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Abstract

We investigate the non-Gaussianity of primordial cosmological perturbations within

our recently proposed holographic description of inflationary universes. We derive a

holographic formula that determines the bispectrum of cosmological curvature pertur-

bations in terms of correlation functions of a holographically dual three-dimensional

non-gravitational quantum field theory (QFT). This allows us to compute the primor-

dial bispectrum for a universe which started in a non-geometric holographic phase,

using perturbative QFT calculations. Strikingly, for a class of models specified by a

three-dimensional super-renormalizable QFT, the primordial bispectrum is of exactly

the factorizable equilateral form with f equil.NL = 5/36, irrespective of the details of the

dual QFT.

A by-product of this investigation is a holographic formula for the three-point func-

tion of the trace of the stress-energy tensor along general holographic RG flows, which

should have applications outside the remit of this work.

http://arxiv.org/abs/1011.0452v1
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1 Introduction

Primordial cosmological perturbations and their properties provide some of the best obser-

vational clues to the physics of the very early universe. Acting as the seed for structure

formation, these initial inhomogeneities left behind an imprint in the cosmic microwave back-

ground (CMB), and in the distribution of large-scale structure, through which their properties

may be directly inferred. To date, there is no compelling evidence for any departure from

Gaussianity: the different Fourier modes of the perturbations appear to be uncorrelated, with

random phases. This implies that all higher correlation functions of the primordial perturba-

tions may be expressed in terms of the 2-point function, or equivalently its Fourier transform,

the power spectrum ∆2
S(q). In particular, the 3-point function and all odd higher-order cor-

relators should vanish.

Nevertheless, the significant improvement in observational data expected in the very near

future may change this situation. Quantitatively, the Fourier transform of the 3-point func-

tion of curvature perturbations, the scalar bispectrum, may be parameterized by an overall

amplitude, fNL, along with a momentum dependence or ‘shape’ function (see [1, 2, 3, 4] for

reviews). From the WMAP 7-year data [5], the observational constraints on fNL, for two

specific choices of shape function, are

f localNL = 32± 21, f equil.NL = 26± 140, (1.1)

where the first value corresponds to the ‘local’ shape [6, 7, 8] and the second corresponds to

the ‘equilateral’ shape [9]. In just a few years’ time, the results from the Planck satellite are

expected to further reduce the uncertainty on fNL to approximately ∆fNL ∼ 5 [8]. Constraints

deriving from observations of large-scale structure may also in future be competitive with those

from the CMB [10].

In view of its power to elucidate features of the mechanism through which the primordial

perturbations were generated, any future detection of primordial non-Gaussianity will be of

paramount importance for cosmology. In the context of inflation, the leading candidate for

such a mechanism, primordial non-Gaussianity reveals details of the dynamical interactions

present during the inflationary epoch.

In the simplest models of inflation, based on a single scalar field slowly rolling down a

potential, these interactions are suppressed by powers of the slow-roll parameters giving rise

to an fNL of first order in slow-roll (i.e., fNL ∼ O(0.01)) [6, 11, 12, 13, 14]. More elaborate

inflationary models including, e.g., multiple scalar fields [15, 16, 17, 18, 19], non-canonical

kinetic terms [20, 21, 22], inhomogeneous reheating [23], features in the potential [24, 25, 26],

or initial state modifications [27, 28, 29] all give rise to a considerable range of fNL values, as
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Figure 1: The ‘pseudo’-QFT
dual to inflationary cosmology
is operationally defined using
the domain-wall/cosmology
correspondence and standard
gauge/gravity duality.

well as different predictions for the shape function. Since there is often little to distinguish

models at the level of the power spectrum, non-Gaussianity provides a powerful means of

observationally discriminating between the various inflationary candidates, as well as serving

to constrain other non-inflationary scenarios [30]. Note for these purposes it is necessary

to distinguish the primordial non-Gaussianity generated during the inflationary epoch from

that generated in later stages of cosmological evolution (e.g., by the nonlinear evolution

of perturbations after they re-enter the horizon in the matter and radiation eras, and by

nonlinearities in the relation between metric fluctuations and temperature fluctuations in the

CMB). With a sufficiently accurate understanding of their physics [31, 32], these latter sources

of non-Gaussianity may be subtracted off to leave the primordial component of principal

interest for constraining cosmological models.

In the present paper, we initiate the investigation of primordial non-Gaussianity for our

recently proposed holographic description of inflationary cosmology [33, 34, 35]. The key

to this description is the holographic framework depicted in Fig. 1, which connects four-

dimensional inflationary universes with three-dimensional non-gravitational QFTs. The basic

ingredients are ordinary gauge/gravity duality (corresponding to the uppermost arrow in

the figure), combined with the domain/wall cosmology correspondence [36, 37, 38] (lefthand

vertical arrow), a simple analytic continuation relating cosmologies to domain-wall spacetimes

describing holographic RG flows. This bulk analytic continuation may be re-expressed in the

language of the dual QFT (righthand vertical arrow), whereupon it takes correlators of the

dual QFT to correlators of the so-called ‘pseudo’-QFT, which we propose is dual to the original

cosmology (lower dashed arrow).

On the basis of this framework, cosmological observables may be re-expressed in terms

of correlators of the dual QFT. At the level of linear perturbation theory, exact formulae

have been derived relating the cosmological scalar and tensor power spectra with the 2-

point function for the stress-energy tensor of the dual QFT [33, 34]. The first major goal

of the present work will be to extend this correspondence to quadratic order in perturbation
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theory. Focusing on the scalar bispectrum, the cosmological observable most relevant to the

present and forthcoming observational data, we will show how this quantity may be naturally

re-expressed in terms of the 3-point function of the dual stress-energy tensor1. Analogous

formulae for other non-Gaussian cosmological observables may be derived by similar methods

and will be reported elsewhere [40]. The Hamiltonian holographic renormalization method

we develop for computing 3-point functions is based on [41, 42], and may well be of utility in

a wider holographic context2.

One striking feature of holographic dualities is that they are strong/weak coupling du-

alities, meaning that when one description is weakly coupled, the other is strongly coupled,

and vice versa. In the regime where the dual QFT is strongly coupled then, the gravitational

description is weakly coupled and our holographic formulae should (and indeed they do) re-

produce the results of standard single-field inflation. In this situation, the application of our

holographic framework offers a fresh perspective, and may lead to new insights, but offers no

new predictions.

In the regime in which the dual QFT is weakly coupled, however, the corresponding

gravitational description is instead strongly coupled at very early times. We emphasize that

by ‘strongly coupled’ gravity we do not mean that the perturbative fluctuations around the

background FRW spacetime are strongly coupled, but rather, that the description in terms

of metric fluctuations is itself not valid. This is a non-geometric ‘stringy’ phase. A geometric

description emerges only asymptotically, and at late times one recovers a specific accelerat-

ing FRW spacetime (to be matched to conventional hot big bang cosmology), along with a

specific set of inhomogeneities. Crucially, these inhomogeneities are not linked with a per-

turbative quantization around the FRW spacetime as in conventional inflation, but rather,

they originate from the dynamics of the dual weakly coupled QFT. Holography thus suggests

a natural generalization of the inflationary mechanism to strongly coupled gravity, in which

the properties of cosmological perturbations may be determined through three-dimensional

perturbative QFT calculations.

In order to perform such calculations, it is necessary to specify more precisely the nature

of the dual QFT. Ideally, one would be able to deduce this from first principles via some

string/M-theoretic construction. In the absence of such a construction, we will instead pursue

a (holographic) phenomenological approach. As with other known holographic dualities, the

dual QFT will in general involve scalars, fermions and gauge fields, and it should admit a

large N limit. The question is then whether one can find a theory which is compatible with

current observations.

1A notable earlier work in a similar spirit is [39].
2Earlier work on the computation of 3-point functions for holographic RG flows may be found in [43, 44]
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An additional guiding principle is to consider QFTs of the type that feature in the descrip-

tion of holographic RG flows. This holographic description is well understood for two classes

of domain-wall spacetimes, namely, those that are asymptotically anti-de Sitter, and those

with asymptotically power-law scaling. Under the domain-wall/cosmology correspondence,

these correspond respectively to asymptotically de Sitter, and to asymptotically power-law

cosmologies. The first class of domain-wall solutions describe QFTs that are either deforma-

tions of CFTs, or else CFTs in a nontrivial vacuum state, while the second class describes

QFTs with a single dimensionful parameter in the regime in which the dimensionality of

the coupling constant drives the dynamics [45]. Examples of such dualities are provided by

considering the near-horizon limit of the non-conformal branes [46, 47]. The detailed holo-

graphic dictionary for these theories has been worked out only relatively recently [48, 45, 49].

These theories are characterized by the fact that they have a ‘generalized conformal structure’

[50, 51, 52, 45]. In particular, all terms in the Lagrangian have the same scaling dimension,

which is however different from the spacetime dimension.

Focusing on this second class, we will consider here super-renormalizable theories that con-

tain one dimensionful coupling constant. A prototype example is three-dimensional SU(N)

Yang-Mills theory coupled to a number of scalars and fermions, all transforming in the ad-

joint of SU(N). Theories of this type are typical in AdS/CFT where they appear as the

worldvolume theories of D-branes. A general such model that admits a large N limit is

S =
1

g2YM

∫

d3x tr

(

1

2
F I
ijF

I
ij +

1

2
(∂φJ)2 +

1

2
(∂χK)2 + ψ̄L/∂ψL + interactions

)

, (1.2)

where we consider NA gauge fields AI (I = 1, . . . , NA), Nφ minimal scalars φJ (J =

1, . . . , Nφ), Nχ conformal scalars χK (K = 1, . . . , Nχ) andNψ fermions ψL (L = 1, . . . , Nψ).
Note that g2YM has dimension one in three dimensions. In general, the Lagrangian (1.2)

will also contain dimension-four interaction terms (see [34]). We will leave these interaction

unspecified, however, as they do not contribute to the leading order calculations we will

perform here.

As shown in [33, 34, 35], it is straightforward to find holographic models of this form

that yield cosmological predictions compatible with current observations. Generically, we

obtain a nearly scale-invariant spectrum of small amplitude perturbations, where the overall

amplitudes of the power spectra scale as ∼ 1/N2, and their deviation from scale invariance is

of order the dimensionless effective coupling, g2eff = g2YMN/q, where q is a typical momentum.

In particular, the small observed amplitude ∼ O(10−9) of the scalar power spectrum implies

N ∼ O(104) consistent with the large N limit, while the smallness of the observed deviation

from scale invariance ∼ O(10−2) is consistent with the assumed weak coupling limit where
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g2eff ≪ 1. Through appropriate choice of the field content of the dual QFT, it is further

possible to satisfy the current observational upper bounds on the ratio of tensors to scalars.

