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Abstract

We study, by separately calculating the contributions of vacuum fluctuations and radiation

reaction to the atomic energy level shift, the Lamb shift of a static two-level atom interacting

with real massless scalar fields in the Boulware, Unruh and Hartle-Hawking vacuums outside a

Schwarzschild black hole. We find that in the Boulware vacuum, the Lamb shift gets a correction

arising as a result of the backscattering of vacuum field modes off the space-time curvature, which

is reminiscent of the correction to the Lamb shift induced by the presence of cavities. However,

when the Unruh and Hartle-Hawking vacua are concerned, our results show that the Lamb shift

behaves as if the atom were irradiated by a thermal radiation or immersed in a thermal bath at the

Hawking temperature, depending on whether the scalar field is in the Unruh or the Hartle-Hawking

vacuum. Remarkably, the thermal radiation is always backscattered by the space-time geometry.
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I. INTRODUCTION

The Lamb shift, the shift of the energy levels of an atom that arises as a result of the

coupling of the atom to vacuum fluctuations of quantum fields in a flat space-time, is one

of the most remarkable observable effects predicted by quantum field theory. Later, it has

been shown that this radiative energy level shift of an atom can be modified by the presence

of cavities [1] and the noninertial motion of the atom itself [2–5], which alter the vacuum

fluctuations and yield a Lamb shift different from its original value.

Here, we are concerned with the Lamb shift of a static atom in the exterior of a spherically

symmetric black hole interacting with vacuum fluctuations of quantum fields. When a

curved space-time is considered as opposed to a flat one, a delicate issue then arises as

to how the vacuum state of the quantum fields is determined. Normally, a vacuum state is

associated with nonoccupation of positive frequency modes. However, the positive frequency

of field modes is defined with respect to the time coordinate. Therefore, to define positive

frequency, one has to first specify a definition of time. In a spherically symmetric black hole

background, one definition is the Schwarzschild time, t, and it is a natural definition of time

in the exterior region. The vacuum state, defined by requiring normal modes to be positive

frequency with respect to the Killing vector ∂/∂t with respect to which the exterior region

is static, is called the Boulware vacuum. Other possibilities that have been proposed are

the Unruh vacuum [6] and the Hartle-Hawking vacuum [7]. The Unruh vacuum is defined

by taking modes that are incoming from J − to be positive frequency with respect to ∂/∂t,

while those that emanate from the past horizon are taken to be positive frequency with

respect to the Kruskal coordinate ū, the canonical affine parameter on the past horizon.

The Hartle-Hawking vacuum, on the other hand, is defined by taking the incoming modes

to be positive frequency with respect to v̄, the canonical affine parameter on the future

horizon, and outgoing modes to be positive frequency with respect to ū. The calculations of

the values of physical observables, such as the expectation values of the energy-momentum

tensor and the response rate of an Unruh detector in these vacuum states, have yielded

the following physical understanding: (i) The Boulware vacuum corresponds to our familiar

concept of a vacuum state at large radii. It would be the vacuum state outside a massive

spherical body of radius only slight larger than its Schwarzschild radius; (ii) the Unruh

vacuum is the vacuum state that best approximates the state that we would obtain following

the gravitational collapse of a massive body to a black hole; (iii) the Hartle-Hawking state,

however, does not correspond to our usual notion of a vacuum, but describes a black hole

in equilibrium with a sea of thermal radiation.

In the current paper, we will study the Lamb shift of a static two-level atom outside a four-

dimensional Schwarzschild black hole in interaction with massless quantum scalar fields in

all the above three vacuum states. It should be pointed out that a fully realistic treatment

of the Lamb shift requires considering a multilevel atom coupled to the electromagnetic

field. However, the purpose of the present paper is to bring to light the essential features

of the full problem in a simple model and keep the discussion as clear and transparent as
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possible. Our calculations of the Lamb shift make use of an elegant formalism suggested

by Dalibard, Dupont-Roc, and Cohen-Tannoudji(DDC) [8, 9] which allows a separation of

the contributions of vacuum fluctuations and the radiation reaction to the energy shifts.

