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Abstract

A relation between circular 1/2 BPS ’t Hooft operators in 4d N = 4 SYM

and instantonic solutions in 2d Yang-Mills theory (YM2) has recently been

conjectured. Localization indeed predicts that those ’t Hooft operators in

a theory with gauge group G are captured by instanton contributions to the

partition function of YM2, belonging to representations of the dual group LG.

This conjecture has been tested in the case G = U(N) =LG and for funda-

mental representations. In this paper we examine this conjecture in the case

of the groups G = SU(N) and LG = SU(N)/ZN and loops in different rep-

resentations. Peculiarities when groups are not self-dual and representations

not “minimal” are pointed out.
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I. INTRODUCTION

Electric-magnetic duality in electromagnetism [1] has been extended to non-Abelian the-

ories and, in particular, to N = 4 super Yang-Mills (SYM N = 4), (S-duality) [2]. It is

conjectured that SYM N = 4 with gauge group G and coupling constant τ is equivalent to

SYM N = 4 with dual gauge group LG [3] and dual coupling constant Lτ , with

Lτ = −1

τ
(1)

for simply laced algebras, where

τ =
θ

2π
+

4πi

g24d
, Lτ =

Lθ

2π
+

4πi

(Lg4d)2
. (2)

The symmetry has to be understood as an operator isomorphism between the two theories

[4]. Since it interchanges electric and magnetic charges, it maps a Wilson operator [5] onto a

’t Hooft operator [6] and vice-versa. Conjectures have also been suggested for chiral primary

operators [7], surface operators [8] and domain walls [9].

An advance has recently been made with [10] where the conjecture has been extended

to correlation functions of gauge invariant operators. The set of observables in SYM N = 4

are related by the S-duality requirement

〈ΠiOi〉G,τ = 〈Πi
LOi〉LG,Lτ . (3)

This property is both interesting and difficult to prove since it involves strong coupling

calculations. The choice has been focused on a ’t Hooft operator T (LR) in a theory with

gauge group G, LR being a representation of the dual group LG.

The expectation value of a ’t Hooft loop can be computed by a path-integral where the

integration is performed over all fields which have a prescribed singularity along the loop. In

the weak coupling regime quantum fluctuations around the classical monopole configuration

can also be obtained up to one loop order and a recipe has been provided to compute the

loop perturbatively at any desired higher order.
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This result has subsequently been compared with a strong coupling calculation of a

Wilson loop with dual gauge group and dual coupling (see (4)).

To compute Wilson loops where some fractions of supersymmetries are preserved, one

may resort to matrix models where explicit calculations are feasible, as conjectured in [11,12]

and proved in [13]. A rather interesting family of contours can be obtained by coupling three

of the six scalars and by restricting the contours to lie on a great S2 inside S3. The related

1/8 BPS loop operators are conjectured to correspond to the “zero-instanton sector” of the

two-dimensional Yang-Mills theory (YM2) on S2 [14]. In turn this was proved long ago to

be equivalent to a Gaussian matrix model with area dependent coupling g2A = −2g24d [15],

[16]. Several results which comply with this conjecture have appeared recently in [17].

From matrix models a strong coupling expression for the Wilson loop can be extracted,

to be compared with the weak coupling expression of the ’t Hooft loop hitherto obtained.

This can eventually be used to test the S-duality conjecture

〈T (LR)〉G,τ = 〈W (LR)〉LG,Lτ . (4)

An even bolder conjecture has been proposed in [18]. After retrieving the correspondence

between a (supersymmetric) Wilson loop in SYM N=4 and the zero-instanton sector of

the loop in YM2, the authors extended this relation to suitable ’t Hooft operators. More

precisely they suggested that the expectation value of the 1/2 BPS circular ’t Hooft loop in

representation LR = (m1, ..., mN ) in SYM N=4 with gauge group G and with an imaginary

coupling (θ = 0) could be obtained from the partition function Z of YM2 with gauge group

G around an unstable instanton [19] labeled by LR

〈TLR(C)〉G,τ =
Z(g;m1, ..., mN)

Z(g; 0, ..., 0)
, (5)

where the configuration (m1, · · · , mN) is related to the boxes in the Young tableau.

Similarly, correlation functions of the 1/2 BPS ’t Hooft loop with any number of 1/8

BPS Wilson loops inserted on the S2 linked to the ’t Hooft loop, could be computed in YM2

by calculating the Wilson loop correlation functions around a fixed unstable instanton.
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These suggestions are particularly intriguing since they point towards endowing those

instantonic sectors with a “physical” meaning.

