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A possible source of black hole entropy could be the entanglement of quantum fields in and out the
horizon. The entanglement entropy of the ground state obeys the area law. However, a correction
term proportional to a fractional power of area results when the field is in a superposition of ground
and excited states. Inspired by the power-law corrections to entropy and adopting the viewpoint
that gravity emerges as an entropic force, we derive modified Newton’s law of gravitation as well
as the corrections to Friedmann equations. In a quite different approach, we obtained power-law
corrected Friedmann equation by starting from the first law of thermodynamics at apparent horizon
of a FRW universe, and assuming that the associated entropy with apparent horizon has a power-
law corrected relation. Our study shows a consistency between the obtained results of these two
different approach.

I. INTRODUCTION

Recently, Verlinde [1] demonstrated that gravity can be interpret as an entropic force caused by the changes in
the information associated with the positions of material bodies. In his new proposal, Verlinde obtained successfully
the Newton’s law of gravitation, the Poisson’s equation and Einstein field equations by employing the holographic
principle as well as the equipartition law of energy. As soon as Verlinde presented his idea, many relevant works about
entropic force appeared. For example, Friedmann equations from entropic force have been derived in Refs. [2, 3]. The
Newtonian gravity [4], the holographic dark energy [5] and thermodynamics of black holes [6] have been investigated
by using the entropic force approach. It has been shown that uncertainty principle may arise in the entropic force
paradigm [7]. Other studies on the entropic force, which raised a lot of attention recently, have been carried out in
[8].
On the other hand, string theory, as well as the string inspired braneworld scenarios such as RSII model, suggest a

modification of Newtons law of gravitation at small distance scales [9, 10]. In addition, there have been considerable
works on quantum corrections of some basic physical laws. The loop quantum corrections to the Newton and Coulomb
potential have been considered in some references (see [11] and references therein). Also, corrections to Friedmann
equations from loop quantum gravity has been studied in [12].
Inspired by the Verlinde’s argument and considering the quantum corrections to area law of the black hole entropy,

one is able to derive some physical equations with correction terms. For example, modified Newton’s law of gravitation
has been studied in [13], while entropic corrections to Coulomb’s law have been investigated in [14]. In addition,
modified Friedmann equations have also been constructed in [15, 16]. In all these cases [13–16] the corrected entropy
has the logarithmic term which arises from the inclusion of quantum effects, motivated from the loop quantum gravity
and is due to the thermal equilibrium fluctuations and quantum fluctuations [17].
In this paper we would like to consider the effects of the power-law correction terms to the entropy on the laws of

gravitation. The power-law corrections to entropy appear in dealing with the entanglement of quantum fields in and
out the horizon [18]. Indeed, it has been shown that the origin of black hole entropy may lie in the entanglement
of quantum fields between inside and outside of the horizon [18]. Since the modes of gravitational fluctuations in a
black hole background behave as scalar fields, one is able to compute the entanglement entropy of such a field, by
tracing over its degrees of freedom inside a sphere. In this way the authors of [18] showed that the black hole entropy
is proportional to the area of the sphere when the field is in its ground state, but a correction term proportional
to a fractional power of area results when the field is in a superposition of ground and excited states. For large
horizon areas, these corrections are relatively small and the area law is recovered. Applying this power-law corrected
entropy, we obtain the corrections to Newton’s law as well as modified Friedmann equation by adopting the viewpoint
that gravity emerges as an entropic force. In a quite different approach, we are able to derive power-law corrected
Friedmann equation by starting from the first law of thermodynamics at apparent horizon of a FRW universe, and
assuming that the associated entropy with apparent horizon has a power-law corrected relation. We find that both
modified Friedmann equations are consistent to each other.
The outline of our paper is as follows. In the next section, we use Verlinde approach to derive Newton’s law of

gravitation with a correction term. In section III, we derive the power-law entropy-corrected Friedmann equation
of FRW universe by considering gravity as an entropic force. Then, in section IV, we obtain modified Friedmann
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equation by applying the first law of thermodynamics at apparent horizon of a FRW universe. We finish our paper
with some closing remarks.

