Anomaly breaking of de Sitter symmetry

Myron Bander
Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA

(Dated: November, 2010)

Abstract

To one loop order, interacting boson fields on de Sitter space have an "infrared" anomaly that breaks the de Sitter symmetry for all vacua save the Euclidian one. The divergence of a symmetry current at point x has a non-zero contribution at the antipodal point \bar{x}.

PACS numbers: 04.62.+v, 11.10.Jj

Quantum field theory on a de Sitter background presents problems primarily in the choice of vacuum on which to build the theory [1, 2]. Among these vacua the Euclidian or BunchDavies vacuum [3] seems to presents least difficulties [4, 5]. Recently Polyakov [6, 7] has argued that the criterion for which vacuum to use should be based on the behavior of the propagator at large distances. Namely the propagator for a particle of mass m should vary as $\exp (-i m l), l$ being the geodesic distance between two points in de Sitter space, rather than a sum of $\exp (i m l)$ and $\exp (-i m l)$; the latter is the behavior in all vacua save the one advocated in [6, 7]. The consequences of using this propagator are quite dramatic. The vacuum radites particles in an explosive way canceling the curvature of the underlying space. By screaning this curvature de Sitter symmetry is broken. This would have severe consequences for our understanding of cosmology, especially during inflationary growth. This picture was confirmed in the case of a two dimensional, $(1+1)$, space [8] where by the use of a fermion-boson correspondence certain interacting theories can be solved exactly. It was found that a massless field with a sine-Gordon interaction correspond to a free fermion one with a de Sitter time dependent mass, explicitely breaking de Sitter symmetry. In this article we study the symmetries of interacting scalar theories in $D=(1+d)$ dimensional de Sitter space directly. We find that, to one loop, there is an anomaly and the currents of de Sitter symmetry are not conserved.

A D-dimensional de Sitter space, with coordinates $\left.\tau, x_{1}, \cdots, x_{d}(d=D-1)\right)$ may be imbedded in a flat ($\mathrm{D}+1$) Minkowski space with coordinates $Y_{0}, Y_{1}, \cdots, Y_{D}$, satisfying the constraint

$$
\begin{equation*}
Y_{0}^{2}-Y_{1}^{2}-\cdots-Y_{D}^{2}=-1 \tag{1}
\end{equation*}
$$

The parametrization we shall use is the flat slicing one [9] with conformal time where the metric of the space is

$$
\begin{equation*}
d s^{2}=d \tau^{2}-e^{2 \tau} d \vec{x} d \vec{x} \tag{2}
\end{equation*}
$$

The relation between the intrinsic de Sitter coordinates τ, \vec{x} and the embedding ones $Y_{0}, \vec{Y}, Y_{D}(\vec{Y}$ denotes a d dimensional vector) are

$$
\begin{align*}
Y_{0} & =\frac{1}{2}\left(\tau-\frac{1}{\tau}-\frac{\vec{x}^{2}}{\tau}\right) \\
Y_{i} & =-\frac{x_{i}}{\tau} \quad(i=1 \cdots d) \tag{3}\\
Y_{D} & =\frac{1}{2}\left(-\tau-\frac{1}{\tau}+\frac{\vec{x}^{2}}{\tau}\right)
\end{align*}
$$

We are interested in how the isometries of de Sitter space are implemented in this metric. In the embedding space these isometries are Lorentz transformations involving Y_{0}, \vec{Y} and Y_{D} and fall into four classes: (i) velocity transformations in the Y_{i} directions, (ii) velocity transformation in the Y_{D} direction, (iii) rotations in the $Y_{i}-Y_{j}$ planes, and (iv) rotations in the $Y_{i}-Y_{D}$ planes; the infinitesimal forms of these and the coreponding transformations for the conformal τ, \vec{x} coordinates are:

$$
\begin{align*}
\delta Y_{0}=\epsilon Y_{i} ; \quad \delta Y_{i}=\epsilon Y_{0} \Longrightarrow \delta \tau=-\tau x_{i}: \quad \delta x_{i}=-\epsilon\left[x_{i} x_{j}+\delta_{i j}\left(\tau^{2}-1-\vec{x} \cdot \vec{x}\right) / 2\right], \tag{4a}\\
\delta Y_{0}=\epsilon Y_{D} ; \quad \delta Y_{D}=\epsilon Y_{0} \Longrightarrow \delta \tau=-\epsilon \tau ; \quad \delta X_{i}=-\epsilon x_{i}, \tag{4b}\\
\delta Y_{i}=\epsilon Y_{j} ; \quad \delta Y_{j}=-\epsilon Y_{i} ; \Longrightarrow \delta x_{i}=\epsilon x_{j} ; \quad \delta x_{j}=-\epsilon x_{i}, \tag{4c}\\
\delta Y_{D}=\epsilon Y_{i} ; \quad \delta Y_{i}=-\epsilon Y_{D} \Longrightarrow \delta \tau=-\tau x_{i} ; \quad \delta x_{j}=-\epsilon\left[x_{i} x_{j}+\delta_{i j}\left(\tau^{2}+1-\vec{x} \cdot \vec{x}\right) / 2\right] ; \tag{4~d}
\end{align*}
$$

An interacting scalar field, $\phi(\tau, \vec{x})$ propagating on a space with the metric in eq. (2) is governed by the action

$$
\begin{equation*}
\mathcal{S}=\int d \tau d^{d} x \tau^{-D}\left[\frac{\tau^{2}}{2} \partial^{\mu} \phi \phi \partial_{\nu} \phi-V(\phi)\right] \tag{5}
\end{equation*}
$$

indices are raised and lowered by a D dimensional flat Minkowski metric tensor $\eta^{\mu \nu}$. Details of calculations will be presented for the case where

$$
\begin{equation*}
V(\phi)=\frac{m^{2}}{2} \phi^{2}+\frac{g}{4!} \phi^{4} \tag{6}
\end{equation*}
$$

and then generalized to arbitrary $V(\phi)$.
The generators of the de Sitter isometries, (4a 4d), are expressible in terms of the canonical energy-momentum tensor obtained from the Lagrangian in eq. (5)

$$
\begin{equation*}
\Theta_{\mu \nu}=\tau^{2-D} \partial_{\mu} \phi \partial_{\nu} \phi-\eta_{\mu \nu}\left[\tau^{2-D} \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi-\tau^{-D} V(\phi)\right] \tag{7}
\end{equation*}
$$

and are $S_{\nu}=\delta \tau \Theta_{0 \nu}-\sum_{i} \delta x_{i} \Theta_{i \nu}$, or more specifically

$$
\begin{align*}
S_{\nu}^{(a ; i)} & =-\tau x_{i} \Theta_{0 \nu}+\sum_{j}\left[x_{i} x_{j}+\delta_{i j}\left(\tau^{2}-1-\vec{x} \cdot \vec{x}\right) / 2\right] \Theta_{j \nu} \tag{8a}\\
S_{\nu}^{(b)} & =-\tau \theta_{0 \nu}+\sum_{j} x_{j} \Theta_{j \nu} \tag{8b}\\
S_{\nu}^{(c ; i, j)} & =x_{i} \Theta_{j \nu}-x_{i} \Theta_{i \nu} \tag{8c}\\
S_{\nu}^{(d ; i)} & =-\tau x_{i} \Theta_{0 \nu}+\left[x_{i} x_{j}+\delta_{i j}\left(\tau^{2}+1-\vec{x} \cdot \vec{x}\right) / 2\right] \Theta_{j \nu} \tag{8d}
\end{align*}
$$

The explicit appearance of the coordinate τ in $\Theta_{\mu \nu}$ results in nonconservation of this tensor, however the condition

$$
\begin{equation*}
\tau \partial^{\alpha} \Theta_{0 \alpha}=\Theta^{\alpha}{ }_{\alpha} \tag{9}
\end{equation*}
$$

ensures the conservation of all the de Sitter currents (8a-8d), i.e. $\eta^{\mu \nu} \partial_{\mu} S_{\nu}^{(. .)}=0$
Using the equations of motion obtained from (5), it is strairghtforward to check that the energy-momentum tensor, eq. (7), satisfies (9). We shall show that for the propagator advocated in [6, 7] this relation does not hold for regulated one loop corrections. Explicitely, the propagator we shall use is

$$
\begin{equation*}
D_{m}\left(x_{1}, x_{2}\right)=C\left(1-z_{12}^{2}\right)^{-(D-2) / 4} \mathcal{Q}_{-\frac{1}{2}+i \nu(m)}^{(D-2) / 2}\left(z_{12}\right) \tag{10}
\end{equation*}
$$