In fact in [18] the check was limited to the K-antisymmetric representations of the gauge

group U(N), which cannot be screened to give rise to sub-leading saddle points in the path

integral localization (the “monopole bubbling” phenomenon [20]). Moreover the choice of

U(N) hid the possible occurrence of different representations R and LR in the general case,

U(N) being self-dual.

Our purpose in this paper is to extend the analysis to the gauge group SU(N) and to

its dual SU(N)/ZN .

In Sect.2 we develop the harmonic analysis in SU(N) and SU(N)/ZN of the partition

function and of a Wilson loop of an operator firstly in the K-fundamental representation

and then in the adjoint one. We remark that the Poisson transformation, which is the

bridge between the expansions in terms of characters and of unstable instantons respectively,

provides us with two different expressions for the same quantity: they are representations

in the different dual groups SU(N) and SU(N)/ZN .

In Sect.3 we test the conjecture of ref. [18] of a relation between a Wilson loop in the

K-fundamental representation and a ’t Hooft loop, obtained by singling out in the partition

function the contribution of an instanton belonging to the same representation. The test was

successfully performed in [18] for the group U(N). The novelty in our case is that the K-

irrep is not present in SU(N)/ZN . As a consequence the test can only be exploited starting

from SU(N)/ZN (in any k-sector) and ending in SU(N) where the K-irrep is present. This

example, of course, is endowed with general validity.

Then we discuss the case of the adjoint representation. In this case both SU(N) and

SU(N)/ZN are viable. However it turns out that the instanton contribution to the partition

function, which should correspond to a 1/2 BPS ’t Hooft loop in SYM N = 4, indeed

presents some extra terms (subleading in N) with respect to the Wilson loop in the same

representation. This is a concrete realization of the possibility mentioned in [18] and there

interpreted as a subleading contribution in the path-integral localization of SYM N = 4.
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Finally Sect.4 contains our conclusions together with some insight into possible future

developments.

II. THE HARMONIC ANALYSIS ON SU(N) AND SU(N)/ZN

It is well known that the irreducible representations (irreps) of SU(N)/ZN occur in k

sectors where the integer k runs from 0 to N − 1, corresponding to the k-th root of the

identity.

The basic ingredient in computing the partition function and Wilson loop correlators

in YM2 is the heat kernel on a two-dimensional cylinder K(A;U2, U1) of area A = Lτ

(L=base circle, τ = length), and fixed holonomies at the boundaries U1 and U2. The only

geometrical dependence of the kernel is on its area, thanks to the invariance of YM2 under

area- preserving diffeomorphisms [19]. The kernel enjoys the basic sewing property

K(Lτ : U2, U1) =

∫

dUK(Lu;U2, U(u))K(L(τ − u));U(u), U1). (6)

The partition function on a sphere with area A is expressed as K(A; 1, 1).

The kernel K can be expanded as a series of the characters χR of all the irreps, according

to the equation

K(A;U2, U1) =
∑

R

χ†
R(U2)χR(U1) exp

[−g2A

4
CR

]

, (7)

CR ≡ C2(R) being the quadratic Casimir operator of the R-representation.

The generalization of the above construction to SU(N)/ZN is simple: following [21] and

[22], we project the final state of the heat kernel onto k-states

Kk(A;U2, U1) =
∑

z∈ZN

zkK(A; zU2, U1),

=

N−1
∑

n=0

∑

R

e
2πin
N

(k−mR)χ†
R(U2)χR(U1) exp

[−g2A

4
CR

]

, (8)

where z = exp(2πi n
N
), n = 0, ..., N−1. and m(R) =

∑N−1
q=1 m

(R)
q is the total number of boxes

of the Young tableau.
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Choosing U1 = U2 = 1, the partition function in the k-sector takes the expression

Zk(A) = N
∑

R

(dR)
2 exp

[−g2A

4
CR

]

δ[N ](k −m(R)), (9)

where dR is the dimension of the R-irrep and δ[N ] is the N -periodic delta-function.

Averaging over k, the SU(N) partition function is immediately recovered. The presence

of the periodic δ-function constraint marks the difference between SU(N)/ZN and SU(N).