This separation is also interesting from a conceptual point of view since the Lamb shift

is usually associated with vacuum fluctuations alone. In previous studies [10], we have

separately calculated the contributions of vacuum fluctuations and the radiation reaction

to the spontaneous excitation rate of a static atom outside a Schwarzschild black hole, and

find that the atom would spontaneously excites as if it were irradiated by or immersed in a

thermal radiation at the Hawking temperature.

II. GENERAL FORMALISM

Let us consider a two-level atom in interaction with a quantum real massless scalar field

outside a Schwarzschild black hole. The metric of the space-time can be written in terms of

the Schwarzschild coordinates as

ds2 =

(

1− 2M

r

)

dt2 −
(

1− 2M

r

)−1

dr2 − r2 (dθ2 + sin2 θ dϕ2) , (1)

where M is the mass of the black hole. Without loss of generality, we assume a pointlike

two-level atom on a stationary space-time trajectory x(τ), where τ denotes the proper time

on the trajectory. The stationarity of the trajectory guarantees the existence of stationary

atomic states, |+〉 and |−〉, with energies ±1

2
ω0 and a level spacing ω0. The Hamiltonian

that describes the time evolution of the atom-field interacting system can be given by [2, 11]

H(τ) = HA(τ) +HF (τ) +HI(τ) , (2)

where

HA(τ) = h̄ω0Sz(τ) , (3)

HF (τ) =

∫

d3k h̄ω~ka
†
~k
a~k

dt

dτ
, (4)

HI(τ) = µS2(τ)φ(x(τ)) . (5)

Here a†~k and a~k are the creation and annihilation operators for a scalar particle with

momentum ~k, and µ is a coupling constant which we assume to be small. Sz, S+,

and S− are the pseudospin operators of the atom, Sz(0) = (1/2)(|+〉〈+| − |−〉〈−|) and

S2(0) = (i/2)(S− − S+). Here S+(0) = |+〉〈−|, and S−(0) = |−〉〈+|. The field operators φ

is evaluated along the trajectory x(τ) of the atom.

Then we can write down the Heisenberg equations of motion for the dynamical variables

of the atom and field from the Hamiltonian of the system in Eq. (2). The solutions of the

equations of motion can be split into the two parts: a free part, which is present even in

the absence of the coupling, and a source part, which is caused by the interaction of the
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atom and field. We assume that the initial state of the atom is |b〉 and the scalar field is in

a vacuum state |0〉. To identify the two distinct contributions of vacuum fluctuations and

radiation reaction to the energy level shift of a two-level atom, we use DDC’s formalism to

choose a symmetric ordering between the atom and field variables, and separate the vacuum

fluctuations and radiation reaction contributions to the rate of change of an arbitrary atomic

observable G(τ). Following the procedures that have been shown in Refs. [2, 9], we take the

average over the vacuum state of the scalar field, and obtain

〈

0

∣

∣

∣

∣

(

dG(τ)

dτ

)

vf,rr

∣

∣

∣

∣

0

〉

=
i

h̄
[Heff

vf,rr(τ), G(τ)] + non-Hamiltonian terms , (6)

where the non-Hamiltonian parts are related to relaxation effects, and in order µ2, the

effective Hamiltonians can be expressed as

Heff
vf (τ) =

iµ2

2h̄

∫ τ

τ0

dτ ′CF (x(τ), x(τ ′))[Sf
2 (τ), S

f
2 (τ

′)] , (7)

Heff
rr (τ) = −iµ

2

2h̄

∫ τ

τ0

dτ ′χF (x(τ), x(τ ′)){Sf
2 (τ), S

f
2 (τ

′)} . (8)

Here [ , ] and { , } are the commutator and anti-commutator respectively, and the subscripts

“ vf ” stands for vacuum fluctuations and “rr” for radiation reaction. The statistical

functions of the field CF and χF are also called symmetric correlation function and linear

susceptibility of the field. They are defined as

CF (x(τ), x(τ ′)) =
1

2
〈0|{φf(x(τ)), φf(x(τ ′))}|0〉 , (9)

