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Abstract

The low energy effective theory on a stack of D3-branes at a Calabi-Yau

singularity is an N = 1 quiver gauge theory. The AdS/CFT correspondence

predicts that the strong coupling dynamics of the gauge theory is described by

weakly coupled type IIB supergravity on AdS5×L5, where L5 is a Sasaki-Einstein

manifold. Recent results on Calabi-Yau algebras efficiently determine the Hilbert

series of any superconformal quiver gauge theory. We use the Hilbert series to

determine the volume of the horizon manifold in terms of the fields of the quiver

gauge theory. One corollary of the AdS/CFT conjecture is that the volume of

the horizon manifold L5 is inversely proportional to the a-central charge of the

gauge theory. By direct comparison of the volume determined from the Hilbert

series and the a-central charge, this prediction is proved independently of the

AdS/CFT conjecture.
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1 Introduction

Maldacena’s original AdS/CFT correspondence relates type IIB string theory onAdS5×
S5 to N = 4 supersymmetric Yang-Mills in Minkowski space. Several authors [1, 2] re-

alized that this correspondence could be extended to cases with fewer supersymmetries.

If the five-sphere is replaced by another five-dimensional manifold L5, N = 1 SUSY is

preserved only if L5 is Sasaki-Einstein. For these manifolds Gubser, [3, 4] proposed a

simple yet powerful prediction of the AdS/CFT correspondence. Proper normalization

of the AdS 3-point functions ensures that the volume of the Sasaki-Einstein manifold

is inversely proportional to the central charge a,

Vol(L5) ∝ π3

4

1

a
.

The a-central charge of a 4D SCFT quiver gauge theory can be determined through

a variational procedure called a-maximization developed by Intriligator and Wecht

[5]. Martelli, Sparks, and Yau [6, 7] proposed that the dual variational problem is

minimizing the volume of the horizon manifold over all possible choices of a “Reeb”

vector.

We show the equivalence of these two procedures by describing volume minimization

in terms of the fields of the quiver. The volume of the horizon manifold is governed

by the asymptotic growth of the number of holomorphic functions on its metric cone

X = C(L5) [8]. Using the correspondence between holomorphic functions on X and

mesonic operators in the quiver, we express the Hilbert series in terms of mesonic

operators. Using this correspondence, we formulate volume minimization entirely in

terms of the fields of the quiver gauge theory. We will perturbatively expand the

expression for the volume. Several terms in the expression vanish from constraints from

N = 1 superconformal field theories. After the cancellations are accounted for, we will

see that the expressions for volume minimization and a-maximization are identical.

For toric Calabi-Yau singularities, the relationship between the a-central charge and

volume has already been established [9, 10]. Our proof applies to both toric and non-

toric singularities. While branes at toric singularities have been extensively studied

[11], far less is known about branes at general Calabi-Yau singularities.

Our plan for the paper is as follows. We first review the relation between the volume

and a-central charge predicted by the AdS/CFT correspondence. Next we introduce the

general structure of quiver gauge theories and explain the role of baryonic symmetries

in quiver gauge theories and their supergravity duals. The subsequent sections form

the mathematical core of this paper. Section 6 introduces Calabi-Yau algebras, which

mathematically characterize quiver gauge theories that flow to N = 1 superconformal
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field theories in the infrared. The next section introduces the stronger notion of a

“non-commutative crepant resolution.” Non-commutative crepant resolutions describe

the N = 1 superconformal field theories which can be engineered from D3-branes at

Calabi-Yau singularities. These will be the main source of Calabi-Yau algebras in this

paper. Using the projective resolution of modules, a property satisfied by Calabi-Yau

algebras, we will explain how to to compute the Hilbert series of a quiver gauge theory

in section 9. Examples of Hilbert series are given in section 10. We review the gauge

theories associated to C3 and the conifold and show how the Hilbert series correctly

determines the volume of their horizon manifolds. Finally in section 11, we prove

the equivalence of a-maximization and volume minimization for general quiver gauge

theories.