Introducing the explicit expression for the characters [23] enables us to write eq.(9)

explicitly in terms of a new set of indices {li} = (l1, . . . , lN), li = mi + N − i (see the

Appendix). By recalling the relations

C2(R) =

N
∑

i=1

(

li −
l

N

)2

− N

12
(N2 − 1)

dR = ∆(l1, ..., lN), l =

N
∑

i=1

li, (10)

where ∆ is the Vandermonde determinant , we get [22]

Zk(A) =
(2π)N−1

(N − 1)!
√
π

+∞
∑

li=−∞

∫ 2π

0

dα e
−

(

α− 2π
N

l

)2

δ[N ]

(

k − l +
N(N − 1)

2

)

× exp

[

−g2A

4
C2(li)

]

∆2(l1, ..., lN). (11)

The dual representation in this context is realized by means of a Poisson transformation

+∞
∑

li=−∞

F (l1, . . . , lN) =

+∞
∑

ni=−∞

F̃ (n1, . . . , nN),

F̃ (n1, . . . , nN) =

∫ +∞

−∞

dz1 . . . dzNF (z1, . . . , zN ) exp
[

2πi(z1n1 + . . .+ zNnN)
]

. (12)

In order to perform this multiple Fourier transform, we remember that the transformation

of a product is turned into a convolution; moreover we recall the result

∫ +∞

−∞

dz1 . . . dzN exp
[

i(z1p1 + . . .+ zNpN)
]

∆({zi}) exp
(

− g2A

8

N
∑

q=1

z2q

)

=

[ 4i

g2A

]

N(N−1)
2

[ 8π

g2A

]
N
2
∆({pi}) exp

(

− 2

g2A

N
∑

q=1

p2q

)

. (13)

6



Taking these relations into account, eq. (11) becomes

Zk(A) =

N−1
∑

n=0

exp
[2πink

N

]

Z(n)(A), (14)

where

Z(n)(A) = (−1)n(N−1) C(A,N)

+∞
∑

nq=−∞

δ(n−
N
∑

q=1

nq) exp
[

− 4π2

g2A

N
∑

q=1

(nq −
n

N
)2
]

ζn({nq}),

(15)

with

ζn({nq}) =
∫ +∞

−∞

dz1 . . . dzN exp
[

− 1

2

N
∑

q=1

z2q

]

∆({
√

g2A

2
zq + 2πnq})∆({

√

g2A

2
zq − 2πnq})

=

∫ +∞

−∞

dz1 . . . dzN exp
[

− 1

2

N
∑

q=1

z2q

]

∆2({
√

g2A

2
zq − 2πinq}) (16)

and C(A,N) an unessential normalization factor [22]. Z(n) is clearly invariant under a

common translation {nq} → {nq − h}, h ∈ Z : Z(n) = Z(n+hN).

The classical instanton action S =
[

4π2

g2A

∑N

q=1(nq − n
N
)2
]

can be nicely compared to the

Casimir expression in the exponential of eq.(9). One can already remark that the factor 4π2

g2A

here corresponds to the factor g2A

4
there, as suggested by duality.

The duality can most easily be realized by taking the average over the sectors k, firstly

in (9):

1

N

N−1
∑

k=0

Zk =
∑

R

(dR)
2 exp

[−g2A

4
C2(R)

]

, (17)

as expected in SU(N) (the δ-constraint on m(R) has disappeared) and then in (14):

1

N

N−1
∑

k=0

Zk = Z(0), modN, (18)

as expected in SU(N)/ZN .

The dual relation can easily be obtained from eq.(14)

N−1
∑

n=0

Z(n) = Z0, modN. (19)
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The expressions (18) and (19) are indeed symmetric under the interchange of the two

sets of integers {mq} and {nq}.

The next step to be performed is to obtain the expression for a Wilson loop average in

the k-sector of SU(N)/ZN . We begin by considering the simplest case of a Wilson loop in

the K-fundamental representation. Moreover we choose a regular non self-intersecting loop

placed on the equator of our sphere S2

Wk(
A

2
,
A

2
) =

1

Zk

∑

z∈ZN

zk
∫

dUK(
A

2
; z · 1, U)

1

dK
TrK [U ]K(

A

2
;U, 1). (20)

In the k-sector the loop exhibits the expected δ[N ] constraint on the total number of

boxes m(S) of the Young tableau corresponding to the representation S of the group element

that has been twisted:

Wk(
A

2
,
A

2
) =

1

Zk

1

dK

∑

R,S

dRdS exp
[

− g2A

8
(CR + CS)

]

∫

dUχ†
S[U ]TrK [U ]χR[U ]δ[N ](k −m(S)).

