Vol. 28 No. 7 677 ~ 681

研究论文

DOI: 10.3724/SP. J. 1123.2010.00677

胶束电动毛细管色谱-电喷雾质谱联用法 同时测定妇宁栓中的 5 种有效成分

曾永芳12, 霍鹏1, 徐远金12*

(1. 广西亚热带生物资源保护利用重点实验室,广西南宁530004;

2. 广西大学糖业工程技术研究中心,广西南宁530004)

摘要:应用胶束电动毛细管色谱-电喷雾电离质谱联用法同时测定了妇宁栓中的小檗碱、巴马汀、苦参碱、儿茶素和黄芩苷 5 种主要有效成分的含量。在未涂层石英毛细管柱(80 cm×50 μ m)中,以40 mmol/L 月桂酸-100 mmol/L 氨水溶液(含 25% 的乙腈 $_{\rm p}$ H 9.5)为缓冲液,分离电压为 25.0 kV,各组分在 16 min 内得到完全分离。电喷雾质谱检测时采用 50% 异丙醇水溶液(含 3 mmol/L 乙酸)为鞘液。结果表明,小檗碱、巴马汀、苦参碱、儿茶素、黄芩苷的线性范围分别为 0.03~15、0.05~15、0.2~250、1.5~300 和 2.0~500 mg/L 检出限分别为 0.01、0.02、0.05、0.5、0.6 mg/L。5 种组分的加标回收率为 94.0% ~104.0%,相对标准偏差(RSD)在 0.3% ~3.2% 之间。该法简便、快速、准确,重现性好,可用于妇宁栓中小檗碱、巴马汀、苦参碱、儿茶素、黄芩苷含量的同时测定。

关键词:胶束电动毛细管色谱;电喷雾电离质谱;小檗碱;巴马汀;苦参碱;儿茶素;黄芩苷;妇宁栓中图分类号:0658 文献标识码:A 文章编号:1000-8713(2010)07-0677-05

Simultaneous determination of berberine, palmatine, matrine, catechin and baicalin in Funing Shuan by micellar electrokinetic capillary chromatography-electrospray ionization mass spectrometry

ZENG Yongfang^{1,2}, HUO Peng¹, XU Yuanjin^{1,2,*}

Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Nanning 530004, China;
 Center for Sugar Technology Research, Guangxi University, Nanning 530004, China)

Abstract: A method for the simultaneous determination of berberine , palmatine , matrine , catechin and baicalin in Funing Shuan was established using micellar electrokinetic capillary chromatography-electrospray ionization mass spectrometry (MEKC-ESI MS). The compounds were separated on an uncoated capillary ($80~cm \times 50~\mu m$) with the operating voltage of 25 kV and the running buffer of 40 mmol/L lauric acid-100 mmol/L ammonia mixture containing 25% acetonitrile (pH 9.5). The baseline separation of the five compounds was achieved within 16 min with a satisfactory repeatability and sensitivity. The solution of 50% 2-propanol/water solution (containing 3 mmol/L acetic acid) was used as the sheath liquid for the ESI MS analysis. The results showed that the linear ranges for berberine , palmatine , matrine , catechin and baicalin were 0.03-15, 0.05-15, 0.2-250, 1.5-300 and 2.0-500 mg/L , respectively , and the detection limits were 0.01, 0.02, 0.05, 0.5 and 0.6 mg/L , respectively. The average recoveries of the five components were between 94.0%-104.0% with the relative standard deviations (RSDs) of 0.3%-3.2%. The developed method is simple , rapid , and accurate , and it is suitable for the routine analysis of the five effective components in Funing Shuan.