χF (x(τ), x(τ ′)) =
1

2
〈0|[φf(x(τ)), φf (x(τ ′))]|0〉 . (10)

Taking the expectation value of Eqs. (7) and (8) in the atom’s initial state |b〉, we can

obtain the radiative energy shifts of the atom’s level |b〉 due to the vacuum fluctuations and

radiation reaction,

(δEb)vf = −iµ
2

h̄

∫ τ

τ0

dτ ′CF (x(τ), x(τ ′))(χA)b(τ, τ
′) , (11)

(δEb)rr = −iµ
2

h̄

∫ τ

τ0

dτ ′χF (x(τ), x(τ ′))(CA)b(τ, τ
′) , (12)

where (CA)b and (χA)b, the symmetric correlation function and the linear susceptibility of

the atom, are defined as

(CA)b(τ, τ
′) =

1

2
〈b|{Sf

2 (τ), S
f
2 (τ

′)}|b〉 , (13)

(χA)b(τ, τ
′) =

1

2
〈b|[Sf

2 (τ), S
f
2 (τ

′)]|b〉 , (14)
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which are characterized by the atom itself. Explicitly, the statistical functions of the atom

can be given as

(CA)b(τ, τ
′) =

1

2

∑

d

|〈b|S2(0)|d〉|2(eiωbd∆τ + e−iωbd∆τ ) , (15)

(χA)b(τ, τ
′) =

1

2

∑

d

|〈b|S2(0)|d〉|2(eiωbd∆τ − e−iωbd∆τ ) , (16)

where ωbd = ωb−ωd, ∆τ = τ − τ ′ and the sum extends over a complete set of atomic states.

III. LAMB SHIFTS OF STATIC ATOMS OUTSIDE A BLACK HOLE.

In the exterior region of the Schwarzschild black hole, a complete set of normalized basis

functions for the massless scalar field that satisfy the Klein-Gordon equation is given by

−→u ωlm = (4πω)−
1

2 e−iωt−→R l(ω|r)Ylm(θ, ϕ) , (17)
←−u ωlm = (4πω)−

1

2 e−iωt←−R l(ω|r)Ylm(θ, ϕ) , (18)

where Ylm(θ, ϕ) are the spherical harmonics and the radial functions have the following

asymptotic forms [12]

−→
R l(ω|r) ∼







r−1eiωr∗ +
−→
A l(ω)r

−1e−iωr∗ , r → 2M ,

Bl(ω)r
−1eiωr∗ , r →∞ ,

(19)

←−
R l(ω|r) ∼







Bl(ω)r
−1e−iωr∗ , r → 2M ,

r−1e−iωr∗ +
←−
A l(ω)r

−1eiωr∗ , r →∞ ,
(20)

with r∗ = r + 2M ln(r/2M − 1) being the Regge-Wheeler tortoise coordinate. The physical

interpretation of these modes is that −→u represents modes emerging from the past horizon

and the ←−u denotes those coming in from infinity. With the basics of the scalar field modes

given above, we now apply the formalism outlined in the preceding section to calculate

the Lamb shifts of the static atoms in three vacuum states of the quantum scalar fields

respectively.

a. Boulware vacuum. The Boulware vacuum is defined by requiring normal modes

to be positive frequency with respect to the Killing vector ∂/∂t. One can show that the

Wightman function for massless scalar fields in this vacuum state is given by [13, 14]

D+

B(x, x
′) =

1

4π

∑

lm

|Ylm(θ, ϕ)|2
∫ +∞

0

dω

ω
e−iω∆t[ |−→R l(ω|r)|2 + |

←−
R l(ω|r)|2] (21)
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and the corresponding symmetric correlation function and linear susceptibility of the field

are respectively

CF (x(τ), x(τ ′)) =
1

8π

∑

lm

|Ylm(θ, ϕ)|2
∫ ∞

0

dω

ω

(

e
iω∆τ
√

g00 + e
− iω∆τ

√
g00

)

×

[ |−→R l(ω|r)|2 + |
←−
R l(ω|r)|2] , (22)