II. ENTROPIC CORRECTION TO NEWTON’S LAW

According to Verlinde’s argument, when a test particle moves apart from the holographic screen, the magnitude of
the entropic force on this body has the form

F△x = T△S, (1)

where △x is the displacement of the particle from the holographic screen, while T and △S are the temperature and
the entropy change on the screen, respectively.
In Verlinde’s discussion, the black hole entropy S plays a crucial role. Indeed, the derivation of Newton’s law of

gravity depends on the entropy-area relationship S = kBA/4ℓ
2
p of black holes in Einsteins gravity, where A = 4πR2

represents the area of the horizon and ℓp =
√

G~/c3 is the Planck length. However, the power-law corrections to
entropy appear in dealing with the entanglement of quantum fields in and out the horizon [18]. The power-law
corrected entropy has the form [19]

S =
kBA

4ℓ2p

[

1−KαA
1−α/2

]

, (2)

where α is a dimensionless constant whose value is currently under debate, kB stands for the Boltzmann constant and

Kα =
α(4π)α/2−1

(4 − α)r2−α
c

, (3)

where rc is the crossover scale. Taking the power-law correction to entropy into account, Newton’s law of gravitation
as well as Friedman equations will be modified accordingly. First of all, we rewrite Eq. (2) in the following form

S = kB

[

A

4ℓ2p
+ s(A)

]

, (4)

where s(A) stands for the correction term in the entropy expression. Suppose we have two masses one a test mass
and the other considered as the source with respective masses m and M . Centered around the source mass M , is
a spherically symmetric surface S which will be defined with certain properties that will be made explicit later. To
derive the entropic law, the surface S is between the test mass and the source mass, but the test mass is assumed
to be very close to the surface as compared to its reduced Compton wavelength λm = ~

mc . When a test mass m is a
distance △x = ηλm away from the surface S, the entropy of the surface changes by one fundamental unit △S fixed
by the discrete spectrum of the area of the surface via the relation

△S =
∂S

∂A
△A = kB

(

1

4ℓ2p
+

∂s(A)

∂A

)

△A. (5)

The energy of the surface S is identified with the relativistic rest mass of the source mass:

E = Mc2. (6)

On the surface S, there live a set of “bytes” of information that scale proportional to the area of the surface so that

A = QN, (7)

where N represents the number of bytes and Q is a fundamental constant which should be specified later. Assuming
the temperature on the surface is T , and then according to the equipartition law of energy [20], the total energy on
the surface is

E =
1

2
NkBT. (8)

Finally, we assume that the force on the particle follows from the generic form of the entropic force governed by the
thermodynamic equation

F = T
△S

△x
, (9)
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where △S is one fundamental unit of entropy when |△x| = ηλm, and the entropy gradient points radially from the
outside of the surface to inside. Note that N is the number of bytes and thus △N = 1, hence from (7) we have
△A = Q. Combining Eqs. (5)- (9), we find

F = −
Mm

R2

(

Q2c3

8π~ηℓ2p

)[

1 + 4ℓ2p
∂s(A)

∂A

]

A=4πR2

, (10)

This is nothing but the Newton’s law of gravitation to the first order provided we define Q2 = 8πηℓ4p. Thus we reach

F = −
GMm

R2

[

1 + 4ℓ2p
∂s

∂A

]

A=4πR2

, (11)

Using Eq. (2) we obtain
(

∂s

∂A

)

A=4πR2

= −
Kα(4− α)

8ℓ2p

(

4πR2
)1−α/2

(12)

Substituting Eq. (12) in Eq. (11) we obtain

F = −
GMm

R2

[

1−
Kα

2
(4 − α)

(

4πR2
)1−α/2

]

, (13)

Using Eq. (3) the above relation can be rewritten as

F = −
GMm

R2

[

1−
α

2

(rc
R

)α−2
]

, (14)

This is the power-law correction to the Newton’s law of gravitation. When α = 0, one recovers the usual Newton’s
law. A close look at Eq. (14) shows that the significant of the corrected term in various regions depends on the value
of α. Indeed, it was argued that α should be ranges as 2 < α < 4 [18]. Besides, the satisfaction of the generalized
second law of thermodynamics for the universe with the power-law corrected entropy (1) implies that α > 2 [19]. In
this case (α > 2), the corrected term can be comparable to the first term when rc ∼ R. On the other hand, for small
distance, R ≪ rc, the correction becomes significantly large, while for large distance, R ≫ rc, the correction term is
relatively small and one obtains the usual Newton’s law of gravitation. This is consistent with the argument that for
large horizon areas, the power-law corrections are relatively small and the area law is recovered [18].