Key words: micellar electrokinetic capillary chromatography-electrospray ionization mass spectrometry (MEKC-ESI-MS); berberine; palmatine; matrine; catechin; baicalin; Funing Shuan

^{*} 通讯联系人 :徐远金 ,博士 ,教授 ,主要从事色谱-质谱分析方法研究. Tel :(0771)3237743 , E-mail : yjxu@ gxu. edu. cn. 基金项目 :国家自然科学基金项目(20865001)和广西自然科学基金项目(桂科自 0832034). 收稿日期 2010-01-07

色

妇宁栓由苦参、黄柏、黄芩、蛤壳粉、儿茶等 11 味中药制备而成,具有清热解毒、燥湿杀虫、祛腐生肌、化瘀止痛等功效,临床用于治疗宫颈糜烂、宫颈炎、阴道溃疡、老年性阴道炎等疾病^[1]。小檗碱、巴马汀、苦参碱、儿茶素、黄芩苷为该栓剂中的主要药效成分。有文献报道采用高效液相色谱法测定该药中苦参碱或黄芩苷的含量^[2,3];采用薄层色谱法测定妇宁栓中苦参碱或氧化苦参碱的含量^[4,5]。但同时测定小檗碱、巴马汀、苦参碱、儿茶素、黄芩苷的分析方法或者采用毛细管电泳-质谱联用法测定妇宁栓中主要药效成分的方法均尚未见报道。

胶束电动毛细管色谱(MEKC)既能分离带电组 分又能分离中性物质,是毛细管电泳中应用最有效 的方式之一,在药物分析中有着广泛的应用[6]。质 谱(MS)检测不仅有较高的灵敏度,同时具有较强 的定性能力,能够提供样品的结构信息[7-9]。将 MEKC 和 MS 联用可实现高效分离、高灵敏度及包 含结构信息的检测 但因 MEKC 中存在较高浓度的 表面活性剂会影响电喷雾电离(ESI)的离子化效 率,使 MEKC-ESI MS 在实际应用中受到限制[10]。 Goetzinger 等[11]报道了由长链烷基酸组成的缓冲 体系,能很好地解决 MEKC 与 ESI MS 的兼容性问 题。实验表明,月桂酸/氨水缓冲体系对待测组分对 ESI 电离源的电离强度没有明显的影响[12]。基于 此,本文建立了 MEKC-ESI MS 同时分离和测定妇 宁栓中小檗碱、巴马汀、苦参碱、儿茶素和黄芩苷5 种药效成分含量的分析方法,有利于妇宁栓的质量 控制。

1 实验部分

1.1 仪器与试剂

Agilent HP^{3D} CE 毛细管电泳仪-MSD Trap SL 质谱联用仪,通过 CE-MS 喷雾组件连接(美国 Agilent 公司),鞘流由 Agilent 1100 单元泵和 1:100 分流器提供;未涂层弹性石英毛细管(80 cm×50 μm,河北永年锐沣公司);Orion 868 pH/ISE 测试仪(美国 Orion 公司);Labconco Water Pro Plus 超纯水仪(美国 Labconco 公司);Sartorius ME 215S 电子天平(德国 Sartorius 公司)。

月桂酸(分析纯,北京市旭东化工厂),甲醇、乙醇、丙酮、异丙醇、乙腈(色谱纯,美国 Fisher 公司),其他试剂均为分析纯,所用水为超纯水;对照品苦参碱、小檗碱、巴马汀、黄芩苷、儿茶素均购自中国药品生物制品检定所;样品妇宁栓为哈尔滨欧替药业有限公司生产(批号 20090401、20090402)。

1.2 溶液配制

标准溶液的配制:准确称取含小檗碱、巴马汀、苦参碱、儿茶素、黄芩苷对照品各 10.0 mg,分别置于 10 mL 量瓶中,用甲醇溶解并定容,配成 1.00 g/L 的对照品储备液。

样品溶液的制备:取混合均匀的妇宁栓样品内容物 0.3~g ,精密称定 ,置于具塞锥形瓶中 ,加入 30~mL 甲醇后超声 30~min ,静置后转移至 50~mL 量瓶中 ,剩余残渣再用 10~mL 甲醇超声 15~min ,转移至 50~mL 量瓶中 ,用甲醇定容至刻度。经 $0.45~\mu m$ 微孔滤膜过滤后作为供试品溶液。