with Y_{i} the coordinates in the embedding space corresponding to the point x_{i} in the de Sitter space; $z_{i j}=Y_{i} \cdot Y_{j} . \mathcal{Q}$ is an associated Legendre function of the second kind and $\nu(m)=\sqrt{m^{2}-(D-1)^{2} / 4}$ and the constant C depends only on the dimension of the de Sitter space and is chosen to insure a correct residue at $z_{12}=1$, corresponding to $Y_{1}=Y_{2}$. In addition to the "ultraviolet" singularity at $Y_{1}=Y_{2}$ (10) has an additional, "infrared", singularity at $z_{12}=-1$, namely $Y_{2}=-Y_{1}$ or $x_{2}=\bar{x}_{1}$, the point antipodal to x_{1} [9]. It is this singularity that will be responsible for the non-conservation of de Sitter currents.

To determine the conservation, or lack thereof, we shall study the matrix element

$$
\begin{equation*}
T_{\mu \nu}\left(x ; y_{1}, y_{2}\right)=\left\langle T\left[\Theta_{\mu \nu}(x) \phi\left(y_{1}\right) \phi\left(y_{2}\right)\right]\right\rangle \tag{11}
\end{equation*}
$$

where the symbol T in the matrix element above indicates a conformal time, τ, ordered product. To zoroth order in g we find

$$
\begin{align*}
T_{\mu \nu}\left(x ; y_{1}, y_{2}\right) & =\left[\tau^{2-D} \partial_{\mu} D_{m}\left(x, y_{1}\right) \partial_{\nu} D_{m}\left(x, y_{2}\right)+\left(y_{1} \leftrightarrow y_{2}\right)\right] \\
& -\eta_{\mu \nu}\left[\tau^{2-D} \partial^{\alpha} D_{m}\left(x, y_{1}\right) \partial_{\alpha} D_{m}\left(x, y_{2}\right)-\tau^{-D} m^{2} D_{m}\left(x, y_{1}\right) D_{m}\left(x, y_{2}\right)\right], \tag{12}
\end{align*}
$$

where τ is the time associated with the x cordinate. Up to terms involving equal time commutators, $\left[\Theta_{0 \nu}(\tau, \vec{x}), \phi\left(\tau, \vec{y}_{i}\right)\right]$, generated by differentiating the time ordering, $T_{\mu \nu}\left(x ; y_{1}, y_{2}\right)$ satisfies an equation analogous to eq. (9).

Aside from mass renormalizations, the correction to $T_{\mu \nu}\left(x ; y_{1}, y_{2}\right)$ to order g is

$$
\begin{align*}
\delta T_{\mu \nu}\left(x ; y_{1}, y_{2}\right) & =g \int d^{5} z \delta\left(z^{2}+1\right)\left\{\tau^{2-D} \partial_{\mu} D_{m}(x, z) \partial_{\nu} D_{m}(x, z)\right. \\
& \left.\left.-\frac{\eta_{\mu \nu}}{2}\left[\tau^{2-D} \partial^{\alpha} D_{m}(x, z) \partial_{\alpha} D_{m}(x, z)-\tau^{-D} m^{2} D_{m}(x, z)^{2}\right]\right\} D_{m}\left(z, y_{1}\right) D_{m}\left(z, y_{2}\right)\right\} \tag{13}
\end{align*}
$$

For the de Sitter currents to be conserved we require that

$$
\begin{equation*}
\Delta\left(x ; y_{1}, y_{2}\right)=\tau \partial^{\mu} \delta T_{0 \mu}\left(x ; y_{1}, y_{2}\right)-\delta T_{\mu}^{\mu}\left(x ; y_{1}, y_{2}\right)=0 . \tag{14}
\end{equation*}
$$

The validity of

$$
\begin{align*}
& \int d^{5} z \delta\left(z^{2}+1\right)\left\{\tau^{2-D} \partial^{\mu} \partial_{\mu} D(x, z) \partial_{\nu} D(x, z)\right. \\
& \left.\left.-\tau^{-D} m^{2} \partial_{\nu} D(x, z)^{2}\right]\right\} D\left(z, y_{1}\right) D\left(z, y_{2}\right)=0 \tag{15}
\end{align*}
$$

which follows from the equations of motion, would insure (14) Although this relation is formally satisfied it involves products of functions singular, both, at $x=z$ and at $x=\bar{z}$; thus before we conclude anything the integral in (14) must be regulated. As the singularity at $x=z$ is a short distance one, the curvature of the underlying space does not come into play and it is removed by the ususl ultraviolet renormalization. The singularity at $x=\bar{z}$ is new and requires its own regularization.