(21)

By making the expression of the characters explicit, after integrating over the group

variables, taking suitable invariance under permutations into account and invariance of the

Vandermonde determinants under constant translations in their arguments, a calculation

(partially sketched in the Appendix) leads to

Wk =
1

Zk

+∞
∑

li=−∞

∫ +∞

−∞

dβ

∫ +∞

−∞

dl eiβ(l−
∑

i li)δ[N ]

(

k − l +
N(N − 1)

2

)

∫ 2π

0

dα e−(α− 2πl
N

)2 exp
[

−g2A

8

(

2C(li)− 2
K
∑

j=1

lj +
K

N
(N + 2l −K)

)]

∆(l1 − 1, l2 − 1, · · · , lK − 1, lK+1, · · · , lN)∆(l1, l2, · · · , lN), (22)

Before undertaking the Poisson transformation it is useful to factorize the δ[N ]-constraint

using its exponential representation δ[N ](q) =
1
N

∑N−1
p=0 e

2πi p q
N . Then, by repeating the pro-

cedure used for Zk, a long but straightforward calculation leads to
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Wk(
A

2
,
A

2
) =

1

Zk

e
g2AK2

16N

∑

{ni}

1

N

N−1
∑

n=0

δ(n−
∑

i

ni)e
2πink

N

e
iπ

∑K
j=1

(

nj−
n
N

)

∫ +∞

−∞

dy1 · · · dyNΠi<j

[

4π2n2
ij − y2ij

]

exp
[

− 4π2

g2A

∑

j

(

nj −
n

N
)2
]

e−
i
2

∑K
j=1 yje

− 1
g2A

∑

j y
2
j , (23)

where nij ≡ ni − nj, yij ≡ yi − yj .

Both the expressions for Zk and Wk we have hitherto obtained, are representations in the

k-sector of SU(N)/ZN in the character expansion and of SU(N) in the corresponding dual

instanton expansion. It is straightforward to switch to SU(N) → SU(N)/ZN , averaging

over k

Z(A) =
1

N

N−1
∑

k=0

Zk(A) = Z(0)(A) = C(A,N)
+∞
∑

nq=−∞

δ[N ](
N
∑

q=1

nq) exp
[

− 4π2

g2A

N
∑

q=1

n2
q

]

ζn({nq})

(24)

and

W(
A

2
,
A

2
) =

1

Z e
g2AK2

16N

∑

{ni}

δ[N ](
N
∑

i=1

ni)e
iπ

∑K
j=1 nj

∫ +∞

−∞

dy1 · · · dyNΠi<j

[

4π2n2
ij − y2ij

]

exp
[

− 4π2

g2A

∑

j

n2
j

]

e−
i
2

∑K
j=1 yje

− 1
g2A

∑

j y
2
j , (25)

corresponding to eqs.(14) and (23) respectively.

III. THE CONJECTURE

As discussed in the Introduction, the average value of a 1/2 BPS t’Hooft circular loop

winding on a large circle on S2 in SYM N=4 with gauge group G in the representation

LR = (m1, · · · , mN) can be obtained from the contribution to the partition function Z of

YM2 of an unstable instanton labeled by LR (see eq.(5)). In turn this should be dual to the

“zero instanton” contribution to the average value of a Wilson loop in the representation

LR (in the character expansion), winding over a large circle of S2 of YM2 ( [18]).
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We are now in the position to discuss this conjecture when the groups considered are

SU(N) and its dual SU(N)/ZN . Let us first start from the k-sector of SU(N)/ZN in

the character expansion, moving to the dual instanton expansion of SU(N). The “zero

instanton” contribution of Zk and of Wk in the K-fundamental representation are easily

derived from eqs.(14) and (23)

Z [0]
k =

∫

dz1, · · · , dzN exp
[

− 1

2

∑

q

z2q

]

∆2({zq}), (26)

where the nomalization has been suitably modified, and

W [0]
k (

A

2
,
A

2
) =

1

Z [0]
k

e
g2AK2

16N

∫ +∞

−∞

dy1 · · · dyNΠi<j

[

y2ij

]

e−
i
2

∑K
j=1 yje

− 1
g2A

∑

j y
2
j . (27)

We remark that neither Z [0]
k nor W [0]

k actually depend on the sector k we are considering.