1.3 电泳分离条件

以 40 mmol/L 月桂酸-100 mmol/L 氨水(含25% 乙腈 $_{1}$ pH 9.5)为运行缓冲液 $_{2}$ 未涂层弹性石英毛细管为分离柱 $_{2}$ 压力进样($_{2}$ 5 kPa × 6 s),分离电压为 25 kV,分离温度为 25 °C。每天电泳运行前将毛细管用 0.1 mol/L 氢氧化钠冲洗 30 min,然后用水和运行缓冲溶液各冲洗 10 min。两次分析间用运行缓冲液冲洗 3 min。所有溶液使用前均经 0.45 $_{1}$ μm 的微孔滤膜过滤,并超声脱气 5 min。

1.4 质谱条件

电离源为电喷雾正离子模式 ,采用选择离子监测(SIM)($0 \sim 7.9 \text{ min}$, m/z 336 ; $7.9 \sim 8.5 \text{ min}$, m/z 352 ; $8.5 \sim 9.3 \text{ min}$, m/z 249 ; $9.3 \sim 12 \text{ min}$, m/z 291 ; $12 \sim 18 \text{ min}$, m/z 447) ;毛细管电压为 4.3 kV ,喷雾气(N_2)压力为 34.3 kPa ,干燥气(N_2)流速为 10 L/min ,温度为 325 $^{\circ}$ C ;鞘液组成 50% 异丙醇水溶液(含 3 mmol/L 乙酸) ;鞘液流速 :8 μ L/min。

2 结果与讨论

2.1 电泳介质的优化

2.1.1 缓冲溶液组成及 pH 对分离的影响

实验中比较了月桂酸-氨水和月桂酸-三羟甲基氨基甲烷(Tris)两种缓冲体系。结果表明,使用Tris体系时,儿茶素和黄芩苷的灵敏度低,其余组分的出峰时间较长;而使用氨水缓冲体系时,待测组分的灵敏度高且分析时间短。这可能是由于氨水较Tris更易挥发,使待测组分在 ESI 质谱中的响应灵敏度更高;同时月桂酸-氨水组成的缓冲体系比月桂酸-Tris组成的缓冲体系电渗流更大,组分出峰更快。因此本实验选用月桂酸-氨水缓冲体系。

实验考察了氨水浓度对分离的影响,当氨水浓度在70~110 mmol/L 范围内变化时,氨水浓度对各组分的分离度无多大影响。因而实验选定氨水浓

度为 100 mmol/L。

缓冲溶液的 pH 值直接影响被测物的带电性,从而影响各组分的分离度。图 1 为不同 pH 值的缓冲溶液对各化合物分离的影响。可以看出,pH 为 9 时苦参碱不能得到很好的分离,pH 为 9.5 时分离效果最佳。故本实验选择缓冲溶液的 pH 为 9.5。

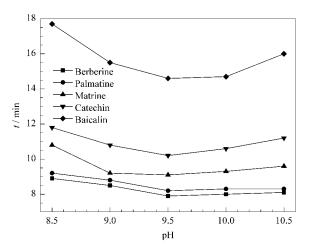


图 1 缓冲溶液 pH 值对分离的影响 Fig. 1 Influence of buffer pH on the separation of analytes

2.1.2 月桂酸浓度对分离的影响

实验考察了月桂酸浓度对各化合物分离的影响,结果见图 2。可以看出,月桂酸浓度在 $30\sim50$ mmol/L 范围变化时,随着月桂酸浓度增加,黄芩苷的出峰时间延长,而对其他 4 个组分的分离度影响不大。本实验选择月桂酸浓度为 40~mmol/L。

