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Abstract

To one loop order, interacting boson fields on de Sitter space have an “infrared” anomaly that

breaks the de Sitter symmetry for all vacua save the Euclidian one. The divergence of a symmetry

current at point x has a non-zero contribution at the antipodal point x̄.
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Quantum field theory on a de Sitter background presents problems primarily in the choice
of vacuum on which to build the theory [1, 2]. Among these vacua the Euclidian or Bunch-
Davies vacuum [3] seems to presents least difficulties [4, 5]. Recently Polyakov [6, 7] has
argued that the criterion for which vacuum to use should be based on the behavior of the
propagator at large distances. Namely the propagator for a particle of mass m should vary
as exp(−iml) , l being the geodesic distance between two points in de Sitter space, rather
than a sum of exp(iml) and exp(−iml); the latter is the behavior in all vacua save the
one advocated in [6, 7]. The consequences of using this propagator are quite dramatic.
The vacuum radites particles in an explosive way canceling the curvature of the underlying
space. By screaning this curvature de Sitter symmetry is broken. This would have severe
consequences for our understanding of cosmology, especially during inflationary growth.
This picture was confirmed in the case of a two dimensional, (1+1), space [8] where by the
use of a fermion-boson correspondence certain interacting theories can be solved exactly. It
was found that a massless field with a sine-Gordon interaction correspond to a free fermion
one with a de Sitter time dependent mass, explicitely breaking de Sitter symmetry. In this
article we study the symmetries of interacting scalar theories in D = (1+ d) dimensional de
Sitter space directly. We find that, to one loop, there is an anomaly and the currents of de
Sitter symmetry are not conserved.

A D-dimensional de Sitter space, with coordinates τ, x1, · · · , xd (d = D − 1)) may be
imbedded in a flat (D+1) Minkowski space with coordinates Y0, Y1, · · · , YD, satisfying the
constraint

Y 2
0 − Y 2

1 − · · · − Y 2
D = −1 . (1)

The parametrization we shall use is the flat slicing one [9] with conformal time where the
metric of the space is

ds2 = dτ 2 − e2τd~xd~x . (2)

The relation between the intrinsic de Sitter coordinates τ, ~x and the embedding ones
Y0, ~Y , YD (~Y denotes a d dimensional vector) are

Y0 =
1

2

(

τ −
1

τ
−

~x2

τ

)

,

Yi = −
xi

τ
(i = 1 · · ·d) , (3)

YD =
1

2

(

−τ −
1

τ
+

~x2

τ

)

.

We are interested in how the isometries of de Sitter space are implemented in this metric.
In the embedding space these isometries are Lorentz transformations involving Y0, ~Y and
YD and fall into four classes: (i) velocity transformations in the Yi directions, (ii) velocity
transformation in the YD direction, (iii) rotations in the Yi − Yj planes, and (iv) rotations
in the Yi − YD planes; the infinitesimal forms of these and the coreponding transformations
for the conformal τ, ~x coordinates are:

δY0 = ǫYi; δYi = ǫY0 =⇒ δτ = −τxi : δxi = −ǫ[xixj + δij(τ
2 − 1− ~x · ~x)/2] , (4a)

δY0 = ǫYD; δYD = ǫY0 =⇒ δτ = −ǫτ ; δXi = −ǫxi , (4b)

δYi = ǫYj; δYj = −ǫYi; =⇒ δxi = ǫxj ; δxj = −ǫxi , (4c)

δYD = ǫYi; δYi = −ǫYD =⇒ δτ = −τxi; δxj = −ǫ[xixj + δij(τ
2 + 1− ~x · ~x)/2] ; . (4d)
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An interacting scalar field, φ(τ, ~x) propagating on a space with the metric in eq. (2) is
governed by the action

S =

∫

dτddxτ−D

[

τ 2

2
∂µφφ∂νφ− V (φ)

]

; (5)

indices are raised and lowered by a D dimensional flat Minkowski metric tensor ηµν . Details
of calculations will be presented for the case where

V (φ) =
m2

2
φ2 +

g

4!
φ4 (6)

and then generalized to arbitrary V (φ).
The generators of the de Sitter isometries, (4a–4d), are expressible in terms of the canon-

ical energy-momentum tensor obtained from the Lagrangian in eq. (5)

Θµν = τ 2−D∂µφ∂νφ− ηµν

[

τ 2−D 1

2
∂αφ∂

αφ− τ−DV (φ)

]