According to the conjecture, we should now calculate the instanton contribution to the

partition function Zk corresponding to the same K-fundamental representation {nq} =

(1, · · · , 1, 0, · · · , 0) with the first K-elements being unity, and permutations thereof.

Inserting this configuration in eqs.(14),(15) and (16), we get

Z(K)
k = e

2πikK
N (−1)K(N−1)e

4π2K2

g2AN

∫ +∞

−∞

dz1 · · · dzNΠi<j

[

z2ij

]

e
−2πi

√

2
g2A

∑K
j=1 zj e−

1
2

∑

j z
2
j , (28)

where permutations have been taken into account.

The change of variables yi =
√

g2A

2
zi in eq.(27) would lead to a perfect agreement with

eq.(28) under the interchange 8π2

g2A
↔ g2A

8
, were it not for the phase factor in (28). The

occurrence of a similar factor was also noticed in [18]. Here the extra k-dependence could

be disposed of by choosing the sector k = 0 1.

The other option (SU(N) → SU(N)/ZN ) is not viable. As a matter of fact the presence

of the constraint δ[N ](
∑N

q=1 nq) in Z(0) makes the representation {nq} = (1, · · · , 1, 0, · · · , 0)

for the ’t Hooft loop impossible, as it is not shared by the group SU(N)/ZN .

1We notice that an analogous phase factor e
2πnk
N is present in Wk (see (23)); however it is washed

out by the choice n = 0 there.
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In conclusion, when the group is not self-dual, one ought to choose a representation LR

for the ’t Hooft loop among the ones available in LG. Then no problem ensues for the Wilson

loop in the LR- representation since the conjecture always requires its contribution to the

zero-instanton sector (see eqs.(23) and (25)).

The situation changes if we consider the correlator of the 1/2 BPS ’t Hooft loop with one

(or more) 1/8 BPS Wilson loops inserted on the S2 linked to the ’t Hooft loop. In YM2 the

conjecture suggests we compute the Wilson loop around a fixed unstable instanton. In the

SU(N)/ZN ↔ SU(N) case we are considering, it amounts to selecting in the expansions (23)

or (25) a given instanton configuration. The novelty is that such a configuration can only be

chosen among the representations available in LG. For instance the choice (1, · · · , 1, 0, · · · , 0),

corresponding to a fundamental representation, would be possible in eq.(23), but forbidden

in eq.(25).

At this point some comments concerning other irreps are in order.

Suppose we consider a ’t Hooft loop in the adjoint representation. The total number of

boxes in the Young tableau being N in this case, we can equally well consider SU(N) or

SU(N)/ZN . Going back to eqs.(5) and (24), the Young tableau of the adjoint representation

has the configuration {nq} = (2, 1, · · · , 1, 0), which is equivalent modN to (1, 0, · · · , 0,−1),

its highest weight. We get

Zadj =
1

Z [0]

∫ +∞

−∞

dz1, · · · , dzN exp
[

− 1

2

N
∑

q=1

z2q

]

exp
[2

√
2πi

√

g2A
z1N

]

∆2({zq}). (29)

Taking invariance under permutations into account, it becomes

Zadj =
1

Z [0]

(

1 +
1

N

)

∫ +∞

−∞

dz1, · · · , dzN∆2({zq}) exp
[

− 1

2

N
∑

q=1

z2q

]

×

[

∑N

r,s=1 exp(2πi
√

2/g2Azrs)− 1

N2 − 1
− 1

N + 1

]

=
1

Z [0]

[

(1 +
1

N
)

∫

DF exp(−1

2
TrF 2)

1

N2 − 1

(

|Tr[exp (2πi
√

2

g2A
F )]|2 − 1

)]

− 1

N
. (30)

Here F is a traceless hermitian matrix.
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In ref. [22] the “zero instanton” contribution to the Wilson loop in the adjoint represen-

tation has been computed in the k-sector of SU(N)/ZN

W [0]
k (

A

2
,
A

2
) =

1

N + 1

[

1 +
N

Z [0]

∫ +∞

−∞

dz1 . . . dzN exp
[

− 1

2

N
∑

q=1

z2q

]

×

exp
[ i

2

√

g2A

2
z12

]

∆2(z1, . . . , zN)

]

. (31)

The dependence on k has disappeared. Eventually the expression above turns into the

matrix integral [24]

W [0]
adj =

1

Z [0]

∫

DF exp(−1

2
TrF 2)

1

N2 − 1
(|Tr[exp ig

2

√

A

2
F ]|2 − 1). (32)

Comparing eqs.(30) and (32), we notice the expected duality relation g2A

8
↔ 8π2

g2A
, but

also the occurrence in (30) of extra terms, possibly related to the mentioned ”monopole

bubbling” [20].