2 Predictions from AdS/CFT

The AdS/CFT correspondence between type IIB string theory with N D3-branes at

a local Calabi-Yau singularity X and type IIB string theory on AdS5 × L5 leads to a

rich interplay between gauge theory, supergravity, and mathematics. In the low-energy

limit, the correspondence is a realization of holography [12, 13]. At low energies, the

correspondence is between a gauged supergravity theory on AdS5 and a superconformal

field theory living on the boundary of AdS5. We focus on the limit where the number,

N, of D3-branes is large. For the low energy effective field theory on the D3-brane

world-volume to have N = 1 supersymmetry, X must be Calabi-Yau, possibly with

Gorenstein singularities. We will consider only isolated Gorenstein1 singularities so

that the near horizon limit can easily be defined. Furthermore, we only consider

Gorenstein singularities that can be realized as a metric cone over a Sasaki-Einstein

base L5. As emphasized in [14], not all Gorenstein singularities satisfy this property.

For the supergravity theory to haveN = 1 supersymmetry, L5 must be Sasaki-Einstein.

An odd dimensional Riemannian manifold L is Sasakian if its metric cone (C(L), gL)

with

gC(L) = dr2 + r2gL

is Kähler. The Kähler condition implies that C(L) contains an almost-complex struc-

ture J. If additionally the metric cone C(L) is a possibly singular Calabi-Yau, then L

is called Sasaki-Einstein. Every Sasaki-Einstein manifold posses a distinguished vector

field

ξ = J

(
r
∂

∂r

)
1An isolated complex threefold singularity is Gorensein if it has a no-where vanishing holomorphic

three form Ω3,0 that is well-defined away from the singular point.
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called the Reeb vector field. The symmetry generated by the Reeb vector field is dual

to the R-symmetry of the superconformal gauge theory. If the orbits of the Reeb vector

close, then L5 is either regular or quasi-regular. This is dual to the field theory having

a compact R-symmetry group, isomorphic to U(1) . If the orbits of the Reeb vector do

not close, then L5 is an irregular Sasaki-Einstein manifold and the R-symmetry group

of the dual gauge theory is non-compact and isomorphic to R.

The AdS/CFT correspondence matches the isometries of the supergravity theory

to global symmetries of the dual four dimensional superconformal field theory. The

four dimensional superconformal algebra psu(2, 2|1) contains the bosonic subalgebra

so(4, 2) × u(1)R. Under the AdS/CFT correspondence, the SO(4, 2) global symmetry

group matches the isometry group of AdS5. Every Sasaki-Einstein manifold has a sym-

metry generated by the Reeb vector field. Under the AdS/CFT correspondence, this

symmetry maps to theR-symmetry of the field theory. We will consider the dimensional

reduction of IIB supergravity on L5. There are b3(L5) gauge fields AI , I = 1, . . . b3(L5)

from dimensional reduction of the RR four-form. There is an additional U(1) gauge

field from the Kaluza-Klein reduction of the graviton. If L5 possesses isometries in

addition to the one generated by the Reeb vector field, then the field theory has addi-

tional mesonic flavor symmetries [15, 16], which we will review in section 4. Under the

AdS/CFT correspondence, the bulk gauge fields correspond to global symmetries of

the boundary field theory. In addition to the matching of symmetries, the AdS/CFT

correspondence predicts a precise relationship between correlation functions.

Suppose the AdS5 theory has gauge group G of rank |G| and gauge fields AI , I =

1, . . . |G|. The gauge symmetries are mapped to global symmetries of the boundary the-

ory with corresponding currents JI . Gubser, Klebanov, Polyakov, and Witten [17, 18]

proposed the following way to match partition functions between the CFT and SUGRA

theories. Background gauge fields AI0 turned on in the CFT can be extended to gauge

fields AI in the interior of AdS5 in a unique manner up to gauge transformations. The

partition function of the CFT with background fields AI0 equals the SUGRA partition

function with the restriction that the components of the dynamical gauge fields AI

approach the CFT background fields AI0 at the boundary of AdS5. We schematically

represent this as

Z[AI0]CFT = ZSUGRA[AI |∂AdS5 = AI0].