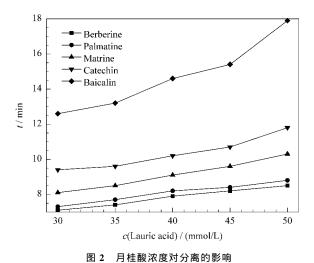


Fig. 2 Influence of lauric acid concentration on the separation of analytes

2.1.3 有机改性剂的影响

在 MEKC 分离模式中,有机溶剂的加入可以显著地改善分离效果。实验比较了在缓冲体系中分别加入乙腈、甲醇、乙醇、异丙醇和丙酮等有机溶剂的

效果。结果发现,醇类改性剂明显延长各组分的出峰时间,且按甲醇、乙醇、异丙醇的顺序依次延长;加入丙酮时,小檗碱与巴马汀的分离度不佳且儿茶素和黄芩苷峰形较差;加入乙腈时,各组分出峰时间短、峰形尖锐、灵敏,且当乙腈的体积分数为25%时样品的分离效果最好。

2.1.4 电压和进样时间对分离的影响

实验考察了电压在 15~30 kV 范围内对分离的影响。随着电压的增加 样品的分析时间缩短 ,峰形尖锐。但电压过高会产生大量焦耳热 ,引起分离效率下降 ,因而本实验选择分离电压为 25 kV。

固定 5 kPa 的压力,实验考察了进样时间在 4 ~12 s 范围内对分离的影响。结果显示进样时间越长,灵敏度越高。但随着进样量的增大,溶质区带加宽,分离度下降。综合考虑灵敏度和分离度因素,选择进样时间为 6 s。

2.2 质谱条件的优化

鞘液是影响电喷雾电离条件的重要因素,选择合适的鞘液有利于样品离子化过程中液滴的去溶剂化,能够促进样品电离并降低背景信号。实验比较了甲醇、异丙醇、乙腈作为鞘液对样品电离的影响,结果显示,使用异丙醇作为鞘液时背景噪声低且样品电离强度大,且以50%异丙醇水溶液的响应值最高。

甲酸、乙酸和乙酸铵是常用的鞘液添加剂。实验中在 50% 异丙醇水溶液中分别添加了甲酸、乙酸和乙酸铵 结果发现乙酸效果最佳。图 3 为乙酸浓度对各物质电离的影响。综合考虑 5 种组分的检测灵敏度 选择乙酸作为鞘液添加剂的浓度为 3 mmol/L。

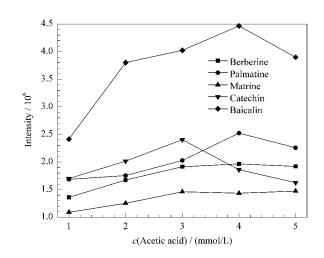


图 3 鞘液中乙酸的浓度对电离的影响 Fig. 3 Effect of the concentration of acetic acid in the sheath liquid on ionization

2.3 样品的电泳图及定性分析 在优化的条件下 5 种组分在 16 min 内获得分 色

离度较好的选择离子流色谱图(见图4),各组分的 一级质谱图见图 5。根据各组分的出峰时间和一级 质谱的 m/z 值进行定性分析。从图 5 中可以看出, 小檗碱主要为 m/z 336 的[M] † 峰 ,巴马汀主要为 m/z 352 的[M] * 峰 ,苦参碱主要为 m/z 249 的[M $+ H]^{\dagger}$ 峰 ,儿茶素主要为 m/z 291 的[M + H] † 峰 , 黄芩苷主要为 m/z 447 的[M+H] † 峰。因此 ,分 别选择 m/z 336,352,249,291 和 447 的离子进行 分段监测。

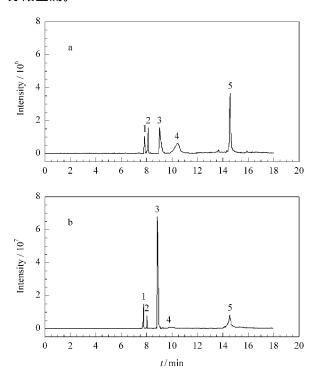


图 4 (a)标准品及(b)样品的 SIM 色谱图 Fig. 4 Selected ion monitoring chromatograms of(a) reference substances and(b) a Funing Shuan sample

1. berberine; 2. palmatine; 3. matrine; 4. catechin; 5. baicalin.