IV. CONCLUSIONS

We have extended the conjecture of ref. [18] concerning a 1/2 BPS ’t Hooft loop in the

group U(N), to the more general case of a group which is not self-dual. We have concretely

examined the choice SU(N) ↔ SU(N)/ZN . The duality mapping is performed in our

treatment by a Poisson transformation between an expansion in terms of characters and the

one in terms of instantons.

The novelty in the case of groups which are not self-dual lies in the circumstance that

not all representations are shared by them. For instance it is well known that the spinorial

representations of SU(2) are not shared by its dual partner SU(2)/Z2. As a consequence

the choice of the representation for the ’t Hooft loop should be made among those allowed.

In the example SU(N) ↔ SU(N)/ZN we have discussed, if we want a ’t Hooft loop

belonging to one of the fundamental irreps of SU(N), we ought to start from any k-sector

of SU(N)/ZN , landing, after the Poisson transformation, in SU(N). No problem arises
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with the Wilson loop, as only its zero-instanton contribution is required by the conjecture.

The situation is different when correlators of the 1/2 BPS ’t Hooft loop with one (or more)

Wilson loop are considered. In this case the representation of the ’t Hooft loop has to be

compatible with the instanton configuration of the Wilson loop(s).

We have also briefly discussed the adjoint irrep, which belongs to both SU(N) and

SU(N)/ZN . Here we have concretely realized that this choice in the partition function for

the ’t Hooft loop involves subleading corrections, as expected on general grounds [18].

It would be nice in the future to be able to extend the conjecture beyond the 1/2 BPS ’t

Hooft loop. As a preliminary requirement we need to thoroughly understand more general

configurations of a ’t Hooft loop in SYM N=4, in particular their contribution as saddle

points in the localization of the path-integral [13].

From the mathematical side one should perhaps understand in a more general and sys-

tematic way the connection between a formulation of duality in terms of algebras and of

groups. We remark that previous treatments were mostly based on a relation between al-

gebras exchanging their highest weights under the duality transformation [3], [4], [10]. Here

the conjecture forces us to choose their group counterparts where duality operates in the

form of an integral Poisson transformation.

V. APPENDIX

Let us introduce for SU(N) the usual variables

l̂q = mq +N − q, q = 1, · · · , N − 1, (33)

which give rise to a strongly monotonous sequence l̂1 > l̂2 > · · · , l̂N−1 > 0 [22]. Then, with

the twofold purpose of extending the range of the l̂q’s to negative integers and of gaining the

symmetry over permutations of a full set of N indices, we introduce the obvious equality

√
π =

∫ 2π

0

dα
+∞
∑

l̂N=−∞

e−(α− 2π
N

∑N−1
j=1 l̂j−2πl̂N )2 , (34)

13



where l̂N is a dummy quantity. Now we extend the representation indices by defining the

new set

lq = l̂q + l̂N , q = 1, · · · , N − 1,

lN = l̂N , (35)

which appears in eq.(10) and those following.

In terms of these indices eq.(21) takes the form

Wk =
1√
π Zk

+∞
∑

lRi ,lSi =−∞

exp
[

− g2A

8
(CR + CS)

]

δ[N ]

(

k − l(S) +
N(N − 1)

2

)

∆(lR1 , · · · , lRN)∆(lS1 , · · · , lSN)
∫ 2π

0

dα1 dα2e
(−α1−

2π
N

lR)2e(−α2−
2π
N

lS)2

∫ 2π

0

dθ1 · · · dθN δP (
∑

j

θj) e
i
∑K

q=1 θq ΠN
r=1e

ilRr θr ΠN
s=1e

−ilSs θs, (36)

where δP = 1
2π

∑+∞
n=−∞ ein

∑N
j=1 θj is a periodic δ-distribution, as required for SU(N).

By making the expression of the characters explicit, by taking invariance under permu-

tations into account, and after integrating over the group variables eq.(22) is eventually

recovered.
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