χF (x(τ), x(τ ′)) =
1

8π

∑

lm

|Ylm(θ, ϕ)|2
∫ ∞

0

dω

ω

(

e
− iω∆τ

√
g00 − e

iω∆τ
√
g00

)

×

[ |−→R l(ω|r)|2 + |
←−
R l(ω|r)|2] , (23)

where we have used ∆τ =
√
g00∆t. Substituting the above statistical functions into Eqs. (11)

and (12), extending the integration range for τ to infinity for sufficiently long times τ − τ0,

and performing the integration over τ , we obtain the contribution of the vacuum fluctuations

to energy level shift for an atom in state |b〉 held static at a distance r from the black hole

(δEb)vf =
µ2

32π2h̄

∑

d

|〈b|S2(0)|d〉|2 ×
∫ ∞

0

dω

(

ω
ω√
g00

+ ωbd

− ω
ω√
g00
− ωbd

)

[−→g (ω|r) +←−g (ω|r)] , (24)

and that of radiation reaction

(δEb)rr = − µ2

32π2h̄

∑

d

|〈 b|S2(0)|d〉|2 ×
∫ ∞

0

dω

(

ω
ω√
g00

+ ωbd
+

ω
ω√
g00
− ωbd

)

[−→g (ω|r) +←−g (ω|r)] , (25)

where we have appealed to the following property of the spherical harmonics

l
∑

m=−l

| Ylm( θ, ϕ ) |2 = 2l + 1

4π
(26)

and defined

−→g (ω|r) = 1

ω2

∞
∑

l=0

(2l + 1)|−→R l(ω|r)|2 , (27)

←−g (ω|r) = 1

ω2

∞
∑

l=0

(2l + 1)|←−R l(ω|r)|2 . (28)

Since we do not have a generic expression for Rl(ω|r) functions, let us now examine in

detail the energy level shifts both at close to the horizon and at infinity, which are anyway

6



regions of physical interest. Then, the summations in Eqs. (24) and (25) can be simplified

by the asymptotic properties of the radial functions [14]

∞
∑

l=0

(2l + 1)|−→R l(ω|r)|2 ∼



















4ω2

1− 2M
r

, r → 2M ,

1

r2

∞
∑

l=0

(2l + 1)|Bl(ω)|2 , r →∞ ,

(29)

∞
∑

l=0

(2l + 1)|←−R l(ω|r) |2 ∼



















1

4M2

∞
∑

l=0

(2l + 1)|Bl(ω)|2 , r → 2M ,

4ω2

1− 2M
r

, r →∞ .

(30)

In Eq. (30), we have retained a factor g−1
00 = (1−2M/r)−1 for the asymptotic form at infinity

which was omitted in Ref. [14] as it approaches to 1 when r →∞.

So, in these two asymptotic regions, we can write

(δEb)vf =
µ2

8π2h̄

∑

d

|〈b|S2(0)|d〉|2
∫ ∞

0

dω

[

1 + f(ω, r)

]

P

(

ω

ω + ωbd
− ω

ω − ωbd

)

, (31)

(δEb)rr = −
µ2

8π2h̄

∑

d

|〈b|S2(0)|d〉|2
∫ ∞

0

dω

[

1 + f(ω, r)

]

P

(

ω

ω + ωbd

+
ω

ω − ωbd

)

. (32)

Here we have made a variable transformation, ω/
√
g00 → ω, and defined

f(ω, r) =
1

4r2ω2

∞
∑

l=0

(2l + 1)|Bl(ω
√
g00)|2 , (33)

P here and after denotes the principal value. Notice that for each definite initial state of

a two-level atom, |b〉,
∑

d |〈b|S2(0)|d〉|2 = 1/4, and the integrand in Eq. (32) is an even

function of |ωbd| = ω0, so it is obvious that (δE+)rr = (δE−)rr. Radiation reaction has

equal contribution to the energy shift of each level. Adding up the contributions of vacuum

fluctuations and radiation reaction, we obtain the total energy level shift of the state |b〉,

δEb = −
µ2

4π2h̄

∑

d

|〈b|S2(0)|d〉|2
∫ ∞

0

dω

[

1 + f(ω, r)

]

P
ω

ω − ωbd
. (34)