III. MODIFIED FRIEDMANN EQUATIONS FROM ENTROPIC FORCE

Next, we extend our discussion to the cosmological setup. Assuming the background spacetime to be spatially
homogeneous and isotropic which is given by the Friedmann-Robertson-Walker (FRW) metric

ds2 = hµνdx
µdxν +R2(dθ2 + sin2 θdφ2), (15)

where R = a(t)r, x0 = t, x1 = r, the two dimensional metric hµν=diag (−1, a2/(1−kr2)). Here k denotes the curvature
of space with k = 0, 1,−1 corresponding to open, flat, and closed universes, respectively. The dynamical apparent
horizon, a marginally trapped surface with vanishing expansion, is determined by the relation hµν∂µR∂νR = 0. A
simple calculation gives the apparent horizon radius for the FRW universe

R = ar =
1

√

H2 + k/a2
(16)

where H = ȧ/a is the Hubble parameter. We also assume the matter source in the FRW universe is a perfect fluid of
mass density ρ and pressure p with stress-energy tensor

Tµν = (ρ+ p)uµuν + pgµν . (17)

Due to the pressure, the total mass M = ρV in the region enclosed by the boundary S is no longer conserved, the
change in the total mass is equal to the work made by the pressure dM = −pdV , which leads to the well-known
continuity equation

ρ̇+ 3H(ρ+ p) = 0, (18)
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It is instructive to first derive the dynamical equation for Newtonian cosmology. Consider a compact spatial region
V with a compact boundary S, which is a sphere with physical radius R = a(t)r. Note that here r is a dimensionless
quantity which remains constant for any cosmological object partaking in free cosmic expansion. Combining the
second law of Newton for the test particle m near the surface with gravitational force (14) we get

F = mR̈ = mär = −
GMm

R2

[

1−
α

2

(rc
R

)α−2
]

, (19)

We also assume ρ = M/V is the energy density of the matter inside the the volume V = 4
3πa

3r3. Thus, Eq. (19) can
be rewritten as

ä

a
= −

4πG

3
ρ

[

1−
α

2

(rc
R

)α−2
]

, (20)

This is nothing but the power-law entropy-corrected dynamical equation for Newtonian cosmology. The main difference
between this equation and the standard dynamical equation for Newtonian cosmology is that the correction terms now
depends explicitly on the radius R. However, we can remove this confusion. Assuming that for Newtonian cosmology
the spacetime is Minkowskian with k = 0, then we get R = 1/H , and we can rewrite Eq. (20) in the form

ä

a
= −

4πG

3
ρ

[

1−
α

2
rc

α−2

(

ȧ

a

)α−2
]

. (21)

It was argued in [21] that for deriving the Friedmann equations of FRW universe in general relativity, the quantity
that produces the acceleration is the active gravitational mass M [22], rather than the total mass M in the spatial
region V . With the entropic correction term, the active gravitational mass M will also modified as well. On one side,
from Eq. (20) with replacing M with M we have

M = −
äa2

G
r3
[

1−
α

2

(rc
R

)α−2
]

−1

. (22)

On the other side, the active gravitational mass is defined as [21]

M = 2

∫

V

dV

(

Tµν −
1

2
Tgµν

)

uµuν . (23)

A simple calculation leads

M = (ρ+ 3p)
4π

3
a3r3. (24)

Equating Eqs. (22) and (24), we find

ä

a
= −

4πG

3
(ρ+ 3p)

[

1−
α

2

(rc
R

)α−2
]

. (25)

Multiplying ȧa on both sides of Eq. (25), and using the continuity equation (18) we reach

d

dt
(ȧ2) =

8πG

3

d

dt
(ρa2)