; (7)

and are Sν = δτΘ0ν −
∑

i δxiΘiν , or more specifically

S(a;i)
ν = −τxiΘ0ν +

∑

j

[xixj + δij(τ
2 − 1− ~x · ~x)/2]Θjν , (8a)

S(b)
ν = −τθ0ν +

∑

j

xjΘjν , (8b)

S(c;i,j)
ν = xiΘjν − xiΘiν , (8c)

S(d;i)
ν = −τxiΘ0ν + [xixj + δij(τ

2 + 1− ~x · ~x)/2]Θjν . (8d)

The explicit appearance of the coordinate τ in Θµν results in nonconservation of this tensor,
however the condition

τ∂αΘ0α = Θα
α (9)

ensures the conservation of all the de Sitter currents (8a–8d), i.e. ηµν∂µS
(..)
ν = 0

Using the equations of motion obtained from (5), it is strairghtforward to check that
the energy-momentum tensor, eq. (7), satisfies (9). We shall show that for the propagator
advocated in [6, 7] this relation does not hold for regulated one loop corrections. Explicitely,
the propagator we shall use is

Dm(x1, x2) = C(1− z212)
−(D−2)/4Q

(D−2)/2

−

1
2
+iν(m)

(z12) ; (10)

with Yi the coordinates in the embedding space corresponding to the point xi in the de
Sitter space; zij = Yi · Yj. Q is an associated Legendre function of the second kind and

ν(m) =
√

m2 − (D − 1)2/4 and the constant C depends only on the dimension of the de
Sitter space and is chosen to insure a correct residue at z12 = 1, corresponding to Y1 = Y2.
In addition to the “ultraviolet” singularity at Y1 = Y2 (10) has an additional, “infrared”,
singularity at z12 = −1, namely Y2 = −Y1 or x2 = x̄1, the point antipodal to x1 [9]. It is
this singularity that will be responsible for the non-conservation of de Sitter currents.

To determine the conservation, or lack thereof, we shall study the matrix element

Tµν(x; y1, y2) = 〈T [Θµν(x)φ(y1)φ(y2)]〉 , (11)

where the symbol T in the matrix element above indicates a conformal time, τ , ordered
product. To zoroth order in g we find
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Tµν(x; y1, y2) =
[

τ 2−D∂µDm(x, y1)∂νDm(x, y2) + (y1 ↔ y2)
]

− ηµν
[

τ 2−D∂αDm(x, y1)∂αDm(x, y2)− τ−Dm2Dm(x, y1)Dm(x, y2)
]

, (12)

where τ is the time associated with the x cordinate. Up to terms involving equal time com-
mutators, [Θ0ν(τ, ~x), φ(τ, ~yi)], generated by differentiating the time ordering, Tµν(x; y1, y2)
satisfies an equation analogous to eq. (9).

Aside from mass renormalizations, the correction to Tµν(x; y1, y2) to order g is

δTµν(x; y1, y2) = g

∫

d5zδ(z2 + 1){τ 2−D∂µDm(x, z)∂νDm(x, z)

−
ηµν
2

[τ 2−D∂αDm(x, z)∂αDm(x, z)− τ−Dm2Dm(x, z)
2]}Dm(z, y1)Dm(z, y2)} .

(13)

For the de Sitter currents to be conserved we require that

∆(x; y1, y2) = τ∂µδT0µ(x; y1, y2)− δT µ
µ(x; y1, y2) = 0 . (14)

The validity of
∫

d5zδ(z2 + 1){τ 2−D∂µ∂µD(x, z)∂νD(x, z)

− τ−Dm2∂νD(x, z)2]}D(z, y1)D(z, y2) = 0 , (15)

which follows from the equations of motion, would insure (14) Although this relation is
formally satisfied it involves products of functions singular, both, at x = z and at x = z̄;
thus before we conclude anything the integral in (14) must be regulated. As the singularity
at x = z is a short distance one, the curvature of the underlying space does not come into
play and it is removed by the ususl ultraviolet renormalization. The singularity at x = z̄ is
new and requires its own regularization.