A distinctive prediction of these holographic models is a well-defined running of the spec-

tral indices: in the scalar case, for example, the running is given by minus the deviation from

scale invariance. This prediction is markedly different from conventional slow-roll inflation,

where the running is heavily suppressed, and may potentially be excluded by the forthcoming

Planck data [35].

Having established a precise holographic formula linking the cosmological bispectrum to

the 3-point function for the dual stress-energy tensor, our second major goal will be to use this

formula to predict the cosmological non-Gaussianity arising from a weakly coupled dual QFT

of the form (1.2). These predictions will complement those for the power spectra discussed

above, and may potentially reveal further distinctive observational signatures of holographic

models.

The remainder of this paper is organized as follows. In Section 2, we discuss perturba-

tion theory for domain-walls and cosmologies at quadratic order: after defining the metric

fluctuations and the gauge-invariant curvature perturbation ζ , we evaluate the cubic interac-

tion Hamiltonian and set up the domain-wall/cosmology correspondence. We also introduce

response functions relating the curvature perturbation to its corresponding canonical momen-

tum; these response functions will play a central role in our subsequent holographic analysis.

In Section 3, we summarize the calculation of the cosmological bispectrum and show how

to re-write it in terms of response functions. We then proceed, in Section 4, with the holo-

graphic calculation of the 3-point function for the trace of the dual stress-energy tensor. After

a brief introduction to the radial Hamiltonian holographic renormalization methods we use,

we compute the holographic 3-point function for both asymptotically AdS and asymptotically

power-law domain-walls. Finally, in Section 5, we combine these results to show how the cos-

mological observables may be expressed in terms of correlation functions of the dual QFT,

and in Section 6, after performing the relevant QFT calculations, we arrive at a holographic

prediction for primordial non-Gaussianity.

2 Perturbed domain-walls and cosmologies

2.1 Defining the perturbations

Domain-walls and cosmologies may be described in a unified fashion via the ADM metric

ds2 = σN2dz2 + gij(dx
i +N idz)(dxj +N jdz), (2.1)
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where the perturbed lapse and shift functions may be written to second order as

N = 1 + δN(z, ~x), Ni = gijN
j = δNi(z, ~x), gij = a2(z)(δij + hij(z, ~x)), (2.2)

with σ = +1 for a Euclidean domain-wall3 (whereupon z becomes the transverse radial

coordinate) and σ = −1 for a cosmology (whereupon z becomes the cosmological proper

time). The spatial indices i, j run from 1 to 3, and we have assumed (for simplicity) the

background geometry to be spatially flat.

The δg00 metric perturbation is then

δg00 = 2σφ = σ(2δN + δN2) + a−2δNiδNi, (2.3)

where here, and in the remainder of the paper, we adopt the convention that repeated covari-

ant indices are summed using the Kronecker delta (in contrast, an index is raised or lowered

by the full metric). The remaining perturbations may be decomposed into scalar, vector and

tensor pieces according to

δNi = a2(ν,i + νi), hij = −2ψδij + 2χ,ij + 2ω(i,j) + γij, (2.4)

where the vector perturbations νi and ωi are transverse, and the tensor perturbation γij is

transverse traceless. We similarly decompose the inflaton Φ into a background piece ϕ and a

perturbation δϕ,

Φ(z, ~x) = ϕ(z) + δϕ(z, ~x). (2.5)

These formulae are understood to hold to second order in perturbation theory.

We define ζ(z, ~x), the curvature perturbation on uniform energy density slices, such that4

gij = a2e2ζ(δij + γij) (2.6)

in the comoving gauge where δϕ, χ and ωi vanish. This definition may then be straight-

forwardly recast into the general gauge-invariant form (see Appendix A for details)

ζ = −ψ − H

ϕ̇
δϕ− ψ2 − 2H

ϕ̇
ψδϕ+

(

Ḣ − Hϕ̈

ϕ̇

)δϕ2

2ϕ̇2
+
H

ϕ̇2
δϕδϕ̇+

H

ϕ̇
ξ̂kδϕ,k

−1
4
πij

( 2

a2ϕ̇
δNiδϕ,j +

2H

ϕ̇
δϕhij +

δϕ

ϕ̇
ḣij + 2ξ̂k,ihjk + ξ̂khij,k −

σ

a2ϕ̇2
δϕ,iδϕ,j

−4H
ϕ̇
δϕξ̂i,j − ξ̂k,iξ̂k,j

)

, (2.7)

3A Lorentzian domain-wall can be obtained by continuing one of the xi coordinates to become time [38].
The continuation to a Euclidean domain-wall is convenient, however, since the QFT vacuum implicit in the
Euclidean formulation maps to the Bunch-Davies vacuum on the cosmology side. Other choices of vacua may
be accommodated using the real-time formalism of [53]. This is an interesting extension that we leave for
future work.

4We have chosen this definition so as to coincide with most of the recent literature on non-Gaussian
perturbations, in particular [14]. Note that in our previous articles [33, 34] we defined ζ at linear order to be
instead the comoving curvature perturbation, which differs by a sign.
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where ξ̂k = χ,k+ωk. Here, and throughout, we use dots to denote differentiation with respect

to z and we set H = ȧ/a. The transverse projection operator πij is defined as

πij = δij −
∂i∂j
∂2

. (2.8)

The physical significance of ζ is that it is conserved on super-horizon scales, in the absence

of entropy perturbations. This holds to all orders in perturbation theory [54], and serves to

connect the behaviour of modes as they exit the horizon during the inflationary epoch to their

initial conditions at horizon re-entry in the subsequent radiation- and matter-dominated eras.

2.2 Equations of motion

In the ADM formalism, the combined DW/C action for a single minimally coupled scalar field

takes the form

S =
1

2κ2

∫

d4xN
√
g
[

KijK
ij −K2 +N−2(Φ̇−N iΦ,i)

2 + σ
(

−R + gijΦ,iΦ,j + 2κ2V (Φ)
)

]

,

where κ2 = 8πG, Kij = [(1/2)ġij −∇(iNj)]/N is the extrinsic curvature of constant-z slices,

and we have taken the scalar field Φ to be dimensionless. In this expression, the spatial

gradient and potential terms appear with positive sign for Euclidean domain-walls and with

negative sign for Lorentzian cosmologies, as indeed they should.

We will restrict our consideration to background solutions in which the evolution of the

scalar field ϕ(z) is (piece-wise) monotonic in z. For such solutions, ϕ(z) can in principle be

inverted to z(ϕ), allowing the Hubble rate H = ȧ/a to be re-expressed as a function of ϕ,

i.e., H(z) = −(1/2)W (ϕ). The complete equations of motion for the background then take

the simple form

ȧ

a
= −1

2
W, ϕ̇ =W,ϕ, 2σκ2V = (W,ϕ)

2 − 3

2
W 2. (2.9)

In cosmology, this first-order formalism dates back to the work of [11], where it was obtained

by application of the Hamilton-Jacobi method. For domain-walls, this formalism has been

discussed from variety of standpoints (gravitational stability, Hamilton-Jacobi method, fake

supersymmetry) in [37, 55, 56, 57, 58]. In this context, the function W (ϕ) is the ‘fake super-

potential’ (i.e., when the domain-wall solution is a supersymmetric solution of a supergravity

theory, W (ϕ) is the true superpotential).

Turning now to the perturbations, following Maldacena [14], the cubic action for ζ may

be derived by solving the Hamiltonian and momentum constraints and backsubstituting into

the Lagrangian. Keeping careful track of the sign σ, we find

8



S =

∫

d4xL =
1

κ2

∫

d4x
[

a3ǫζ̇2 + σaǫ(∂ζ)2 − a3ǫ

H
ζ̇3 + 3a3ǫζζ̇2 + σaǫζ(∂ζ)2 − 2a3ζ,kν̂,k∂

2ν̂

− a3

2

( ζ̇

H
− 3ζ

) (

ν̂,ij ν̂,ij − ∂2ν̂∂2ν̂
)

]

, (2.10)

where ǫ = −Ḣ/H2 = ϕ̇2/2H2 (note we do not use the slow roll approximation) and ν̂ =

ǫ ∂−2ζ̇ + (σ/a2H)ζ .

In the Hamiltonian formalism, one then has the quadratic free Hamiltonian

H(2) =
1

κ2

∫

d3~x

[

1

4a3ǫ
Π2 − σaǫ(∂ζ)2

]

, (2.11)

where

Π =
∂(κ2L)
∂ζ̇

(2.12)

is (κ2 times) the canonical momentum conjugate to ζ , along with the cubic interaction Hamil-

tonian

H(3) = −
∫

d3~xL(3) =
1

κ2

∫

d3~x
[ 1

8a6ǫ2H
Π3 − 3

4a3ǫ
Π2ζ − σaǫζ(∂ζ)2 + 2a3ζ,kν̂,k∂

2ν̂

+
( 1

4ǫH
Π− 3a3

2
ζ
)

(ν̂,ij ν̂,ij − ∂2ν̂∂2ν̂)
]

, (2.13)

where in this expression ν̂ = (1/2a3) ∂−2Π+ (σ/a2H)ζ .

Passing to momentum space, one finds

H(2) =
1

κ2

∫

[dq]
[ 1

4a3ǫ
Π(~q)Π(−~q)− σaǫq2 ζ(~q)ζ(−~q)

]

,

H(3) =
1

κ2

∫

[[dq1dq1dq3]]
[

A(qi)ζ(−~q1)ζ(−~q2)ζ(−~q3) + B(qi)Π(−~q1)ζ(−~q2)ζ(−~q3)

+C(qi)ζ(−~q1)Π(−~q2)Π(−~q3) +D(qi)Π(−~q1)Π(−~q2)Π(−~q3)
]

, (2.14)

where here, and in the remainder of the paper, we will use the shorthand notations

[dq] ≡ d3~q/(2π)3, [[dq2dq3]] ≡ (2π)3δ(
∑

i

~qi)[dq2][dq3],

[[dq1dq2dq3]] ≡ (2π)3δ(
∑

i

~qi)[dq1][dq2][dq3]. (2.15)

The coefficients A, B, C and D may be written as

A(qi) = − 1

24aH2

(

2P(4) − P 2
(2)

)

− σaǫ

6κ2
P(2), (2.16)

B(qi) =
1

16a4ǫH3

(

2P(4) − P 2
(2)

)

− σ

8a2Hq21

(

4q41 − 2q21P(2) − 2P(4) + P 2
(2)

)

, (2.17)

9



C(qi) = − 1

32a3ǫ

[

24 +
ǫ

q22q
2
3

(

8q41 − 4q21P(2) − 2P(4) + P 2
(2)

)

+
σ

a2H2

1

q22q
2
3

(

P(2) − q21
) (

2P(4) − P 2
(2)

)

]

, (2.18)

D(qi) =
1

16a6ǫH

[

2

ǫ
− 1 +

1

12q21q
2
2q

2
3

(

P 3
(2) − 4P(2)P(4) + 4P(6)

)

]

, (2.19)

where the magnitudes qi = +
√

~q 2
i and the symmetric polynomials P(n) =

∑

i(qi)
n.