So, the energy shift of the excited and ground states of the two-level atom are respectively

δE+ = − µ2

16π2h̄

∫ ∞

0

dω

[

1 + f(ω, r)

]

P
ω

ω − ω0

, (35)

δE− = − µ2

16π2h̄

∫ ∞

0

dω

[

1 + f(ω, r)

]

P
ω

ω + ω0

. (36)
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The relative energy shift, i.e., the Lamb shift, which is an observable physical quantity, is

then obtained by the subtraction, ∆ = δE+ − δE−

∆B =
µ2

16π2h̄

∫ ∞

0

dωP

(

ω

ω + ω0

− ω

ω − ω0

)

+
µ2

16π2h̄

∫ ∞

0

dωf(ω, r)P

(

ω

ω + ω0

− ω

ω − ω0

)

. (37)

Actually, the relative shift of the atomic energy is entirely caused by vacuum fluctuations

and can be calculated directly by ∆ = (δE+)vf − (δE−)vf , because of the equal contribution

of radiation reaction to the two levels. It is composed of two parts. The first part is just

the Lamb shift of a two-level atom in a free Minkowski space-time with no boundaries. It

is logarithmically divergent, which is expected for a nonrelativistic treatment as what we

do here and the divergence can be removed by introducing a cutoff [15, 16] or resorting to

a fully relativistic approach [17, 18]. The second part represents a finite correction to the

Lamb shift in an unbounded flat space-time. It arises as a result of the back scattering of

vacuum field modes off the space-time curvature of the black hole in much the same way

as the reflection of the field modes at the reflecting boundary in a flat space-time, which

also gives rise to corrections to the Lamb shift in the unbounded space [1, 4]. In fact,

the second part of Eq. (37) gives the correction to the Lamb shift for an atom held static

outside a massive spherical object with a radius larger than the Schwarzschild radius, since

the Boulware vacuum is the natural vacuum outside such an object. This part can actually

be further simplified. To do this, let us note that the coefficient |Bl| can be approximated,

using the geometrical optics approximation[12], by 1 for l <
√
27Mω and 0 for l >

√
27Mω

so that Bl(ω) ∼ θ(
√
27Mω − l). Thus, the summation in f(ω, r) can be evaluated to yield

f(ω, r) ≈ 27M2g00
4r2

=
27M2

4r2

(

1− 2M

r

)

≡ f(r) , (38)

which does not depend on ω. So, the second part is also logarithmically divergent and the

divergence can again be dealt with as that in the first part. Denote the Lamb shift in a free

Minkowski space-time by ∆M , we can write

∆B = [1 + f(r)] ∆M . (39)

Let us note that the correction vanishes both at infinity and at the even horizon, where the

effective potential becomes zero, and it reaches the maximum value near r = 3M , where the

effective potential has a peak and thus the vacuum field modes are most strongly scattered.

b. Unruh vacuum. Now we turn our attention to the case of the Unruh vacuum. The

Wightman function for the real massless scalar field in this vacuum is given by [13, 14]

D+

U (x, x
′) =

1

4π

∑

lm

|Ylm(θ, ϕ)|2
∫ +∞

−∞

dω

ω
×

[

e−iω∆t

1− e−2πω/κ
|−→R l(ω|r)|2 + θ(ω)e−iω∆t|←−R l(ω|r)|2

]

, (40)
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where κ = 1/4M is the surface gravity of the black hole. The two statistical functions of

the scalar field readily follow

CF (x(τ), x(τ ′)) =
1

8π

∑

lm

|Ylm(θ, ϕ)|2
∫ ∞

−∞

dω

ω

(

e
iω∆τ
√

g00 + e
− iω∆τ

√
g00

)

×

[ |−→R l(ω|r)|2
1− e−2πω/κ

+ θ(ω)|←−R l(ω|r)|2
]

, (41)

χF (x(τ), x(τ ′)) =
1

8π

∑

lm

|Ylm(θ, ϕ)|2
∫ ∞

−∞

dω

ω

(

e
− iω∆τ

√
g00 − e

iω∆τ
√

g00

)