线性关系、检出限及精密度

配制一系列浓度的标准混合溶液,按优化的实 验条件进行测定,以标准品质量浓度(X, mg/L)为 横坐标,以各组分的分子离子峰的峰面积为纵坐标 Y进行线性回归,得到回归方程及相关系数和线性 范围,以信噪比(S/N)等于3为标准,测得各分析物 的检出限 结果见表 1。

取同一批样品(批号 20090401)6份 按 1.2节 样品溶液的制备方法制备样品溶液,在优化的实验 条件下每份样品重复测定 3 次 ,测得小檗碱、巴马 汀、苦参碱、儿茶素和黄芩苷峰面积的相对标准偏差 (RSD)分别为 3.1%、1.2%、1.9%、3.2%、1.5%,表明 该分析方法重复性良好。

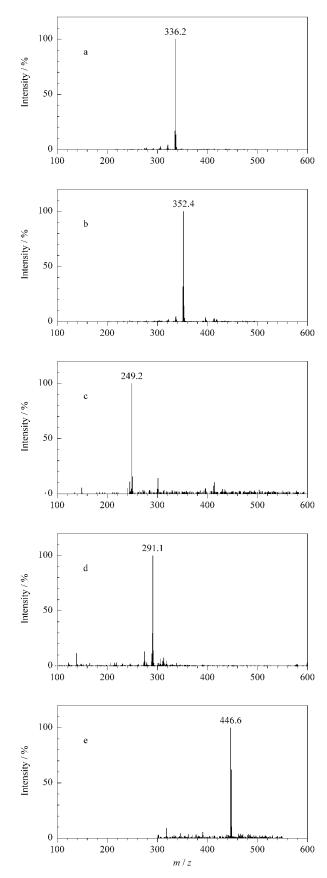


图 5 (a)小檗碱、(b)巴马汀、(c)苦参碱、(d)儿茶素 及(e)黄芩苷的一级质谱图

Fig. 5 Mass Spectra of (a) berberine, (b) palmatine, (c) matrine,(d) catechin and(e) baicalin

表 1 5 种组分的线性关系及检出限

			1 .1 000			
Table 1	Regression equations	. linear ranges	, correlation coeffi	cients and detect	tion limits of the	5 analytes

Analyte	Regression equation	Linear range/(mg/L)	r	Detection limit/(mg/L)
Berberine	$Y = 8.60 \times 10^6 X + 1.94 \times 10^6$	0.03 - 15	0.999 5	0.01
Palmatine	$Y = 5.80 \times 10^6 X + 3.54 \times 10^6$	0.05 - 15	0.999 0	0.02
Matrine	$Y = 4.09 \times 10^6 X + 4.68 \times 10^6$	0.2 - 250	0.999 1	0.05
Catechin	$Y = 3.28 \times 10^5 X + 1.67 \times 10^6$	1.5 - 300	0.998 4	0.5
Baicalin	$Y = 1.28 \times 10^6 X - 2.32 \times 10^7$	2.0 - 500	0.998 7	0.6

Y: peak area of the molecular ion peak; X: mass concentration, mg/L.