[

1−
α

2

(rc
R

)α−2
]

. (26)

Integrating of Eq. (26), we find

H2 +
k

a2
=

8πG

3
ρ

[

1−
α

2ρa2

(rc
r

)α−2
∫

d(ρa2)

aα−2

]

, (27)

where k is a constant of integration. Now, in order to calculate the integral we need to find ρ = ρ(a). Assume the
equation of state parameter w = p/ρ is a constant, the continuity equation (18) can be integrated immediately to give

ρ = ρ0a
−3(1+w), (28)
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where ρ0, an integration constant, is the present value of the energy density. Inserting relation (28) in Eq. (27), after
integration, we obtain

H2 +
k

a2
=

8πG

3
ρ

[

1−
α

2

(3w + 1)

(3w + α− 1)

(rc
R

)α−2
]

. (29)

Using Eq. (16), we can rewrite the above equation as

(

H2 +
k

a2

)

[

1−
α

2
rc

α−2 (3w + 1)

(3w + α− 1)

(

H2 +
k

a2

)α/2−1
]

−1

=
8πG

3
ρ. (30)

If α is taken as small quantity, then the above equation can be expanded up to the linear order of α. The result is

(

H2 +
k

a2

)

+ βrc
α−2

(

H2 +
k

a2

)α/2

=
8πG

3
ρ, (31)

where

β =
α(3w + 1)

2(3w + α− 1)
. (32)

Thus we have derived the power-law entropy-corrected Friedmann equation of FRW universe by considering gravity
as an entropic force caused by changes in the information associated with the positions of material bodies. In the
absence of the correction terms (α = 0 = β), one recovers the well-known Friedmann equation in standard cosmology.
Since α > 2 the correction term in (31) can be comparable to the first term only when a is very small, thus the
corrections make sense only at early stage of the universe where a → 0. When the universe becomes large, the
power-law entropy-corrected Friedmann equation reduces to the standard Friedman equation.

IV. MODIFIED FRIEDMANN EQUATIONS FROM THE FIRST LAW

To show the correctness of our final result (31) in the previous section, here we adopt another approach. Indeed, we
are able to derive modified Friedmann equation by applying the first law of thermodynamics at apparent horizon of a
FRW universe, with the assumption that the associated entropy with apparent horizon has the power-law corrected
form (2). It was already shown that the differential form of the Friedmann equation in the FRW universe can be
written in the form of the first law of thermodynamics on the apparent horizon [23]. We follow the method developed
in [24]. Throughout this section we set ~ = c = kB = 1 for simplicity. The associated temperature with the apparent
horizon can be defined as [25]

T =
κ

2π
= −

1

2πR

(

1−
Ṙ

2HR

)

. (33)

where κ is the surface gravity. When Ṙ ≤ 2HR, the temperature becomes negative T ≤ 0. Physically it is not
easy to accept the negative temperature. In this case the temperature on the apparent horizon should be defined as
T = |κ|/2π. The work density is obtained as [26]

W =
1

2
(ρ− p). (34)

The work density term is regarded as the work done by the change of the apparent horizon. We also assume the first
law of thermodynamics on the apparent horizon is satisfied and has the form

dE = ThdSh +WdV, (35)

where Sh is the power-law corrected entropy associated with the apparent horizon which has the form (2). We also
assume E = ρV is the total energy content of the universe inside a 3-sphere of radius R, where V = 4π

3 R3 is the

volume enveloped by 3-dimensional sphere with the area of apparent horizon A = 4πR2. Taking differential form
of the relation E = 4π

3 ρR3 for the total matter and energy inside the apparent horizon, and using the continuity
equation (18), we get

dE = 4πρR2dR− 4πHR3(ρ+ p)dt. (36)
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Taking differential form of the corrected entropy (2), we have

dSh =
2πR

G

[

1−
α

2

(rc
R

)α−2
]

dR. (37)

Inserting Eqs. (33), (34), (36) and (37) in the first law (35), we can get the differential form of the modified Friedmann
equation

1

4πG

dR

R3

[

1−
α

2

(rc
R

)α−2
]