×

[ |−→R l(ω|r)|2
1− e−2πω/κ

+ θ(ω)|←−R l(ω|r)|2
]

. (42)

The contributions of vacuum fluctuations and radiation reaction can now be calculated by

Eqs. (11) and (12) to yield

(δEb)vf =
µ2

32π2h̄

∑

d

|〈b|S2(0)|d〉|2
∫ ∞

−∞
dω ×

[

1

1− e−2πω/κ
−→g (ω|r) + θ(ω)←−g (ω|r)

](

ω
ω√
g00

+ ωbd
− ω

ω√
g00
− ωbd

)

, (43)

(δEb)rr = − µ2

32π2h̄

∑

d

|〈b|S2(0)|d〉|2
∫ ∞

−∞
dω ×

[

1

1− e−2πω/κ
−→g (ω|r) + θ(ω)←−g (ω|r)

](

ω
ω√
g00

+ ωbd

+
ω

ω√
g00
− ωbd

)

. (44)

Here again, one can see from Eq.(44) that (δE+)rr = (δE−)rr for the same reasons as that in

the Boulware vacuum. Similarly, we now focus our attention on the two asymptotic regions,

i.e., when r → 2M and r → ∞. Adding up the contributions of vacuum fluctuations

and radiation reaction, calculating out the energy shift for each level, and then performing

a subtraction, we can derive the Lamb shift, which is, for an atom fixed near the event

horizon, i.e., when r → 2M ,

∆U ≈ [1 + f(r)] ∆M +∆T , (45)

where

∆T =
µ2

8π2h̄

∫ ∞

0

dωP

(

ω

ω + ω0

− ω

ω − ω0

)

1

e2πω/κr − 1
, (46)

and κr = κ/
√
g00. ∆T , the correction term, as opposed to the Boulware vacuum case, is in

the same form as the acceleration correction to the Lamb shift derived in [2] of a uniformly

accelerated atom which would find itself in a thermal bath at the Unruh temperature, and

is in structural similarity to the corresponding expressions obtained for the Lamb shift in a
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thermal heat bath [19–21] in that they have in common the appearance of the thermal factor

(e2πω/κr − 1)−1. The difference can be attributed to the discrepancy between the scalar field

we consider here and the electromagnetic field.

So, close to the horizon, the Lamb shift gets a correction, which is what one would find

for a static atom if there is thermal radiation at the temperature

T =
κr

2π
=

κ

2π
√
g00

=
TH√
g00

(47)

with TH = κ/2π, being the usual Hawking temperature of the black hole. Eq. (47) is the

well-known Tolman relation [22, 23], which gives the proper temperature as measured by a

local observer. Thus, a static atom close to the horizon of a black hole behaves, in terms

of the Lamb shift, as if there is thermal radiation emanating from the black hole horizon.

Notice that T actually diverges as the horizon is approached, and this should come as no

surprise since the atom must be in acceleration relative to the local free-falling frame to

maintain at a fixed distance from the black hole, and this acceleration, which blows up at

the horizon, gives rise to additional thermal effect. A comparison of Eq. (45) with Eq.(37)

leads to the following relationship at the horizon

∆U | r→2M = ∆B| r→2M + ∆T | r→2M . (48)

For an atom fixed far from the black hole, i.e. when r →∞, the Lamb shift becomes

∆U ≈ [1 + f(r)] ∆M + f(r)∆T . (49)

Here we have used the relation f(−ω, r) = f(ω, r) that can be deduced from the properties

of Bl(ω) given in Ref. [12]. Different from that near the event horizon, the correction term,

which is thermallike, is modified by a grey-body factor f(ω, r) ∼ f(r). It can be understood

as a result of backscattering of the outgoing thermal flux emanating from the event horizon

off space-time curvature, which results in part of the outgoing flux being depleted. As the

atom is placed further and further away, the thermal flux becomes weaker and weaker, and

so is its contribution to the Lamb shift. Consequently,

∆U |r →∞ ≈ ∆B| r→∞ + [f(r)∆T ] r →∞

≈ ∆B| r→∞ = ∆M . (50)

c. Hartle-Hawking vacuum. Let us focus on the case of the Hartle-Hawking vacuum.

