= − 1

(4π)4
∫

dx0dx1dz
1

z3
·

·
√

1 + 32π2(z4F 2
x1z

− z4F 2
x0z

− z4F 2
x0x1)

+
1

4π

∫

A ∧ dA. (17)

We shortly review how to derive the Hall conductivity
from (17). We add the following boundary term [36] at
z = ǫ:

Sbdy =
1

4π

∫

z=ǫ

dx0dx1Ax0Ax1 . (18)

If the condition ∂x0Ax1 = 0 is satisfied, then, the full
action is invariant under the gauge transformation δA =
dχ as follows:

δ
1

4π

(

∫

A ∧ dA+
∫

dx0dx1Ax0Ax1

)

=
1

2π

∫

dx0dx1δAx0Ax1

= − 1

2π

∫

dx0dx1χ∂x0Ax1 = 0. (19)

This condition means that we can still fix the worldvol-
ume electric flux Fx0x1 6= 0. Remind also that the on-
shell variation of the Chern-Simons term and the bound-
ary term have only one of the two variables δAx0 , δAx1 :
Ax0 and Ax1 are considered as a pair of canonical vari-
ables with respect to z. To compute the Hall conductiv-
ity, moreover, the following boundary conditions should
be satisfied:

δAx0 |bdy = 0 and δAx1 |bdy free. (20)

The Hall conductivity can be derived from the continuity
equation

Jx2 = −
(

∂ρ

∂x0
+
∂jx1

∂x1

)

. (21)

To compute jx1 and ρ holographically, we need the EOM
of (17) and the relation given in [4, 5].
The equation of motion for (17) are

∂x1

(

αzF
x1z√
D

)

− ∂x0

(

αzF
x0z√
D

)

+ 1
2πFx0x1 = 0,

∂z

(

αzF
x1z√
D

)

+ ∂x0

(

αzF
x0x1√
D

)

+ 1
2πFx0z = 0, (22)

∂z

(

αzF
x0z√
D

)

+ ∂x1

(

αzF
x0x1√
D

)

+ 1
2πFx1z = 0, (23)

where D = 1 + 32π2(z4F 2
x1z

− z4F 2
x0z

− z4F 2
x0x1) and α

is a constant. The boundary currents are given by

ρ = −αzFx0z√
D

+
1

2π
Ax1 , jx1 =

αzFx1z√
D

. (24)

By substituting (24) and (23) into (21), we obtain the
Hall conductivity:

jx2 = − 1

2π
∂x1Ax0 =

1

2π
Ex1 , (25)

→ σx1x2 =
e2

h
, ν = 1, (26)

where we recovered the Planck unit ~ = h/2π and the
electric charge e. Here, ν = 1 is the filling fraction. Thus,
the Hall conductivity is quantized in terms of the C-S
level of the dual theory k = 1 and there are no other
contributions (see also [10]).
It will also be interesting to derive conductivities of

the boundary liquid in particular in the finite tempera-
ture [37] since for theories with gapless excitation, the
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conductivities in the boundary fluid will not behave like
normal Fermi liquid. However, the full EOM of (17)
seems not to be solved analytically and the finite temper-
ature GKPW relation of the DBI-CS theories on AdS3

seems to be complicated.

SUMMARY — In this paper, we studied the AdS4 ×
N(1, 1)/N = 3 SCFT correspondence confirmed by the
analysis of the moduli space [9, 13].

We introduced the edge M5-brane making the edge
state on the boundary in the dual gravity side. By an-
alyzing the edge M5-brane, we derived the QHE of the
d = 3 flavored ABJM theory with the C-S levels (1,−1).
We found that the Hall conductivity is quantized such
as σxy = e2/h, where the filling fraction is 1. The
same method can also be applied for the gravity dual
AdS4×S7/Zk of the ABJM theory with C-S levels (k,−k)
. Thus, we introduce the M5-brane wrapped on a 3-cycle
S3/Zk and can derive the fractionally quantized Hall con-
ductivity σxy = e2/kh. This result was derived in [26]
and confirmed the dimensional reduction. The different
point is that S3 (and S3/Z2) in N(1, 1) are in trivial Ho-
mology class and S3/Zk is the 3-cycle on S7/Zk. So, the
M5-brane wrapped on the 3-cycle S3/Zk is the fractional
M5-brane [32].

According to [32], it will be interesting to discuss the
domain walls [38] in our setup that changes the rank of
one gauge group by 1 (see also the paper [39]). However,
there seems to be only one sphere S3 and the information
of which rank the M5-brane can change seems to be lost.
Moreover, N(1, 1) background which can be described by
d = 8 instanton solution contains another KK-monopole
that makes the analysis complicated. In the presence of
this monopole, we cannot conclude that our edge M5-
brane changes the rank of the gauge group on one side of
this M5-brane.

The M5-brane wrapping on S3/Z2 parametrized by
α = σ1 = σ2 = σ3 = 0 is also interesting. As pointed out
in [10], the effect of the Z2 Wilson line on S3/Z2 should
be considered and so using the M5-brane without the
manifest d = 6 covariance seems to be not appropriate.
We leave analysis of this M5-brane for future work.
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