Writing C213 = C(q2, q1, q3), etc., Hamilton’s equations then read

ζ̇(~q1) = (2π)3
∂(κ2H)

∂Π(−~q1)

=
1

2a3ǫ
Π(~q1) +

∫

[[dq2dq3]]
[

B123ζ(−~q2)ζ(−~q3) + 2C213ζ(−~q2)Π(−~q3)

+3D123Π(−~q2)Π(−~q3)
]

, (2.20)

Π̇(~q1) = −(2π)3 ∂(κ
2H)

∂ζ(−~q1)

= 2σaǫq21ζ(~q1)−
∫

[[dq2dq3]]
[

3A123ζ(−~q2)ζ(−~q3) + 2B213Π(−~q2)ζ(−~q3)

+C123Π(−~q2)Π(−~q3)
]

. (2.21)

Note that [[dq2dq3]], as defined in (2.15), implicitly depends on ~q1 through the overall delta

function expressing momentum conservation.

2.3 Response functions

Given a perturbative solution ζ of the classical equations of motion, we may formally expand

Π in terms of ζ to any given order in perturbation theory. At quadratic order, we may thus

write

Π(~x1) =

∫

d3~x2 Ω(~x2 − ~x1)ζ(~x2) +
∫

d3~x2d
3~x3 Λ(~x2 − ~x1, ~x3 − ~x1)ζ(~x2)ζ(~x3). (2.22)

where we will refer to the functions Ω and Λ defined by this equation as response functions.

(Note we have made use here of the translation invariance of the background 3-geometry). In

momentum space, we then have

Π(~q1) = Ω(−~q1)ζ(~q1) +
∫

[[dq2dq3]] Λ(~q2, ~q3)ζ(−~q2)ζ(−~q3). (2.23)

Rotational invariance and momentum conservation (which in particular implies 2(~q2 · ~q3) =

q21−q22−q23) imply that Ω and Λ are scalar functions of the magnitudes qi such that Ω(−~q1) =
Ω(~q1) = Ω(q1) and Λ(~q2, ~q3) = Λ(q1, q2, q3). Thus, in the following, we will simply write

Π(~q1) = Ω(q1)ζ(~q1) +

∫

[[dq2dq3]] Λ(qi)ζ(−~q2)ζ(−~q3). (2.24)
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Inserting this definition into (2.21) and expanding to quadratic order, making use of (2.20),

we find the response functions satisfy

0 = Ω̇(q) +
1

2a3ǫ
Ω2(q)− 2σaǫq2, (2.25)

0 = Λ̇(qi) +
1

2a3ǫ

(

Ω(q1) + Ω(q2) + Ω(q3)
)

Λ(qi) + X (qi), (2.26)

where

X (qi) = 3A123 + B123Ω(q1) + B213Ω(q2) + B312Ω(q3) + C123Ω(q2)Ω(q3)
+C213Ω(q1)Ω(q3) + C312Ω(q1)Ω(q2) + 3D123Ω(q1)Ω(q2)Ω(q3). (2.27)

It is now straightforward to solve (2.26) perturbatively, starting from a solution of the

linearized problem (2.25). Specifically, given a solution ζq(z) of the linearized equation of

motion

0 = ζ̈q + (3H + ǫ̇/ǫ)ζ̇q − σa−2q2ζq, (2.28)

it follows that

Ω(q) = 2a3ǫζ̇q/ζq (2.29)

is a solution of (2.25), and that

d

dz

(

1

ζq(z)

)

= − 1

2a3ǫ
Ω(z, q)

(

1

ζq(z)

)

. (2.30)

The solution for Λ is then

Λ(z, qi) = −
(

∏

i

1

ζqi(z)

)

∫ z

z0

dz′X (z′, qi)
∏

i

ζqi(z
′), (2.31)

where we will leave the lower limit z0 in the integral unspecified for the time being.

2.4 The domain-wall/cosmology correspondence

Examining (2.9), (2.20) and (2.21) closely, we see that a perturbed cosmological solution

expressed in terms of κ2 and ~qi analytically continues to a perturbed domain-wall solution

expressed in terms of κ̄2 and ~̄qi, where

κ̄2 = −κ2, q̄i = −iqi. (2.32)

The first continuation serves to reverse the sign of the potential in (2.9) (taking, for example,

dS to AdS), while the second ensures that q2i = −q̄2i , accounting for the necessary sign changes

in the equations of motion (2.20) and (2.21) (specifically, in the coefficients A, B, C and D,
as well as in the first term on the RHS of (2.21)). The choice of branch cut we made in this
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latter continuation (i.e., q̄i = −iqi rather than q̄i = +iqi) is determined by the necessity of

mapping the cosmological Bunch-Davies vacuum behaviour, ζ ∼ e−iqτ as τ → −∞ (where

τ =
∫

dz/a), to the domain-wall solution that decays smoothly in the interior, ζ ∼ eq̄τ as

τ → −∞, as required for the computation of holographic correlation functions.

For the response functions, we see likewise that if we define Ω(q) and Λ(qi) to be the

cosmological response functions with σ = −1, then the domain-wall response functions Ω̄(q̄)

and Λ̄(q̄i) are given by the simple analytic continuation

Ω̄(q̄) = Ω̄(−iq) = Ω(q), Λ̄(q̄i) = Λ̄(−iqi) = Λ(qi). (2.33)

(Note that the response functions, as defined here, are independent of κ2).

In the remainder of this paper, we will use the unbarred variables κ2, qi and the response

functions Ω and Λ when performing cosmological calculations, and the barred variables κ̄2,

q̄i and response functions Ω̄ and Λ̄ for domain-wall calculations. To analytically continue the

results from domain-walls to cosmologies, and vice versa, we use (2.32) and (2.33).

Finally, let us note the analytic continuations (2.32) may equivalently be expressed in

terms of QFT variables as

N̄ = −iN, q̄i = −iqi, (2.34)

where N̄ is the rank of the gauge group of the QFT dual to the domain-wall spacetime, and N

is the rank of the gauge group of the pseudo-QFT dual to the corresponding cosmology. These

relations follow from (2.32), noting that in the standard holographic dictionary κ̄−2 ∝ N̄2,

working in units where the AdS radius has been set to unity5. Our choice of branch cut in the

continuation of N̄ ensures that the dimensionless effective QFT coupling, g2eff = g2YMN̄/q̄ =

g2YMN/q, does not change when we analytically continue from QFT to pseudo-QFT. This is

important because the QFT correlators may in general be non-analytic functions of g2eff at

large N [59, 60].

3 The cosmological bispectrum

3.1 Computation using response functions

In this section we compute the 3-point function of cosmological curvature perturbations in

terms of the second-order response function Λ.

5In fact, in our later results we will see explicitly that holographic correlation functions calculated from
the gravity side of the correspondence appear with an overall prefactor of κ̄−2. On the QFT side of the
correspondence, this prefactor corresponds to the overall prefactor of N̄2 in correlators arising from the trace
over gauge indices.
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We begin by quantizing the interaction picture field ζ such that

ζ̂(z, ~x) =

∫

[dq]
(

â(~q)ζq(z)e
i~q·~x + â†(~q)ζ∗q (z)e

−i~q·~x
)

(3.1)

(recalling that z plays the role of proper time here), or equivalently, in momentum space,

ζ̂(z, ~q) = â(~q)ζq(z) + â†(−~q)ζ∗q (z). (3.2)

The creation and annihilation operators obey the usual commutation relations

[â(~q), â†(~q ′)] = (2π)3δ(~q − ~q ′). (3.3)

In these expressions, the mode function ζq(z) is a solution of the linearized equation of motion

(2.28), with initial conditions specified by the Bunch-Davies vacuum condition.

At tree level, the 3-point function in the in-in formalism may then be evaluated according

to the standard formula [14]

〈ζ̂(z, ~q1)ζ̂(z, ~q2)ζ̂(z, ~q3)〉 = −i
∫ z

z0

dz′〈[:ζ̂(z, ~q1)ζ̂(z, ~q2)ζ̂(z, ~q3): , :Ĥ(3)(z′):]〉, (3.4)

where, to ensure convergence, a suitable infinitesimal rotation of the contour of integration

is understood. The lower limit z0 represents some very early time (corresponding to τ very

large and negative) at which the interactions are assumed to be switched on. Note that both

the operators appearing in the commutator in this formula are taken to be normal ordered as

indicated.

Inserting the operator equivalent of (2.14) for Ĥ(3) in the above formula, we may now

proceed to evaluate the commutator explicitly, noting that for the cubic terms in Ĥ(3) we

may replace

Π̂(z, ~q) = â(~q)Πq(z) + â†(−~q)Π∗
q(z) = â(~q)Ω(z, q)ζq(z) + â†(−~q)Ω∗(z, q)ζ∗q (z). (3.5)

In this manner, we find the full 3-point function

〈ζ̂(z, ~q1)ζ̂(z, ~q2)ζ̂(z, ~q3)〉

= −4κ−2(2π)3δ(
∑

i

~qi) Im
[(

∏

i

1

ζqi(z)

)

∫ z

z0

dz′X (z′, qi)
∏

i

ζqi(z
′)
]

∏

i

|ζqi(z)|2

= (2π)3δ(
∑

i

~qi) 4κ
−2Im [Λ(z, qi)]

∏

i

|ζqi(z)|2, (3.6)

where in the last line we have used (2.31). The lower limit of integration z0 in (2.31) should

thus be identified with the lower limit z0 in (3.4). With this choice, we find Λ→ 0 as z → z0,
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consistent with the expected behaviour ζ(~q) → ζq and Π(~q) → Ω(q)ζq prior to the switching

on of the interactions.

Introducing the notation

〈ζ̂(z, ~q1)ζ̂(z, ~q2)〉 = (2π)3δ(~q1 + ~q2)〈〈ζ̂(z, q1)ζ̂(z,−q1)〉〉,

〈ζ̂(z, ~q1)ζ̂(z, ~q2)ζ̂(z, ~q3)〉 = (2π)3δ(
∑

i

~qi)〈〈ζ̂(z, q1)ζ̂(z, q2)ζ̂(z, q3)〉〉, (3.7)

the bispectrum of curvature perturbations 〈〈ζ̂(z, q1)ζ̂(z, q2)ζ̂(z, q3)〉〉 then satisfies

〈〈ζ̂(z, q1)ζ̂(z, q2)ζ̂(z, q3)〉〉
∏

i〈〈ζ̂(z, qi)ζ̂(z,−qi)〉〉
= Im

[

4κ−2Λ(z, qi)
]

, (3.8)

where, as usual, the 2-point function is

〈〈ζ̂(z, q1)ζ̂(z,−q1)〉〉 = |ζq1(z)|2. (3.9)

Noting that the linearized mode functions obey the Wronskian normalization condition

iκ2 = ζqΠ
∗
q −Πqζ

∗
q = −2i|ζq(z)|2Im[Ω(z, q)], (3.10)

we may express the 2-point function in terms of the response function Ω,

〈〈ζ̂(z, q1)ζ̂(z,−q1)〉〉 = −
κ2

2Im[Ω(z, q)]
. (3.11)

Equations (3.11) and (3.8) are the main result of this section: they express the power

spectrum and the bispectrum in terms of response functions. As we will see in the next

section, these response functions (after analytic continuation) are directly related with 2- and

3-point functions of strongly coupled QFT via standard gauge/gravity duality.