As the residue of the pole at $z_{12}=-1$ in (10) does depend on the mass [10], the regularization we use consists of subtracting from (13) an expression in with all propagators $D_{m}(x, z)=\left(1-z_{12}^{2}\right)^{-(D-2) / 4} \mathcal{Q}_{-\frac{1}{2}+i \nu(m)}^{(D-2) / 2}\left(z_{12}\right)$ replaced by
$D_{M}(x, z)=\left[\cos (i \nu(m)+(D-2) / 2) / \cos (i \nu(M)+(D-2) / 2]\left(1-z_{12}^{2}\right)^{-(D-2) / 4} \mathcal{Q}_{-\frac{1}{2}+i \nu(M)}^{(D-2) / 2}\left(z_{12}\right)\right.$
(the prefactor involving the cosines makes the residues at $z=-1$ in D_{m} and D_{M} equal) and at the end letting $M \rightarrow \infty$. The substituion, $m \rightarrow M$ is performed only in the propagators and not in the m that appears explicitly in (13). The formal manipulations may now be carried out resulting in

$$
\begin{equation*}
\Delta\left(x ; y_{1}, y_{2}\right)=\int d^{5} z \delta\left(z^{2}+1\right) \tau^{1-D}\left(M^{2}-m^{2}\right) D_{M}(x, z)^{2} D_{m}\left(z, y_{1}\right) D_{m}\left(z, y_{2}\right) \tag{16}
\end{equation*}
$$

The conservation of the de Sitter currents depends on whether $\Delta \rightarrow 0$ as $M \rightarrow \infty$. To perform the above integration we follow the procedure of [7] which we outline here. Details will be presented elsewhere [11]. We shall show that in the large M limit the integrand will be peaked at $z=\bar{x}$ and we can replace the propagators $D_{m}\left(z, y_{i}\right)$ by $D_{m}\left(\bar{x}, y_{i}\right)$. Due to Lorentz invariance in the imbedding space, the resultant integral does not depend on x and we may set $x=\left(0,1, z_{i>1}=0\right)$ and as $D_{M}(x, z)=D_{M}(x \cdot z-i \epsilon)$ (the dot product being taken in the imbedding space) (16) becomes

$$
\begin{equation*}
\Delta\left(x ;, y_{1}, y_{2}\right) \sim M^{2} \int d z_{0} d z_{1}\left(z_{0}^{2}-z_{1}^{2}+1\right)_{+}^{(D-3) / 2} D_{M}\left(z_{1}-i \epsilon\right)^{2} D_{m}\left(\bar{x}, y_{1}\right) D_{m}\left(\bar{x}, y_{2}\right) \tag{17}
\end{equation*}
$$

the + suscript in $(\cdots)_{+}$denotes that the integration is to be restricted to the region where the expression inside the parenthesis is positive. The subsequent z_{0} integration as well as the use of the analyticity of $D_{M}\left(z_{1}\right)$ in the lower half plane are discussed in [7]. Repeating that procedure results in

$$
\Delta\left(x ;, y_{1}, y_{2}\right) \sim M^{2} \int_{-1}^{1} d z_{1}\left\{\begin{array}{cc}
-2 i \pi \epsilon\left(z_{1}\right) & D=2 \tag{18}\\
2\left(1-i \epsilon\left(z_{1}\right)\right) \sqrt{1-z_{1}^{2}} & D=3 \\
2 i \pi \epsilon\left(z_{1}\right)\left(z_{1}^{2}-1\right) & D=4
\end{array}\right\} D_{M}\left(z_{1}-i \epsilon\right)^{2} D_{m}\left(\bar{x}, y_{1}\right) D_{m}\left(\bar{x}, y_{2}\right)
$$