= H(ρ+ p)dt. (38)

Using the continuity equation (18), we can rewrite it as

−
2

R3

[

1−
α

2

(rc
R

)α−2
]

dR =
8πG

3
dρ. (39)

Integrating (39) yields

1

R2
−

rα−2
c

Rα
=

8πG

3
ρ+ C, (40)

where C is the integration constant to be determined later. Substituting R from Eq.(16) we obtain entropy-corrected
Friedmann equation

H2 +
k

a2
− rα−2

c

(

H2 +
k

a2

)α/2

=
8πG

3
ρ+ C. (41)

The constant C can be determined by taking the α −→ 0 limit of the above expression. In this limit Eq. (41) reduces
to the usual Friedmann equation provided C = −r−2

c . Thus we reach

H2 +
k

a2
− r−2

c

[

rαc

(

H2 +
k

a2

)α/2

− 1

]

=
8πG

3
ρ. (42)

On the other hand the constant C can be absorbed in ρ. In this case the Friedmann equation (41) is consistent with
Eq. (31) derived in the previous section provided

α =
2(1− 3w)

3(1 + w)
. (43)

This shows a strong consistency check on Verlinde’s model. It is also notable to mention that Eq. (42) is consistent
with the result obtained in [27]. However, our derivation is quite different from [27]. Let us stress the difference
between our derivation in this section and [27]. First of all, the authors of [27] have derived modified Friedmann
equations by applying the first law of thermodynamics, TdS = −dE, to the apparent horizon of a FRW universe with
the assumption that the apparent horizon has corrected-entropy like (2). It is worthy to note that the notation dE
in [27] is quite different from the same we used in this section. In [27], −dE is actually just the heat flux crossing the
apparent horizon within an infinitesimal internal of time dt. But, here dE is change in the the matter energy inside
the apparent horizon. Besides, in [27] the apparent horizon radius R has been assumed to be fixed. But, here, the
apparent horizon radius changes with time. This is the reason why we have included the term WdV in the first law
(35). Indeed, the term 4πR2ρdR in Eq. (36) contributes to the work term, while this term is absent in dE of [27].
This is consistent with the fact that in thermodynamics the work is done when the volume of the system is changed.

V. CLOSING REMARKS

It was argued that a possible source of black hole entropy could be the entanglement of quantum fields in and out
the horizon [18]. The entanglement entropy of the ground state of field obeys the well-known area law. However,
the power-law correction to the area law appears when the wave-function of the quantum field is chosen to be a
superposition of ground state and exited state [18]. Indeed, the excited states contribute to the correction, and more
excitations produce more deviation from the area law [28, 29]. Therefore, the correction terms are more significant
for higher excitations.
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Motivated by the power-law corrected entropy and adopting the viewpoint that gravity emerges as an entropic
force, we derived modified Newton’s law of gravitation as well as power-law correction to Friedmann equations. We
found that the correction term for Friedmann equation falls off rapidly with apparent horizon radius and can be
comparable to the first term only when the scale factor a is very small. Thus the corrections make sense only at
early stage of the universe. When the universe becomes large, the power-law entropy-corrected Friedmann equation
reduces to the standard Friedman equation. This can be understood easily. At late time where a is large, i.e., at low
energies, it is difficult to excite the modes and hence, the ground state modes contribute to most of the entanglement
entropy. However, at the early stage, i.e., at high energies, a large number of field modes can be excited and contribute
significantly to the correction causing deviation from the area law and hence deviation from the standard Friedmann
equation.
To show the correctness of our result, we also derived modified Friedmann equation from different approach. We

started from the first law of thermodynamics at apparent horizon of a FRW universe, and assuming that the associated
entropy with apparent horizon has power-law corrected form (2), we obtained modified Friedmann equation which is
consistent with the result we obtained by Verlinde’s technique. This provides a strong consistency check on Verlinde’s
model.
It is worth noting that although we derived modified Friedmann equations corresponding to the corrected entropy-

area relation (2), it would be of great interest to see whether one is able to get modified Einstein field equation as well
as Poisson equation by following Verlinde’s argument [1]. We leave more investigations on this issue for future works.
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