3.2 An example: slow-roll inflation

As an illustration, let us use our results above to calculate the bispectrum to leading order

in the slow-roll approximation. As noted by Maldacena [14], this calculation is most easily

performed using the field redefinition

ζ = ζc +
( ϕ̈

2ϕ̇H
+
ǫ

4

)

ζ2c +
ǫ

2
∂−2(ζc∂

2ζc) + . . . , (3.12)

where the dots indicate terms that vanish outside the horizon or are of higher order in slow

roll. The cubic action (2.10) may then be rewritten to leading order in slow roll as

S(3)
c =

1

κ2

∫

d4x 4ǫ2a5Hζ̇2c ∂
−2ζ̇c + . . . (3.13)
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Comparing with (2.10), we see that the field redefinition makes manifest the fact that the

interaction is really of second order in the slow-roll parameter ǫ. The interaction Hamiltonian

for ζc then has only the single term

Dc(qi) =
H

6a4ǫ

( 1

q21
+

1

q22
+

1

q23

)

. (3.14)

To evaluate the late-time value of the response function Λ, we use the formula (2.31),

substituting in the de Sitter solution

ζq(τ) ≈
iκH∗
√

4ǫ∗q3
(1 + iqτ)e−iqτ (3.15)

for the linearized mode functions. Here, the asterisk indicates taking the value at the time of

horizon crossing z = z∗ (where q ≈ a(z∗)H(z∗)), while the conformal time τ =
∫

dz/a. We

also use the fact that, to leading order in slow roll, the linear response function

Ωq(τ) =
2a2ǫ∗
ζq

dζq
dτ

=
−2aǫ∗q2

H∗(1 + iqτ)
, (3.16)

since a ≈ −1/H∗τ and time derivatives of ǫ∗ and H∗ are of higher order in slow roll.

We thus find

Λ0(qi) =
4ǫ2∗
H2

∗

(

∑

i>j

q2i q
2
j

)

∫ 0

−∞

dτ ′e−i(
∑

i
qi)τ ′ = i

4ǫ2∗
H2

∗

∑

i>j q
2
i q

2
j

∑

i qi
, (3.17)

where the integration contour has been suitably rotated so as to ensure convergence of the

lower limit and the subscript zero, both here and below, denotes the value in the late-time

limit τ → 0−. Then,

〈〈ζ̂c(q1)ζ̂c(q2)ζ̂c(q3)〉〉0 = Im[4κ−2Λ0(τ, qi)]Πi|ζ0qi(τ)|2 =
H4

∗

κ2ǫ∗(
∏

i q
3
i )

∑

i>j q
2
i q

2
j

4
∑

i qi
, (3.18)

in agreement with [14], recalling that ϕ here is dimensionless. As in [14], we then recover

the 3-point function for ζ via the field redefinition (3.12). This yields the usual result for

approximately equal momenta, namely

〈〈ζ̂(q1)ζ̂(q2)ζ̂(q3)〉〉0 =
H4

∗

4ǫ2∗

(

∏

i

1

2q3i

)[ 2ϕ̈∗

ϕ̇∗H∗

∑

i

q3i + ǫ∗

(

∑

i

q3i +
∑

i 6=j

qiq
2
j + 8

∑

i>j q
2
i q

2
j

∑

i qi

)]

.

(3.19)

4 Holographic 3-point functions

4.1 Holographic analysis

Before commencing with our main holographic calculation in Section 4.2, let us first pause to

briefly review some of the relevant background material for this calculation.
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4.1.1 Background solutions

As mentioned briefly in the introduction to this paper, there are two general classes of domain-

wall solutions for which a well understood holographic description exists. We list these classes

below: it is for these backgrounds that our holographic framework for cosmology is most

readily applicable.

(i) Asymptotically AdS domain-walls.

In this case the solution behaves asymptotically as

a(z) ∼ ez, ϕ ∼ 0 as z →∞. (4.1)

The boundary theory has a UV fixed point which corresponds to the bulk AdS critical

point. Depending on the rate at which ϕ approaches zero as z →∞, the QFT is either

a deformation of the conformal field theory (CFT), or else the CFT in a state in which

the dual scalar operator acquires a nonvanishing vacuum expectation value (see [61] for

details). Under the domain-wall/cosmology correspondence, these solutions are mapped

to cosmologies that are asymptotically de Sitter at late times.

(ii) Asymptotically power-law solutions.

In this case the solution behaves asymptotically as

a(z) ∼ (z/z0)
n, ϕ ∼

√
2n log(z/z0) as z →∞, (4.2)

where z0 = n−1. In particular, for n = 7 the asymptotic geometry is the near-horizon

limit of a stack of D2 brane solutions. In general, these solutions describe QFTs with a

dimensionful coupling constant in the regime where the dimensionality of the coupling

constant drives the dynamics [45]. Under the domain-wall/cosmology correspondence,

these solutions are mapped to cosmologies that are asymptotically power-law at late

times.

4.1.2 Asymptotic analysis

Holography relates bulk fields to local gauge-invariant operators of the boundary QFT. In

particular, the bulk metric is related to the boundary stress-energy tensor Tij . Bulk scalar

fields, such as the inflaton, correspond to boundary scalar operators (e.g., trFijF
ij). More

precisely, the map is specified as follows. First, recall that in order to define a quantum

theory we must specify the behaviour of the fields at infinity. In a gravitational theory, this

means in particular that the spacetime asymptotics must be prescribed. In gauge/gravity
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duality, the fields that specify the boundary conditions on the bulk side are identified with

the sources of the boundary QFT operators [62, 63]. Correlation functions for these gauge-

invariant operators may then be extracted from the asymptotics of bulk solutions. Conversely,

given the correlation functions of dual operators, one may reconstruct the bulk asymptotics.

Thus, to define the bulk theory, we need to specify appropriate boundary conditions. These

boundary conditions must involve an arbitrary metric, since this will act as a source for the

stress-energy tensor. Such boundary conditions are supplied by giving an asymptotically

locally AdS metric, which in four dimensions takes the form6,

ds2 = dr2 + gij(r, x)dx
idxj ,

gij(r, x) = e2r
(

g(0)ij(x) + e−2rg(2)ij(x) + · · ·+ e−2mrg(2m)ij(x) + . . .
)

. (4.3)

This encompasses the boundary conditions for the bulk metric, both for asymptotically AdS

domain-walls and for asymptotically power-law solutions. In the former case, the radial coor-

dinate r may be identified with z, and 2m = 3. For asymptotically power-law solutions, one

may perform a conformal transformation to the dual frame [47] defined by g̃ij = exp(−λΦ)gij ,
where λ =

√

2/n. The asymptotic solution above then describes the most general asymptotics

for the dual frame metric g̃ij, where now 2m = (3n−1)/(n−1) > 3 and r =
∫

exp(−λΦ/2)dz
(see [45] for details). In general, much of the holographic analysis for spacetimes with power-

law asymptotics may be obtained from that for asymptotically AdS2m+1 spacetimes, which are

related to power-law spacetimes via a dimensional reduction on a T2m−3 torus and analytic

continuation in m [49].

In the asymptotic expansion (4.3), the leading coefficient g(0)ij(x) is an arbitrary (non-

degenerate) three-dimensional metric of the conformal boundary of the bulk spacetime. Since

this is the metric on which the dual QFT lives, g(0)ij acts as the source for the dual stress-

energy tensor Tij . The subleading coefficients g(2k)ij(x), with k < m, are then locally de-

termined in terms of g(0)ij via an asymptotic analysis of the field equations. The coefficient

g(2m)ij(x), however, is only partially constained by this asymptotic analysis. (On the QFT

side, these constraints correspond to the QFT Ward identities). In fact, one finds that the

coefficient g(2m)ij(x) is directly related to the expectation value of the boundary stress-energy

tensor [64, 45]:

〈Tij〉 =
1

2κ̄2
(2mg(2m)ij). (4.4)

An analogous relation also exists for the expectation value of the dual scalar operator in terms

of the asymptotic behaviour of the bulk scalar field (see [64, 45] for details). We emphasize

that this result only requires that Einstein equations hold asymptotically.

6 In other spacetime dimensions, the general features of the analysis remain the same although specific
details differ.
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Here, we focused our discussion on the stress-energy tensor. An analogous discussion holds

for all operators: one should specify boundary conditions for the corresponding bulk fields

(and this is part of the definition of the theory). If one includes such additional fields, then

the holographic formulae such as (4.4) will in general acquire additional terms [65, 66], but the

structure described above remains the same. More importantly for our purposes, since we are

only interested in correlation functions of the stress-energy tensor, we only need to turn on a

source for the stress-energy tensor, in which case the formulae above hold unchanged (modulo

contributions to (4.4) from condensates of low-dimension operators, cf. the discussion of the

Coulomb branch flow in [65, 66]. Such cases can be analyzed along similar lines but we will

not discuss this here).

The relation (4.4) may be read in two ways: (i) given a bulk gravitational solution we may

read off the dual QFT data encoded by the solution; (ii) given QFT data we may reconstruct

the bulk asymptotic solution. We stress that this asymptotic reconstruction is possible even

when gravity is strongly coupled in the interior. The coefficients up to g(2m)ij just encode

the boundary conditions, i.e., the fact that we are considering asymptotically locally AdS

configurations (in the dual frame for the power-law case). In gauge/gravity duality, these

terms encode the fact that we have turned on a source for the dual operator (the stress-

energy tensor for the case at hand) and this is unrelated to whether the dual QFT is at weak

or strong coupling. The first term to depend on the bulk dynamics is g(2m)ij . When gravity is

weakly coupled, this coefficient is determined by the behaviour of the gravitational solution

deep in the interior. When gravity is strongly coupled, this coefficient should be obtained

by solving the full stringy dynamics in the interior. Gauge/gravity duality requires that the

value obtained this way must agree with the g(2m)ij determined via (4.4) from the weakly

coupled dual QFT.

4.1.3 Radial Hamiltonian formulation

In the following, rather than using (4.4) directly, we will instead employ the radial Hamiltonian

formulation of [41, 42]. Here, the radial direction plays a role equivalent to that of time

in the usual Hamiltonian formalism. The radial Hamiltonian formulation has a number of

advantages for our present purposes; in particular, it leads to a universal formula for the

1-point function that is independent of any of the issues (additional fields, etc.) discussed in

the previous subsection. It also permits us to work with an arbitrary potential for the scalar

field, so long as this potential admits background solutions of either the asymptotically AdS

or asymptotically power-law form7.