Using the propagator in (10), $D_{M}(z)=\left(1-z^{2}\right)^{-(D-2) / 4} \mathcal{Q}_{-\frac{1}{2}+i \nu(M)}^{(D-2) / 2}(z-i \epsilon)$ we are asked to look at the large M limit of $\left[\cos (i \nu(M)+(d-2) / 2] D_{M}(z-i \epsilon)\right.$. From [10] we find

$$
\begin{gather*}
\cos [i \nu(M)+(D-2) / 2]^{-1} D_{M}(z) \rightarrow \\
\sqrt{\frac{\pi}{2}} e^{-M \pi} M^{(D-3) / 2}\left[\frac{z+\left(z^{2}-1 \frac{1}{2} j^{i \nu(M)+\frac{1}{2}}\right.}{\left(z^{2}-1\right)^{\frac{1}{4}}}\right] ; \tag{19}
\end{gather*}
$$

with all z 's having a small negative imaginary part. At $z=-1$ this limit is infinite while for all $z>-1$ it is zero justifying the replacemrnt of z by \bar{x} in the propagators $D_{m}\left(z, y_{i}\right)$. The integral of the square of (19) multiplied by the dimendion dpendent factors in (18) behaves as M^{-2} resulting in

$$
\begin{equation*}
\Delta\left(x ;, y_{1}, y_{2}\right) \sim D_{m}\left(\bar{x}, y_{1}\right) D_{m}\left(\bar{x}, y_{2}\right) \tag{20}
\end{equation*}
$$

or, going back to eqs. (8a) 8d)

$$
\begin{equation*}
\eta^{\mu \nu} \partial_{\mu} S_{\nu}^{(\cdot, i)}(x) \sim\left(\tau \frac{\partial}{\partial \tau}+x_{i} \frac{\partial}{\partial x_{i}}\right) g \phi(\bar{x})^{2} \tag{21}
\end{equation*}
$$

This can be generalized to any interaction of scalar fields as

$$
\begin{equation*}
\eta^{\mu \nu} \partial_{\mu} S_{\nu}^{(\cdot, \cdot)}(x) \sim\left(\tau \frac{\partial}{\partial \tau}+x_{i} \frac{\partial}{\partial x_{i}}\right) \frac{\partial^{2}}{\partial \phi^{2}} V(\phi(\bar{x})) \tag{22}
\end{equation*}
$$

As the propagator for the Euclidian vacuum has no antipodal singularity, these anomalies do not apply for that case.

Several questions remain unanswered. The technical ones are: (i) Are these results dependent on regularization schemes?, (ii) How do higher order corrections affect these results?, (iii) Do interacting fermions induce a similar anomaly? The results in [8] would indicate that the answer is no. A more fundamental question is: is the propagator in [6] the one to use in perturbative calculations on this positive curvature space or does the result presented here serve as annother nail in the coffin of the α-vacua [4] 12]?

I wish to thank Dr. E. Rabinovici, Dr. A. Rajaraman and and Dr. A. Schwimmer for discussions and suggestions.
[1] E. Mottola, Phys. Rev. D 31, 754 (1985).
[2] B. Allen, Phys. Rev. D 32, 3136 (1985).
[3] T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117 (1978).
[4] M. B. Einhorn and F. Larsen, Phys. Rev. D 67, 024001 (2003) arXiv:hep-th/0209159], M. B. Einhorn and F. Larsen, Phys. Rev. D 68, 064002 (2003) arXiv:hep-th/0305056.
[5] N. A. Chernikov and E. A. Tagirov, Ann. Inst. Henri Poincaré, A9, 109 (1967).
[6] A. M. Polyakov, Nucl. Phys. B 797, 199 (2008) arXiv:0709.2899 [hep-th]].
[7] A. M. Polyakov, Nucl. Phys. B 834, 316 (2010) arXiv:0912.5503 [hep-th]].
[8] M. Bander, Phys. Rev. D 82 (2010) 024003 arXiv:1003.3963 [hep-th]].
[9] M. Spradlin, A. Strominger and A. Volovich, arXiv:hep-th/0110007.
[10] A. Erdlyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions (New York, McGraw-Hill, 1953)
[11] To appear inthe Proceedings of Quarks, Strings and the Cosmos - Héctor Rubinstein Memorial Symposium, August 9-11 2010 AlbaNova, Stockholm, Sweden.
[12] T. Banks and L. Mannelli, Phys. Rev. D 67 (2003) 065009 arXiv:hep-th/0209113.