The Wightman function for the real massless scalar field now is [13, 14]

D+

H(x, x
′) =

1

4π

∑

lm

|Ylm(θ, ϕ)|2
∫ +∞

−∞

dω

ω
×

[

e−iω∆t

1− e−2πω/κ
|−→R l(ω|r)|2 +

eiω∆t

e2πω/κ − 1
|←−R l(ω|r)|2

]

, (51)
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and it leads to the statistical functions of the scalar field as follows

CF (x(τ), x(τ ′)) =
1

8π

∑

lm

|Ylm(θ, ϕ)|2
∫ +∞

−∞

dω

ω

(

e
iω∆τ
√

g00 + e
− iω∆τ

√
g00

)

×
( |−→R l(ω|r)|2
1− e−2πω/κ

+
|←−R l(ω|r)|2
e2πω/κ − 1

)

, (52)

χF (x(τ), x(τ ′)) =
1

8π

∑

lm

|Ylm(θ, ϕ)|2
∫ +∞

−∞

dω

ω

(

e
− iω∆τ

√
g00 − e

iω∆τ
√

g00

)

×
( |−→R l(ω|r)|2
1− e−2πω/κ

− |
←−
R l(ω|r)|2
e2πω/κ − 1

)

. (53)

So, the contributions of vacuum fluctuations and radiation reaction to the energy shift of

level |b〉 can be separately calculated to give

(δEb)vf =
µ2

32π2h̄

∑

d

|〈b|S2(0)|d〉|2
∫ ∞

−∞
dω ×

(

ω
ω√
g00

+ ωbd
− ω

ω√
g00
− ωbd

)[ −→g (ω|r)
1− e−2πω/κ

+
←−g (ω|r)

e2πω/κ − 1

]

, (54)

(δEb)rr = − µ2

32π2h̄

∑

d

|〈b|S2(0)|d〉|2
∫ ∞

−∞
dω ×

(

ω
ω√
g00

+ ωbd
+

ω
ω√
g00
− ωbd

)[ −→g (ω|r)
1− e−2πω/κ

−
←−g (ω|r)

e2πω/κ − 1

]

. (55)

Using the above results, we can examine the behaviors of the Lamb shift in two asymptotic

regions. First, when r →∞, we find

∆H ≈ [1 + f(r)] ∆M + f(r) ∆T + ∆T . (56)

Here, the first correction term as opposed to the Boulware vacuum case is caused by the

thermal radiation from the black hole which is backscattered by the space-time curvature and

the backscattering is represented by the appearance of the grey-body factor, f(ω, r) ∼ f(r),

as we have already studied in the Unruh vacuum case. The second correction term (∆T ) is the

correction one would get for the Lamb shift in a thermal bath at the Hawking temperature

TH (Here we have taken into account that T = TH at infinity.) Since the thermal radiation

from the black hole diminishes to zero at infinity due to the backscattering off the curvature,

as we have already pointed out, the presence of the thermal correction term, ∆T , indicates,

in the Hartle-Hawking vacuum, that there is a thermal distribution of quanta at the Hawking

temperature at infinity, and therefore, the Hartle-Hawking vacuum is not a vacuum in real

sense, but a state that describes a black hole in equilibrium with an infinite sea of blackbody
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radiation. This is consistent with our understanding of the Hartle-Hawking vacuum gained

in studies in other different contexts [10, 14, 24]. Note that Eq. (56) can also be written as

∆H | r→∞ = ∆U | r→∞ + ∆T | r→∞ . (57)

Let us now study what happens at close to the horizon, i.e., when r → 2M . It then

follows that

∆H ≈ [1 + f(r)] ∆M + [1 + f(r)] ∆T . (58)

Here the ∆T term is a correction reminiscent of what one has for the Lamb shift close to

the black hole horizon in the Unruh vacuum case, and it is a consequence of the outgoing

thermal radiation from the black hole. The last term is a contribution of the incoming

radiation of the thermal bath at infinity, which is backscattered off the curvature on its way

to the black hole horizon. Eq. (58) can also be written as

∆H | r→2M = ∆U | r→2M + [f(r)∆T ] r→2M . (59)

It is interesting to note that the appearance of the ∆T term in the Lamb shifts close to the

horizon both in the Unruh and the Hartle-Hawking vacua (refer to Eq. (45) and Eq. (58))

supports the notion that the Hawking radiation of a black hole originates from the black

hole horizon, since ∆T represents a contribution of purely thermal radiation not scattered

by the space-time curvature.