7In contrast, the formula (4.4) must be established on a case by case basis for different potentials, as in
[64, 65, 66].
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A key feature of spacetimes of the form (4.3) is that, to leading order as r →∞, the radial

derivative is equal to the dilatation operator δD, i.e.

∂r = δD(1 +O(e−2r)), (4.5)

where the δD acts on the metric as δDgij(x, r) = 2gij(x, r). (The bulk scalar field also trans-

forms with a specific conformal weight). This equivalence allows one to trade the asymptotic

radial expansion (4.3) for a covariant expansion in eigenfunctions of the dilatation operator.

By definition, an eigenfunction A(n) of weight n satisfies

δDA(n) = −nA(n). (4.6)

From (4.5), A(n) ∼ e−nr(1 + O(e−2r)), so the radial expansion and the expansion in eigen-

functions of the dilatation operator are closely related. The latter expansion is manifestly

covariant, however, whereas expanding in the bulk radial coordinate is not a covariant oper-

ation.

In the radial Hamiltonian formalism then, the expectation value of the dual stress-energy

tensor is given by

〈T ij 〉 =
(−2√

g
Πi
j

)

(3)

(4.7)

where Πij is the radial canonical momentum in ‘synchronous’ (Fefferman-Graham) gauge

where Ni = 0 and N = 1, and the subscript indicates taking the piece with overall dilatation

weight8 3. This is the universal formula we alluded to above9. To extract the piece with

dilatation weight 3, Πij may first be decomposed in eigenfunctions of the dilatation operator.

In general, the radial canonical momentum will contain pieces with weight less than 3: the

process of holographic renormalization then amounts to determining these terms through the

asymptotic analysis and subtracting them. In [42, 41], it is shown that removing these pieces

is equivalent to adding local boundary covariant counterterms to the on-shell action.

For asymptotically AdS domain-walls, the radial canonical momentum is

Πi
j =

1

2κ̄2
√
g(Ki

j −Kδij), (4.8)

whereKij = (1/2)∂zgij is the extrinsic curvature of constant-z slices. (Recall for domain-walls,

the z coordinate is a radial variable). In the case of asymptotically power-law domain-walls,

8In odd bulk dimensions the transformation of this specific coefficient also has an additional anomalous
contribution due to the conformal anomaly [67]. In our case there is no anomaly, however, and this coefficient
is a true eigenfunction of δD.

9 While (4.7) holds universally, expressing Πi
j in terms of the coefficients in the asymptotic expansion of the

bulk fields depends on the details of theory under consideration (field content, interactions, etc.). Fortunately,
we will not need this information here.
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the relevant radial canonical momentum is instead that of the dual frame [45], namely

Π̃i
j =

1

2κ̄2

√

g̃eλΦ(K̃i
j − (K̃ + λΦ,r)δ

i
j). (4.9)

Here, all tilded quantities belong to the dual frame and ∂r = eλϕ/2∂z . (Note the RHS of (4.7)

should also be evaluated in the dual frame).

4.1.4 3-point functions

Starting with the 1-point function in the presence of sources, 〈Tij〉s (given by (4.7) above),

higher correlation functions may be obtained through repeated functional differentiation with

respect to the source g(0)kl, after which the source is set to its background value. In performing

this operation, one must be careful to note that the stress-energy tensor Tij has itself a purely

classical dependence on the metric; this additional metric dependence gives rise to contact

terms, some of which we need to keep track of. Specifically, when computing the 3-point

function, we need to retain semi-local contact terms in which only two of the three points

involved are coincident, since terms of this form contribute to local-type non-Gaussianity

as we will see later. We may, on the other hand, discard ultralocal contact terms in which

all three points are coincident: such terms are generically scheme dependent (i.e., one may

remove them by addition of finite local counterterms).

Expanding the 1-point function in the presence of sources to quadratic order about a flat

background, we have

δ〈Tij(~x1)〉s =

∫

d3~x2
δ〈Tij(~x1)〉
δgkl(~x2)

∣

∣

∣

0
δgkl(~x2) +

1

2

∫

d3~x2d
3~x3

δ2〈Tij(~x1)〉
δgkl(~x2)δgmn(~x3)

∣

∣

∣

0
δgkl(~x2)δg

mn(~x3)

= −1
2

∫

d3~x2〈Tij(~x1)Tkl(~x2)〉δgkl(~x2)

+
1

8

∫

d3~x2d
3~x3

[

〈Tij(~x1)Tkl(~x2)Tmn(~x3)〉+ δ(~x2 − ~x3)〈Tij(~x1)Tkl(~x2)〉δmn

−2〈Tij(~x1)
δTkl(~x2)

δgmn(~x3)
〉 − 4〈 δTij(~x1)

δgmn(~x3)
Tkl(~x2)〉

]

δgkl(~x2)δg
mn(~x3),

where the zero subscripts in the first line indicate setting the sources to their background

value (i.e., setting gij = δij), and in the second line we have dropped all ultralocal contact

terms, but retained those where only two points are coincident.

Setting gij = (1 − 2ψ)δij (so that gij = δij + δgij = (1 + 2ψ + 4ψ2)δij), and noting that

〈Tij(~x1)〉0 = 0, the expansion of 〈T ii (~x1)〉s to quadratic order in the source ψ is
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δ〈T ii (~x1)〉s = (δij + δgij(~x1))δ〈Tij(~x1)〉s

= −
∫

d3~x2〈T (~x1)T (~x2)〉ψ(~x2) (4.10)

+

∫

d3~x2d
3~x3

[1

2
〈T (~x1)T (~x2)T (~x3)〉 −

1

2
〈T (~x1)T (~x2)〉δ(~x2 − ~x3)

− 2〈T (~x1)T (~x2)〉δ(~x1 − ~x3)− 〈T (~x1)Υ(~x2, ~x3)〉 − 2〈T (~x2)Υ(~x1, ~x3)〉
]

ψ(~x2)ψ(~x3),

where the operators

T (~x) = δijTij(~x), Υ(~x1, ~x2) = δijδkl
δTij(~x1)

δgkl(~x2)

∣

∣

∣

0
. (4.11)

Note that Υ is symmetric under interchange of its arguments, Υ(~x1, ~x2) = Υ(~x2, ~x1), since

the definition above is equivalent to

Υ(~x1, ~x2) = 2δijδkl
δ2S

δgij(~x1)δgkl(~x2)

∣

∣

∣

0
+

3

2
T (~x1)δ(~x1 − ~x2). (4.12)

In momentum space, we then have

δ〈T ii (~̄q1)〉s =− 〈〈T (q̄1)T (−q̄1)〉〉ψ(~̄q1) (4.13)

+

∫

[[dq̄2dq̄3]]
[1

2
〈〈T (q̄1)T (q̄2)T (q̄3)〉〉 −

1

2
〈〈T (q̄1)T (−q̄1)〉〉 − 2〈〈T (q̄2)T (−q̄2)〉〉

− 〈〈T (q̄1)Υ(q̄2, q̄3)〉〉 − 2〈〈T (q̄2)Υ(q̄1, q̄3)〉〉
]

ψ(−~̄q2)ψ(−~̄q3),

where [[dq̄2dq̄3]] is defined analogously to in (2.15), and we have introduced the shorthand

〈T (~̄q1)T (~̄q2)〉 = (2π)3δ(~̄q1 + ~̄q2)〈〈T (q̄1)T (−q̄1)〉〉,

〈T (~̄q1)Υ(~̄q2, ~̄q3)〉 = (2π)3δ(
∑

i

~̄qi)〈〈T (q̄1)Υ(q̄2, q̄3)〉〉,

〈T (~̄q1)T (~̄q2)T (~̄q3)〉 = (2π)3δ(
∑

i

~̄qi)〈〈T (q̄1)T (q̄2)T (q̄3)〉〉. (4.14)

4.2 Computation of 〈TTT 〉
We are now ready to compute the 3-point function for the trace of the stress-energy tensor of

the holographically dual QFT, considering first asymptotically AdS and then asymptotically

power-law domain-wall backgrounds. Ultimately, we will see how the result may be simply

expressed in terms of the domain-wall response functions Ω̄ and Λ̄.
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Our basic strategy will be to expand the dual 1-point function in the presence of sources

to quadratic order in ψ, as in (4.10). The raw ingredients for the calculation will be the

Hamiltonian and momentum constraint equations (given in Appendix B); the equation of

motion (2.21); the gauge-invariant definition of ζ , (2.7); and the definition (2.24) of the

response functions.

4.2.1 Asymptotically AdS case

Working in synchronous (Fefferman-Graham) gauge where Ni = 0 and N = 1, for asymptot-

ically AdS domain-walls we have

δ〈T ii (x)〉s =
2

κ̄2
δK(3) =

1

κ̄2
(ḣ− hij ḣij)(3) (4.15)

where h = hii. We now wish to expand δ〈T ii (x)〉s to quadratic order in ψ.

Let us start by reviewing the computation of δ〈T ii (x)〉s to linear order in ψ. To this end,

we note first that, at linear order, the Hamiltonian and momentum constraints read10

ψ̇ = (. . .)δϕ, ḣ = − 2q̄2

a2H
ψ +

ϕ̇

H
δϕ̇+ (. . .)δϕ, ω̇i = 0. (4.16)

Setting the tensors γij to zero in (2.4) (noting they decouple at linear order), we obtain

ḣij =
q̄iq̄j
q̄2

ḣ+ (. . .)δϕ. (4.17)

It follows that, in order to obtain δ〈T ii (x)〉s to linear order in ψ, we need to find the relation

between δϕ̇ and ψ to linear order. This is obtained by using the definition of the response

function, along with (2.20) and the definition (2.7) of ζ to linear order. On one hand, we have

ζ̇ =
1

2a3ǫ
Π =

1

2a3ǫ
Ω̄(q̄)ζ = − 1

2a3ǫ
Ω̄(q̄)ψ + (. . .)δϕ, (4.18)

and on the other hand,

ζ̇ = (−ψ − H

ϕ̇
δϕ)̇ = −H

ϕ̇
δϕ̇+ (. . .)δϕ. (4.19)

Thus, at linear order,

δϕ̇ =
H

a3ϕ̇
Ω̄(q̄)ψ + (. . .)δϕ, ḣij =

q̄iq̄j
q̄2

(

Ω̄(q̄)

a3
− 2q̄2

a2H

)

ψ + (. . .)δϕ. (4.20)

This is all that we need in order to derive the 2-point function (as we will do below). Moreover,

in the calculations to follow, we will use these results to replace all δϕ̇ and ḣij terms appearing

in quadratic combinations.