As the residue of the pole at z12 = −1 in (10) does depend on the mass [10], the reg-
ularization we use consists of subtracting from (13) an expression in with all propagators

Dm(x, z) = (1− z212)
−(D−2)/4Q

(D−2)/2

−

1
2
+iν(m)

(z12) replaced by

DM(x, z) = [cos(iν(m) + (D − 2)/2)/cos(iν(M) + (D − 2)/2] (1−z212)
−(D−2)/4Q

(D−2)/2

−

1
2
+iν(M)

(z12)

(the prefactor involving the cosines makes the residues at z = −1 in Dm and DM equal) and
at the end letting M → ∞. The substituion, m → M is performed only in the propagators
and not in the m that appears explicitly in (13). The formal manipulations may now be
carried out resulting in

∆(x; y1, y2) =

∫

d5zδ(z2 + 1)τ 1−D(M2 −m2)DM(x, z)2Dm(z, y1)Dm(z, y2) . (16)

The conservation of the de Sitter currents depends on whether ∆ → 0 as M → ∞. To
perform the above integration we follow the procedure of [7] which we outline here. Details
will be presented elsewhere [11]. We shall show that in the large M limit the integrand will
be peaked at z = x̄ and we can replace the propagators Dm(z, yi) by Dm(x̄, yi). Due to
Lorentz invariance in the imbedding space, the resultant integral does not depend on x and
we may set x = (0, 1, zi>1 = 0) and as DM(x, z) = DM(x · z − iǫ) (the dot product being
taken in the imbedding space) (16) becomes
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∆(x; , y1, y2) ∼ M2

∫

dz0dz1(z
2
0 − z21 + 1)

(D−3)/2
+ DM(z1 − iǫ)2Dm(x̄, y1)Dm(x̄, y2) ; (17)

the + suscript in (· · · )+ denotes that the integration is to be restricted to the region where
the expression inside the parenthesis is positive. The subsequent z0 integration as well as
the use of the analyticity of DM(z1) in the lower half plane are discussed in [7]. Repeating
that procedure results in

∆(x; , y1, y2) ∼ M2

∫ 1

−1

dz1







−2iπǫ(z1) D = 2

2(1− iǫ(z1))
√

1− z21 D = 3
2iπǫ(z1)(z

2
1 − 1) D = 4







DM(z1−iǫ)2Dm(x̄, y1)Dm(x̄, y2) .

(18)

Using the propagator in (10), DM(z) = (1 − z2)−(D−2)/4Q
(D−2)/2

−

1
2
+iν(M)

(z − iǫ) we are asked

to look at the large M limit of [cos(iν(M) + (d− 2)/2]DM(z − iǫ). From [10] we find

cos[iν(M) + (D − 2)/2]−1DM(z) →

√

π
2
e−MπM (D−3)/2

[

z+(z2−1)
1
2 ]iν(M)+ 1

2

(z2−1)
1
4

]

; (19)

with all z’s having a small negative imaginary part. At z = −1 this limit is infinite while for
all z > −1 it is zero justifying the replacemrnt of z by x̄ in the propagators Dm(z, yi). The
integral of the square of 19) multiplied by the dimendion dpendent factors in (18) behaves
as M−2 resulting in

∆(x; , y1, y2) ∼ Dm(x̄, y1)Dm(x̄, y2) , (20)

or, going back to eqs. (8a–8d)

ηµν∂µS
(·,i)
ν (x) ∼

(

τ
∂

∂τ
+ xi

∂

∂xi

)

gφ(x̄)2 . (21)

This can be generalized to any interaction of scalar fields as

ηµν∂µS
(·,·)
ν (x) ∼

(

τ
∂

∂τ
+ xi

∂

∂xi

)

∂2

∂φ2
V (φ(x̄)) . (22)

As the propagator for the Euclidian vacuum has no antipodal singularity, these anomalies
do not apply for that case.

Several questions remain unanswered. The technical ones are: (i) Are these results depen-
dent on regularization schemes?, (ii) How do higher order corrections affect these results?,
(iii) Do interacting fermions induce a similar anomaly? The results in [8] would indicate
that the answer is no. A more fundamental question is: is the propagator in [6] the one to
use in perturbative calculations on this positive curvature space or does the result presented
here serve as annother nail in the coffin of the α-vacua [4][12]?

I wish to thank Dr. E. Rabinovici, Dr. A. Rajaraman and and Dr. A. Schwimmer for
discussions and suggestions.

[1] E. Mottola, Phys. Rev. D 31, 754 (1985).

5



[2] B. Allen, Phys. Rev. D 32, 3136 (1985).

[3] T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978).

[4] M. B. Einhorn and F. Larsen, Phys. Rev. D 67, 024001 (2003) [arXiv:hep-th/0209159],

M. B. Einhorn and F. Larsen, Phys. Rev. D 68, 064002 (2003) [arXiv:hep-th/0305056].

[5] N. A. Chernikov and E. A. Tagirov, Ann. Inst. Henri Poincaré, A9, 109 (1967).
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