2.5 样品的稳定性

取同一供试品(批号 :20090401)溶液 ,分别于存放 0.2.4.6.8 h 后测定 ,记录峰面积。结果表明 , 5 种成分含量的 RSD 均小于 3.3% ,表明供试品溶液在 8 h 内稳定。

2.6 回收率

取 9 份已测含量样品(批号 20090401)约 0.3 g 精密称定,分别加入低、中、高 3 个水平的混合标准品。按 1.2 节的方法制备样品溶液并进行测定,分别计算 5 种成分的平均回收率,结果见表 2。

表 2 5 种被测组分的加标回收率(n=3)
Table 2 Recoveries of the 5 analytes spiked in a sample (n=3)

In a sample $(n-3)$					
A 1t -	Original/	Added/	Found/	Recovery/	RSD/
Analyte	(mg/g)	(mg/g)	(mg/g)	%	%
Berberine	0.209	0.100	0.312	103.0	3.2
		0.200	0.397	94.0	1.3
		0.300	0.517	102.7	3.1
Palmatine	0.131	0.060	0.188	95.0	1.9
		0.125	0.261	104.0	1.7
		0.190	0.320	99.5	2.7
Matrine	5.02	2.50	7.62	104.0	1.7
		5.00	9.84	96.4	2.2
		7.50	12.4	98.4	1.0
Catechin	2.04	1.50	3.53	99.3	0.3
		2.00	4.06	101.0	1.2
		2.50	4.60	102.4	3.0
Baicalin	10.7	6.0	16.5	96.7	1.5
		11.0	21.8	100.9	1.1
		16.0	27.2	103.1	2.4

2.7 样品分析

分别精密称定不同批号样品,按 1.2 节方法制备样品溶液,样品分析结果见表 3。

表 3 样品中 5 种有效成分的含量

Table 3 Contents of the 5 analytes in samples mg/g

Sample No.	Berberine	Palmatine	Matrine	Catechin	Baicalin
20090401	0.209	0.131	5.02	2.04	10.7
20090402	0.205	0.139	5.05	2.08	10.5

3 结论

本文建立了同时测定妇宁栓中小檗碱、巴马汀、苦参碱、儿茶素和黄芩苷含量的胶束电动毛细管色谱-质谱联用测定方法。实验结果表明,该方法具有简便、快捷、灵敏和定性能力强的特点,已成功用于妇宁栓中上述5种有效成分的同时测定,可以为妇宁栓的质量控制或者药物代谢研究提供参考。

参考文献:

- [1] Shan J W, Ma F W, Wang D X. Information on Traditional Chinese Medicine (单敬文,马富伟,王殿祥.中医药信息), 2000,17(4):50
- [2] Tian H X, Kong Q Y. China Foreign Medical Treatment (田海霞,孔庆怡.中外医疗),2008,27(24):124
- [3] Shu S, Wang R H, Shu C. Heilongjiang Medicine Journal (舒适,王瑞红,舒畅. 黑龙江医药),2007,20(5):428
- [4] Yang G X, Sui Y J, Yao Q. Heilongjiang Medicine Journal (杨桂霞,隋艳君,姚青. 黑龙江医药),1997,10(2):75
- [5] Fu K, Xu S H. Acta Chinese Medicine and Pharmacology (付克,许绍华. 中医药学报),1996,24(1):54
- [6] Liu Z S, Fang Z L. Chinese Journal of Chromatography (刘志松, 方肇伦. 色谱), 1996, 14(5):364
- [7] Zhou Z G , Li M , Bai Y , et al. Chinese Journal of Chromatography (周志贵,李珉,白玉,等.色谱), 2009, 27(5):
- [8] Liang Z, Duan J C, Zhang W B, et al. Chinese Journal of Chromatography (梁振,段继诚,张维冰,等.色谱),2003,21(1):9
- [9] Xu Y J, Xu G P, Wei Y A. Journal of Instrumental Analysis (徐远金,许桂苹,魏远安. 分析测试学报),2006,25(2):
- [10] Zhou G H, Luo G A. Journal of Analytical Science (周国华,罗国安. 分析科学学报),1998,14(4):338
- [11] Goetzinger W K, Cai H. J Chromatogr A, 2005, 1079(1/2):372
- [12] Li X J, Huang L H, Xu Y J. Chinese Journal of Analytical Chemistry (李晓静,黄丽涵,徐远金. 分析化学),2007,35