10The full constraint equations expanded to second order may be found in Appendix B. Since we are in
synchronous gauge here, we set δN = 0.
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We will now do the computation to quadratic order. The steps involved are the same;

the main difference is that there are quadratic sources that are processed using (4.20). Let

us start by examining the full Hamiltonian constraint at quadratic order. From (B.2), in

position space we have

(ḣ−hij ḣij) =
1

2H
(R(1)+R(2))+

ϕ̇

H
δϕ̇− 1

8H
ḣ2+

1

8H
ḣij ḣij+

1

2H
δϕ̇2+(. . .)δϕ+(. . .)δϕ2. (4.21)

The spatial curvature terms R(1) and R(2) are simply local functions of ψ, however, (for

example, R(1) = 4a−2∂2ψ) and so holographically these terms contribute only ultralocal con-

tact terms to δ〈T ii (x)〉s. We may therefore discard these terms immediately. The remaining

quadratic terms may then be replaced using (4.20). Up to ultralocal contact terms, in mo-

mentum space this gives

(ḣ− hij ḣij)(~̄q1) =
ϕ̇

H
δϕ̇(~̄q1) +

∫

[[dq̄2dq̄3]]
[ 1

8a6H

(2

ǫ
− 1 +

(~̄q2 · ~̄q3)2
q̄22 q̄

2
3

)

Ω̄(q̄2)Ω̄(q̄3)

+
1

2a5H2

(

q̄23 −
(~̄q2 · ~̄q3)2

q̄22

)

Ω̄(q̄2)
]

ψ(−~̄q2)ψ(−~̄q3) + . . .

(4.22)

where [[dq̄2dq̄3]] is defined as in (2.15).

We now need to express δϕ̇ in terms of ψ, working to quadratic order. Firstly, from the

gauge-invariant definition (2.7) of ζ , in synchronous gauge we have

ζ = −ψ − ψ2 + . . . ,

ζ̇ = −ψ̇ − H

ϕ̇
δϕ̇− 2ψψ̇ − 2H

ϕ̇
ψδϕ̇+

H

ϕ̇2
δϕ̇δϕ̇

− 1

4
πij

[2H

ϕ̇
δϕ̇(−2ψδij) +

δϕ̇

ϕ̇
ḣij + 2(χ̇,ki + ω̇k,i)(−2ψδjk) + (χ̇,k + ω̇k)(−2ψ,kδij)

]

+ . . . , (4.23)

where we have omitted terms that vanish when the sources are restricted to hij = −2ψδij ,
δϕ = 0. Upon replacing time-derivatives of perturbations in the quadratic terms using (4.20),

we then find

ζ̇(~̄q1) = −ψ̇(~̄q1)−
H

ϕ̇
δϕ̇(~̄q1)+

∫

[[dq̄2dq̄3]]
[ 1

8a6ǫH

(2

ǫ
− 1 +

(~̄q1 · ~̄q3)2
q̄21 q̄

2
3

)

Ω̄(q̄2)Ω̄(q̄3)

+
1

2a3

(

1 +
(~̄q2 · ~̄q3)
q̄22

− (~̄q1 · ~̄q2)2
q̄21 q̄

2
2

+
1

a2ϕ̇2

(

q̄23 −
(~̄q1 · ~̄q3)2

q̄21

))

Ω̄(q̄2)

+
1

a2H

(~̄q1 · ~̄q2)2
q̄21

]

ψ(−~̄q2)ψ(−~̄q3) + . . . , (4.24)
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again dropping ultralocal contact terms. This is the analogue of (4.19) at quadratic order.

At linear order, the momentum constraint implied that ψ̇ is proportional to δϕ (first

equation in (4.16)). To quadratic order we get

ψ̇ = −1
4
(−2ψδij)ḣij + ∂−2∂i

[1

4
∂j
(

(−2ψδjk)ḣki
)

+
1

8
ḣjk(−2ψ,iδjk)−

1

8
ḣij(−6ψ,j)

]

+ . . . ,

(4.25)

where again we omit terms that vanish when the sources are set to hij = −2ψδij , δϕ = 0.

Using (4.20) for the quadratic terms, we then find

ψ̇(~̄q1) =

∫

[[dq̄2dq̄3]]
[ 1

2a3

(

1 +
(~̄q1 · ~̄q3)
2q̄21

− (~̄q1 · ~̄q2)2
q̄21 q̄

2
2

− 3(~̄q1 · ~̄q2)(~̄q2 · ~̄q3)
2q̄21 q̄

2
2

)

Ω̄(q̄2) (4.26)

+
1

a2H

((~̄q1 · ~̄q2)2
q̄21

− (~̄q1 · ~̄q3)q̄22
2q̄21

+
3(~̄q1 · ~̄q2)(~̄q2 · ~̄q3)

2q̄21

)]

ψ(−~̄q2)ψ(−~̄q3) + . . .

We now work out the analogue of (4.18) to quadratic order. From (2.20) we obtain,

ζ̇(~̄q1) = −
1

2a3ǫ
Ω̄(q̄1)ψ(~̄q1) +

∫

[[dq̄2dq̄3]]
[ 1

2a3ǫ
(Λ̄(q̄i)− Ω̄(q̄1)) + B123 + 2C312Ω̄(q̄2)

+ 3D123Ω̄(q̄2)Ω̄(q̄3)
]

ψ(−~̄q2)ψ(−~̄q3) + . . . , (4.27)

where we need retain only the semilocal contact terms appearing in B123.
Finally, we may now combine (4.22), (4.24), (4.26) and (4.27), symmetrize under ~̄q2 ↔ ~̄q3,

and substitute for B123, C312 and D123 using (2.18) and (2.19). After many cancellations, we

are left with the simple result

(ḣ− hij ḣij)(~̄q1) =
1

a3
Ω̄(q̄1)ψ(~̄q1)

+

∫

[[dq̄2dq̄3]]
1

a3
[

−Λ̄(q̄i) + Ω̄(q̄1) +
3

2

(

Ω̄(q̄2) + Ω̄(q̄3)
)]

ψ(−~̄q2)ψ(−~̄q3) + . . .

(4.28)

From (4.15), and using the fact that the dilatation weight of a is minus one, we obtain

δ〈T ii (~̄q1)〉s = κ̄−2Ω̄(0)(q̄1)ψ(0)(~̄q1) (4.29)

+

∫

[[dq̄2dq̄3]]κ̄
−2
[

−Λ̄(0)(q̄i) + Ω̄(0)(q̄1)+
3

2

(

Ω̄(0)(q̄2) + Ω̄(0)(q̄3)
)]

ψ(0)(−~̄q2)ψ(0)(−~̄q3)

+ . . .

where the dots indicate terms that depend other sources. Comparing with (4.13), we then

see that

−κ̄−2Ω̄(0)(q̄) = 〈〈T (q̄)T (−q̄)〉〉, (4.30)
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−κ̄−2Λ̄(0)(q̄i) =
1

2
〈〈T (q̄1)T (q̄2)T (q̄3)〉〉+

∑

i

1

2
〈〈T (q̄i)T (−q̄i)〉〉

−
[

〈〈T (q̄1)Υ(q̄2, q̄3))〉〉+ 〈〈T (q̄2)Υ(q̄1, q̄3))〉〉+ 〈〈T (q̄3)Υ(q̄1, q̄2))〉〉
]

. (4.31)

This is the main result of the present section: we have obtained holographic formulae for 2-

and 3-point functions of the trace of the dual stress-energy tensor along a general holographic

RG flow in terms of the response functions Ω̄ and Λ̄. While the formula for the 2-point func-

tion is of course already known [42], the result for the 3-point function is new and should have

applications beyond the current work. Note that the terms in (4.31) involving 2-point func-

tions do not contribute when all three operators are at separated points. These formulae were

derived above for asymptotically AdS domain-walls but we shall see in the next subsection

that they also hold in the case of asymptotically power-law domain-walls.

In these formulae, the subscript zero indicates taking the piece of the response functions

with zero weight under dilatations. To extract this piece correctly, one first expands the

response functions in eigenfunctions of the dilatation operator, then determines the terms with

eigenvalues less than zero through an asymptotic analysis of the response function equations

of motion (2.25) and (2.26). (In this asymptotic analysis, one replaces radial derivatives with

the dilatation operator according to (4.5), and then collects together terms of equal dilatation

weight). The weight zero pieces of the response functions are then obtained by subtracting

these terms with negative dilatation weight from the full response functions and taking the

limit z →∞. (For an explicit worked example, see Section 4.3 of [34]). The relevant issue here

is that the subtraction of terms with negative conformal weight (which diverge as z → ∞)

may induce a change in the zero weight (finite) part as well.

Fortunately, however, we are saved from having to carry out any of this analysis in detail

by virtue of the fact that the cosmological formula (3.8) for the bispectrum involves taking

the imaginary part of the cosmological response function at late times. The counterterms one

subtracts to obtain the weight-zero piece of the domain-wall response functions through the

procedure described above are all analytic functions of q̄2, and hence under the continuation

q̄2 = −q2, these terms remain real and so do not contribute to the imaginary part of the

cosmological response functions.

4.2.2 Asymptotically power-law case

The holographic calculation for the case of asymptotically power-law domain-walls is very

closely related to the calculations above for asymptotically AdS domain-walls.

The perturbed dual frame metric, when written in synchronous gauge so that the dual
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frame lapse and shift perturbations vanish, reads

ds̃2 = e−λΦds2 = dr2 + ã2(δij + h̃ij)dx
idxj , (4.32)

where ã = ae−λϕ/2 and dr = e−λϕ/2dz. The dual frame metric perturbations h̃ij = −2ψ̃δij +
2χ̃,ij + 2ω̃(i,j) + γ̃ij may be expressed in terms of their Einstein frame counterparts through

the relations

ψ̃ = ψ +
λ

2
δϕ− λδϕψ − λ2

4
δϕ2, ω̃i = (1− λδϕ)ωi,

χ̃ = (1− λδϕ)χ, γ̃ij = (1− λδϕ)γij. (4.33)

Note that while the Einstein frame shift vanishes (δNi = 0), there is a nonzero Einstein frame

lapse perturbation

δN = (λ/2)δϕ+ (λ2/8)δϕ2. (4.34)

The 1-point function in the presence of sources is given by the canonical momentum in

the dual frame,

〈T ii (x)〉s =
[

κ̄−2eλΦ(2K̃ + 3λΦ,r)
]

(3)
, (4.35)

where K̃ij = ∂rg̃ij. As in the case of asymptotically AdS domain-walls, we wish to expand

the 1-point function in the presence of sources to quadratic order in ψ̃. From (4.33), however,

expanding in powers of ψ̃ in the dual frame is equivalent to expanding in powers of ψ in the

Einstein frame (i.e., the coefficients of ψ̃ and ψ̃2 in the dual frame equal the coefficients of

ψ and ψ2 in the Einstein frame). Expanding (4.35) and converting dual frame perturbations

into their Einstein frame equivalents, therefore, we find

δ
[

κ̄−2eλΦ(2K̃ + 3λΦ,r)
]

= κ̄−2e3λϕ/2
(

ḣ− hijḣij + . . .
)

, (4.36)

where we have omitted all terms that do not contribute to the expansion in ψ.