Finally, it is worth pointing out that the correction term ∆T , which appears in the Lamb

shifts in both the Unruh and Hartle-Hawking vacuua, is finite, and this can be seen by a

careful inspection of the integral involved. Here, we would like to go a little bit further.

We will analyze the behaviors of ∆T both in the high and low temperature limits. For this

purpose, we rewrite it as

∆T = −µ2ω0

8π2h̄

∫ ∞

0

dxP

(

1

x+ x0

+
1

x− x0

)

1

ex − 1
(60)

with x = ω/T and x0 = ω0/T . When the Hawking temperature is low, that is, when x0 ≫ 1,

the integral can be approximated by

∆T =
µ2

8h̄

[

T 2

3ω0

+
2π2T 4

15ω3
0

+O

(

1

x6
0

)]

. (61)

While in the high temperature limit, i.e., when x0 ≪ 1, we have

∆T ≈
µ2ω0

8π2h̄

1

x0

[

e−x0Ei(x0)− ex0Ei(−x0)

]

, (62)

where Ei(z) = −
∫∞
−z

e−t

t
dt and the overline denotes the principal value. Further simplifica-

tions yield

∆T ≈
µ2ω0

4π2h̄
[1− γ + ln(T/ω0)] +O(x2

0) (63)

with γ = 0.577216 being the Euler’s constant. So, in the high temperature regime, the Lamb

shift increases logarithmically with the temperature.
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IV. SUMMARY

Using the formalism suggested by Dalibard, Dupont-Roc and Cohen-Tannoudji(DDC) [8,

9] which allows a distinct separation of the contributions of vacuum fluctuations and radia-

tion reaction, we have calculated the Lamb shift of a static two-level atom interacting with

real massless scalar fields in the Boulware, Unruh and Hartle-Hawking vacuums outside a

Schwarzschild black hole.

In the Boulware vacuum case, we find that the Lamb shift gets a correction, as opposed

to that in an unbounded flat space, which is reminiscent of the correction to the Lamb shift

induced by the presence of boundaries, and it can be understood as a result of the back

scattering of vacuum field modes off the space-time curvature of the black hole in much the

same way as the reflection of the field modes at the reflecting boundary in a flat space-time.

This correction can be viewed as the correction to the Lamb shift for an atom held static

outside a massive spherical object with a radius larger than the Schwarzschild radius, and

it reduces, at infinity, to the Lamb shift in a unbounded flat space as expected.

In the Unruh vacuum case, we find that the Lamb shift is corrected by a thermal term,

as compared to that in Boulware vacuum case, which can be regarded as a result of the

thermal radiation at the Hawking temperature emanating from the black hole horizon and

the additional thermal effect due to the acceleration relative to the local free-falling frame

the atom must have in order to be static. However, the thermal radiation from the black

hole is backscattered off the space-time curvature, and becomes weaker and weaker on its

way away from the black hole, rendering the Lamb shift to reduce to that in a flat space at

infinity.

However, when the Hartle-Hawking vacuum is concerned, our results show that the cor-

rection to the Lamb shift close to the horizon, as opposed to that in the Boulware vacuum,

would be a purely thermal contribution term due to an outgoing Hawking radiation from

black hole plus that due to an incoming radiation from infinity which is backscattered off

the curvature, whereas, at infinity, the Lamb shift gets corrected by a purely thermal term

characteristic of a sea of black-body radiation plus a term resulting from the backscattered

Hawking radiation from the black hole. This supports the notion that the Hartle-Hawking

vacuum is a state that describes a black hole in equilibrium with an infinite sea of blackbody

radiation, rather than a vacuum state in the usual sense.
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