In principle, one would now proceed as in the previous section, by expanding out the

Hamiltonian and momentum constraints in the Einstein frame, using response functions to

substitute for the radial derivatives of metric perturbations where necessary: the only differ-

ence here being that there is now a nonzero lapse perturbation δN . Fortunately, however,

there is no need to repeat these calculations, since upon inspection of the constraint equations

(B.2) and (B.5), we see that only the lapse perturbation δN and its spatial derivatives appear,

and never the radial derivative δṄ . Thus, from (4.34), these additional terms involving the

lapse perturbation do not contribute to the expansion of the 1-point function in powers of ψ.

Similarly, the gauge-invariant variable ζ does not involve δN , as may be seen from (2.7). We

may therefore straightforwardly lift the result (4.28) from the previous section, whence
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δ
[

κ̄−2eλΦ(2K̃ + 3λΦ,r)
]

(~̄q1) (4.37)

=
1

κ̄2ã3
Ω̄(q̄1)ψ(~̄q1) +

∫

[[dq̄2dq̄3]]
1

κ̄2ã3
[

−Λ̄(q̄i) + Ω̄(q̄1) +
3

2

(

Ω̄(q̄2) + Ω̄(q̄3)
)]

ψ(−~̄q2)ψ(−~̄q3) + . . .

Extracting the component of appropriate dilatation weight, we therefore recover

δ〈T ii (~̄q1)〉s = κ̄−2Ω̄(0)(q̄1)ψ(0)(~̄q1) (4.38)

+

∫

[[dq̄2dq̄3]] κ̄
−2
[

−Λ̄(0)(q̄i) + Ω̄(0)(q̄1) +
3

2

(

Ω̄(0)(q̄2) + Ω̄(0)(q̄3)
)]

ψ(0)(−~̄q2)ψ(0)(−~̄q3)

+ . . . ,

exactly as in the case of asymptotically AdS domain-walls. The results (4.30) and (4.31) are

thus valid for both asymptotically AdS and asymptotically power-law domain-walls.

5 Holographic formulae for cosmology

In Section 3, we saw that the power spectrum and the bispectrum may be expressed in terms

of the cosmological response functions, and in the previous section, we saw that the domain-

wall response functions are related to 2- and 3-point functions of the dual QFT. We will now

combine these results to obtain our main holographic formulae for cosmology.

Combining the late-time cosmological result (3.11) with our holographic result (4.30), we

obtain the relation [33, 34]

〈〈ζ̂(q)ζ̂(−q)〉〉 = − 1

2Im〈〈T (−iq)T (iq)〉〉 . (5.1)

Using (3.8) and our holographic result (4.31), together with (5.1), we find

〈〈ζ̂(q1)ζ̂(q2)ζ̂(q3)〉〉 = −
1

4

1
∏

i Im[〈〈T (−iqi)T (iqi)〉〉]
Im
[

〈〈T (−iq1)T (−iq2)T (−iq3)〉〉+
∑

i

〈〈T (−iqi)T (iqi)〉〉 − 2
(

〈〈T (−iq1)Υ(−iq2,−iq3)〉〉+ cyclic perms
)]

. (5.2)

This is our main result. Using these formulae one may compute cosmological observables

from QFT correlation functions. These formulae were derived by working in the regime

where gravity is valid everywhere, however, we postulate that they hold generally.

6 Holographic non-Gaussianity

Let us now consider the case where the universe was non-geometric at early times, with the

dual QFT providing a perturbative description. To obtain cosmological predictions, we need
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Figure 2: 1-loop contribution to
〈T (q̄1)T (q̄2)T (q̄3)〉.

to work out the relevant QFT correlators and insert them in the holographic formulae above.

The computation of the power spectrum is discussed in detail in [34]. Here, we will compute

the bispectrum. We will work throughout in the large N̄ limit, with Euclidean signature

metric.

6.1 QFT results

From the QFT action (1.2), we see that propagators appear with a factor of g2YM, while

vertices and insertions of the stress-energy tensor each contribute a factor of 1/g2YM. The

leading contribution to the 3-point function 〈〈TTT 〉〉 comes therefore from the 1-loop diagram

in Fig. 2, which is of order N̄2 and involves only the free part of the Lagrangian. Interactions

contribute to diagrams at 2-loop order and higher, but these are suppressed by factors of g2eff

relative to the 1-loop contribution and will be neglected here (as discussed in [33, 34], g2eff is

of the order of ns−1 ∼ O(10−2)).

For spatially flat cosmologies, the background metric seen by the dual QFT is also flat.

The dual stress-energy tensor is then given by

Tij = TAij + T φij + T ψij + T χij , (6.1)

where the contributions from the various fields in (1.2) are

TAij =
1

g2YM

tr
[

2F I
ikF

I
jk − δij

1

2
F I
klF

I
kl

]

+ T gauge−fixing
ij + T ghost

ij ,

T φij =
1

g2YM

tr
[

∂iφ
J∂jφ

J − δij
1

2
(∂φJ)2

]

,

T χij =
1

g2YM

tr
[

∂iχ
K∂jχ

K − 1

8
∂i∂j(χ

K)2 − δij
(1

2
(∂χK)2 − 1

8
∂2(χK)2

)]

,

T ψij =
1

g2YM

tr
[1

2
ψ̄Lγ(i

←→
∂ j)ψ

L − δij
1

2
ψ̄L
←→
/∂ ψL

]

. (6.2)

Here, we suppress the contribution to the stress-energy tensor from the interaction terms in

(1.2), as these terms do not contribute to the 1-loop computation. Note that the trace of the

stress-energy tensors for both conformally coupled scalars and for massless fermions vanish
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on shell. This is a consequence of the Weyl invariance of the quadratic action for these fields

(with the fields transforming nontrivially) when the action (1.2) is appropriately coupled to

gravity.

The 2-point function for the full stress-energy tensor Tij was evaluated in [33, 34]. Here,

we need only the results

1

NA
〈〈TA(q̄)TA(−q̄)〉〉 = 1

Nφ
〈〈T φ(q̄)T φ(−q̄)〉〉 = 1

64
N̄2q̄3 +O(g2eff),

〈〈T ψ(q̄)T ψ(−q̄)〉〉 = 〈〈T χ(q̄)T χ(−q̄)〉〉 = O(g2eff). (6.3)

As for the 3-point function, the 1-loop contribution from minimally coupled scalars shown in

Fig. 2 is given by

〈〈T φ(q̄1)T φ(q̄2)T φ(q̄3)〉〉 = −NφN̄2

∫

[dq̄]
q̄·(q̄ + q̄1) q̄·(q̄ − q̄2) (q̄ + q̄1)·(q̄ − q̄2)

q̄2(q̄ + q̄1)2(q̄ − q̄2)2
+O(g2eff)

=
1

128
NφN̄2

(

2q̄1q̄2q̄3 − (q̄1 + q̄2 + q̄3)(q̄
2
1 + q̄22 + q̄23)

)

+O(g2eff), (6.4)

where in the evaluation of the integral we used the result11

∫

[dq̄]
1

q̄2(q̄ + q̄1)2(q̄ − q̄2)2
=

π3

q̄1q̄2q̄3
. (6.5)

For gauge fields, the corresponding 1-loop contribution is given by

〈〈TA(q̄1)TA(q̄2)TA(q̄3)〉〉 = NAN̄2

∫

[dq̄] πij(q̄)πjk(q̄ + q̄1)πki(q̄ − q̄2) +O(g2eff), (6.6)

where the projection operator πij(q̄) = δij − q̄iq̄j/q̄2 and the contributions from the ghost and

gauge-fixing terms cancel out, as one may have anticipated since the contribution of these

terms to the stress-energy tensor is BRST-exact. Evaluating this integral, we find

〈〈TA(q̄1)TA(q̄2)TA(q̄3)〉〉 =
NA
Nφ

[

〈〈T φ(q̄1)T φ(q̄2)T φ(q̄3)〉〉+ 2
∑

i

〈〈T φ(q̄i)T φ(−q̄i)〉〉
]

+O(g2eff).

(6.7)

The fact that the 3-point function of the vector fields is related to that of the scalars is not

unexpected, since the vector fields are dual to scalar fields in three dimensions.

Massless fermions and conformally coupled scalars, however, make no contribution to the

3-point function:

〈〈T χ(q̄1)T χ(q̄2)T χ(q̄3)〉〉 = 〈〈T ψ(q̄1)T ψ(q̄2)T ψ(q̄3)〉〉 = O(g2eff). (6.8)

The 〈〈TΥ〉〉 terms may be determined by direct calculation. In position space,

Υφ(~x1, ~x2) = 0, ΥA(~x1, ~x2) = TA(~x1)δ(~x1 − ~x2),
11Note the LHS reduces to a standard integral upon inverting all momenta, ~̄qi

′ = ~̄qi/q̄
2

i .
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Υχ(~x1, ~x2) = −
1

8

∂

∂xi1

[

(χK(~x1))
2 ∂

∂xi1
δ(~x1 − ~x2)

]

,

Υψ(~x1, ~x2) = −
1

2
T ψ(~x1)δ(~x1 − ~x2)− ψ̄L(~x1)γiψL(~x1)

∂

∂xi1
δ(~x1 − ~x2). (6.9)

We then find

〈〈T φ(q̄1)Υφ(q̄2, q̄3)〉〉 = 0, 〈〈T χ(q̄1)Υχ(q̄2, q̄3)〉〉 = O(g2eff), 〈〈T ψ(q̄1)Υψ(q̄2, q̄3)〉〉 = O(g2eff),

〈〈TA(q̄1)ΥA(q̄2, q̄3)〉〉 = 〈〈TA(q̄1)TA(q̄1)〉〉 =
NA
Nφ
〈〈T φ(q̄1)T φ(−q̄1)〉〉. (6.10)

Putting everything together, in the denominator of (5.2), we have

〈〈T (q̄)T (−q̄)〉〉 = 1

64
(NA +Nφ)N̄2q̄3 +O(g2eff), (6.11)

while in the numerator,

〈〈T (q̄1)T (q̄2)T (q̄3)〉〉+
∑

i

〈〈T (q̄i)T (−q̄i)〉〉 − 2
(

〈〈T (q̄1)Υ(q̄2, q̄3)〉〉+ cyclic perms
)

=
1

128
(NA +Nφ)N̄2

(

2q̄1q̄2q̄3 +
∑

i

q̄3i − (q̄1q̄
2
2 + 5perms)

)

+O(g2eff). (6.12)

Note that the 2-point terms on the RHS of (6.7) cancel the 〈〈TAΥA〉〉 term in (6.10) leaving

a result in which the dependence on the number of fields appears only as an overall prefactor

of (NA +Nφ).

6.2 Holographic prediction for the bispectrum

Analytically continuing N̄ and q̄ according to (2.34), the holographic formulae (5.1) and (5.2)

yield, to leading order in g2eff , the results

〈〈ζ̂(q)ζ̂(−q)〉〉 = 32

NN2q3
,

〈〈ζ̂(q1)ζ̂(q2)ζ̂(q3)〉〉 =
512

N 2N4

(

∏

i

q−3
i

)

(

−2q1q2q3 −
∑

i

q3i + (q1q
2
2 + 5perms)

)

, (6.13)

where N = NA + Nφ. (Note that the power spectrum is no longer exactly scale invariant

when we include O(g2eff) corrections, as detailed in [33, 34]).

Interestingly, these results are an exact fit to the factorizable equilateral template intro-

duced in [9], for which

〈〈ζ̂(q1)ζ̂(q2)ζ̂(q3)〉〉 = 6A2f equil.NL

(3

5

)(

∏

i

q−3
i

)

(

−2q1q2q3 −
∑

i

q3i + (q1q
2
2 + 5perms)

)

, (6.14)

where A = q3〈〈ζ̂(q)ζ̂(−q)〉〉. Comparing with (6.13), we see that A = 32/NN2 and

f equil.NL = 5/36. (6.15)
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Remarkably, this result is completely independent of the field content of the dual QFT. The

fact that we have only the equilateral type non-Gaussianity present, and not the local type,

stems from the presence of the 2-point terms in our holographic formula (5.2). These serve to

cancel out the local-type non-Gaussianity present in QFT 3-point correlators such as (6.4),

yielding a cosmological bispectrum of the purely equilateral form.

Note that in (6.15) we are using the WMAP sign convention for f equil.NL . The template

(6.14) follows from that given in [4] for ΦB, the Bardeen curvature potential in the matter-

dominated era, using the linearized relation ΦB = (3/5)ζ . Other authors have preferred to

define fNL using the Newtonian potential in place of ΦB, which yields a value for fNL with

the opposite sign. Physically, the two conventions are easily distinguished: with the WMAP

convention used here, a positive value for fNL implies an excess of cold spots in the CMB.

7 Discussion

In this paper, we presented a holographic description of inflationary cosmology at quadratic

order in perturbation theory, and initiated the holographic analysis of cosmological non-

Gaussianity. Our most important result is the holographic formula (5.2) expressing the cos-

mological bispectrum of curvature perturbations in terms of correlation functions of the dual

QFT. With the aid of this formula, we have computed the non-Gaussianity of cosmological

perturbations at the end of a primordial holographic inflationary epoch in which gravity was

strongly coupled at very early times. The resulting non-Gaussianity is of exactly the factor-

izable equilateral type with f equil.NL = 5/36, irrespective of all details of the dual QFT. It is

striking that a simple holographic phenomenological approach yields such clear, unambiguous

predictions.

While an fNL of this magnitude is almost certainly too small to be directly measurable

with the Planck satellite, the detection of much larger fNL values would of course eliminate

the present class of holographic models. (Here, it should be understood that our prediction

for fNL refers specifically to the residual primordial component once all non-Gaussianities

arising from the post-inflationary evolution have been subtracted out).

The holographic models explored here may be distinguished from their conventional in-

flationary counterparts through a combination of the predicted running of the spectral index

discussed in [35], along with the predictions for the scalar bispectrum discussed above. Con-

ventional inflationary models (meaning those based on weakly coupled gravity) that predict

non-Gaussianity of the equilateral type include: ghost inflation [68] and DBI inflation [20],

which typically predict f equil.NL ∼ 100; tilted ghost inflation where f equil.NL & 1 [69]; and slow-

roll inflation with higher derivative couplings where f equil.NL . 1 [70]. Nevertheless, in all these
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cases, the bispectrum is only approximately of the equilateral type, unlike the exact equilateral

form found in the case of the holographic models.

Finally, let us remark that the methods we have developed in this paper are straightfor-

wardly applicable to other forms of holographic non-Gaussianity. We will report holographic

results for cosmological 3-point correlators involving tensors in a forthcoming publication [40].

Beyond this, the holographic calculation of the scalar trispectrum appears a worthy target

for future endeavours.
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A Gauge-invariant variables at second order

Decomposing the metric to second order as gµν = g
(0)
µν + δgµν , the metric perturbation δgµν

transforms under a second-order gauge transformation ξµ as

δǧµν = δgµν +£ξg
(0)
µν +£ξδgµν +

1

2
£2
ξg

(0)
µν . (A.1)

Readers familiar with [71, 72] may wish to verify that upon setting

δgµν = λδg(1)µν +
λ2

2
δg(2)µν +O(λ3), ξµ = λξµ(1) +

λ2

2
ξµ(2) +O(λ3), (A.2)

and expanding in powers of λ, we recover the equivalent expressions

δǧ(1)µν = δg(1)µν +£ξ(1)g
(0)
µν , δǧ(2)µν = δg(2)µν +£ξ(2)g

(0)
µν +£2

ξ(1)
g(0)µν + 2£ξ(1)δg

(1)
µν . (A.3)

In the present paper we do not write this expansion in λ explicitly, but rather we simply work

to quadratic order in the overall perturbation δgµν . We will therefore use (A.1) rather than

(A.3) in the following. (If desired, though, the expansion in λ may be re-instated at any time

using (A.2)).

The transformed metric perturbations defined in (2.4) are then

φ̌ = (1/2)σδǧ00, ν̌i = a−2πijδǧ0j,

ν̌ = a−2∂−2∂iδǧ0i, ω̌i = a−2πij∂k∂
−2δǧjk,

ψ̌ = −(1/4)a−2πijδǧij, γ̌ij = a−2Πijklδǧkl,

χ̌ = (1/2)a−2(δij − (3/2)πij)∂
−2δǧij, (A.4)
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where the transverse and transverse traceless projection operators are

πij = δij − ∂i∂j/∂2, Πijkl = (1/2)(πikπjl + πilπjk − πijπkl). (A.5)

These formulae may then be evaluated explicitly as required. Writing ξµ = (α, δijξj)

(where ξi may be further decomposed as ξi = β,i + γi, where γi is transverse), we find that,

for example,

ψ̌ = ψ −Hα−
(Ḣ

2
+H2

)

α2 − H

2
αα̇− H

2
ξiα,i

−1
4
πij

(

αḣij + 2Hαhij + ξkhij,k +
2

a2
δNiα,j + 2ξk,ihjk +

σ

a2
α,iα,j + ξk,iξk,j + 4Hαξi,j

)

.

(A.6)

Similarly, the scalar field perturbation transforms as

δϕ̌ = δϕ+£ξϕ+£ξδϕ+ (1/2)£2
ξϕ

= δϕ+ αϕ̇+ αδϕ̇+ ξiδϕ,i + (1/2)ϕ̈α2 + (1/2)ϕ̇αα̇+ (1/2)ϕ̇ξiα,i. (A.7)

We may now express ζ in gauge-invariant form to second order as follows. To convert to

comoving gauge (δϕ̌ = χ̌ = ω̌i = 0), at first order in perturbation theory we have

χ̌ = χ+ β, ω̌i = ωi + γi, (A.8)

hence to first order we require α = −δϕ/ϕ̇ and ξi = −ξ̂i, where ξ̂i ≡ χ,i + ωi. Using these

first order quantities, we may now solve (A.7) to quadratic order. To pass to comoving gauge

at quadratic order therefore requires a change of slicing

α = −δϕ
ϕ̇

+
δϕδϕ̇

2ϕ̇2
+
ξ̂iδϕ,i
2ϕ̇

. (A.9)

(One may similarly solve for ξi to second order, however we will not need this quantity here).

Substituting these results into (A.6) yields ψ̌ in gauge-invariant form12:

ψ̌ = ψ +
H

ϕ̇
δϕ− H

ϕ̇2
δϕδϕ̇− H

ϕ̇
ξ̂kδϕ,k +

(Hϕ̈

2ϕ̇
− Ḣ

2
−H2

)δϕ2

ϕ̇2

+
1

4
πij

( 2

a2ϕ̇
δNiδϕ,j +

2H

ϕ̇
δϕhij +

δϕ

ϕ̇
ḣij + 2ξ̂k,ihjk + ξ̂khij,k

− σ

a2ϕ̇2
δϕ,iδϕ,j −

4H

ϕ̇
δϕξ̂i,j − ξ̂k,iξ̂k,j

)

. (A.10)

The gauge-invariant expression (2.7) for ζ at quadratic order then follows from the relation

1− 2ψ̌ = e2ζ = 1 + 2ζ + 2ζ2 ⇒ ζ = −ψ̌ − ψ̌2. (A.11)

We have checked the gauge-invariance of (2.7) explicitly.

12This result agrees with [73], up to the spatial gradient terms that are dropped in this reference.
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B Constraint equations

In this appendix, we present the domain-wall Hamiltonian and momentum constraint equa-

tions to quadratic order, as required for our holographic calculations in Section 4.2. We will

assume the shift has been gauged to zero (Ni = 0), but otherwise retain all perturbations.

The full Hamiltonian constraint reads

0 = −R +K2 −KijK
ij + 2κ̄2V −N−2Φ̇2 + gijΦ,iΦ,j , (B.1)

where Kij = (1/2N)ġij is the extrinsic curvature of constant-z slices. Expanding to quadratic

order, we find

0 = −4a−2∂2ψ + 2Hḣ+ 4κ̄2V δN − 2ϕ̇δϕ̇+ 2κ̄2V ′δϕ

−R(2) +
1

4
ḣ2 − 1

4
ḣijḣij − 2Hhijḣij − 4Hḣ δN − 6κ̄2V δN2

−δϕ̇2 + 4ϕ̇ δNδϕ̇+ κ̄2V ′′δϕ2 + a−2δϕ,iδϕ,i, (B.2)

where repeated covariant indices are to be summed over using the Kronecker delta, and

h ≡ hii. For the purposes of our holographic calculations, we will not need to evaluate R(2)

explicitly.

Similarly, the momentum constraint

0 = ∇j(K
j
i − δjiK)−N−1Φ̇Φ,i, (B.3)

yields

0 =
1

2
ḣij,j −

1

2
ḣ,i + 2HδN,i − ϕ̇δϕ,i

+
1

4
h,jḣji −

1

4
ḣjkhjk,i − δϕ̇δϕ,i + ϕ̇ δNδϕ,i − 4HδNδN,i

+
1

2
(hjkḣjk + ḣ δN),i −

1

2
(hjkḣki + ḣij δN),j (B.4)

when expanded to quadratic order. Extracting the scalar part by acting with ∂−2∂i, we find

0 = 2ψ̇ − ϕ̇δϕ+ 2HδN

+
1

2
hjkḣjk − 2HδN2 +

1

2
ḣ δN

+∂−2∂i

[1

4
h,jḣji −

1

4
ḣjkhjk,i −

1

2
(hjkḣki + ḣijδN),j − δϕ̇δϕ,i + ϕ̇ δNδϕ,i

]

. (B.5)
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