Here the CFT generating functional is

Z[AI0]CFT =
〈

exp

(∫
JIA

I
0

)〉
CFT

.

Under the GKP/W prescription, the gauge symmetry of the AdS gauge fields, AI →
AI + ∂χI , translates directly into the condition that the CFT currents are conserved,
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∂µJ
µ
I = 0. Since the AdS/CFT correspondence is a weak-strong duality, it is usually

difficult to test the equivalence of correlation functions. For the original AdS/CFT

correspondence withN = 4 supersymmetry, the additional supersymmetry has enabled

extensive tests of the correspondence. For theories with only N = 1 supersymmetry,

there are very few quantities we can compute at strong coupling. However, we can

still try to match global anomalies, which are one-loop exact and therefore computable

at strong coupling. The U(1) global symmetries are exact symmetries of the quantum

theory. When coupled to external gauge fields, these symmetries can have ABJ [19, 20]

type triangle anomalies.

A direct check of AdS/CFT can be made by showing that the the three-point

functions on both sides of the correspondence match. For anomalies, there is an elegant

method that is equivalent to matching the three-point functions of the anomalous

currents. Witten [18] observed that the 5d Chern-Simons term in the AdS5 supergravity

action is not gauge invariant. Under a gauge transformation, the 5d Chern-Simons term

gains a boundary term. Under the GKP/W prescription, this term becomes precisely

the 4D ABJ anomaly in the boundary SCFT.

Four dimensional superconformal field theories are parametrized by two central

charges, a and c. The central charges can be read off from the two- and three-point

function of the stress energy tensor. Alternatively, the anomaly coefficients can be

computed from Weyl anomalies. Since the stress energy tensor is a composite operator,

it must be appropriately regularized. Conformal symmetry requires that the trace of

the stress tensor vanishes. However, the trace and regularization procedures do not

commute, and their failure to do so leads to the Weyl anomaly. For any theory with

a large N holographic dual, the a and c central charges must be equal [4]. This is

automatically the case for superconformal quiver gauge theories [21] [22]. The difference

a − c is proportional to TrR = 0 to leading order in N. For a superconformal quiver,

the condition TrR = 0 can be seen by taking the linear combination of the NSVZ beta

functions [23] weighted by the ranks of the gauge groups.

Since the stress energy tensor and the R-symmetry current both reside in the same

supersymmetry multiplet, the a central charge can be written as

a =
3

32

(
3 TrR3 − TrR

)
.

The trace is over all the fields, and R is the R-charge under the IR R-symmetry.

Either by matching 3-point functions or generalizing Witten’s argument, the AdS/CFT

correspondence predicts that the volume of the Sasaki-Einstein manifold is inversely

proportional to the central charge a,

Vol(L5) =
π3N2

4a
.
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After reviewing the general properties of quiver gauge theories, we will explain how the

a-central charge is determined by Intriligator and Wecht’s a-maximization procedure.

3 Quiver Gauge Theories

The world-volume gauge theory on a stack of D3-branes at a Calabi-Yau singularity

is often described by a quiver gauge theory. A quiver Q = (V,A, h, t : A → V ) is a

collection of vertices V and arrows A between the vertices of the quiver. The arrows

are directed edges with the head and tail of an arrow a ∈ A given by maps h(a) and

t(a), respectively. A representation X of a quiver is an assignment of C-vector spaces

Xv to every vertex v ∈ V and a C−linear map φa : Xt(a) → Xh(a) to every arrow a ∈ A.
The dimension vector n ∈ N|V | of a representation X is a vector with an entry for each

vertex v ∈ V equal to the dimension of the vector space Xv.

A quiver gauge theory is specified by a quiver and a superpotential in the following

manner:

• The gauge group

G =
∏
v∈V

U(nv)

is a product of unitary groups U(nv) of dimension nv.

• Arrows a ∈ A represent chiral superfields Φa transforming in the fundamental

representation of U(nh(a)) and in the anti-fundamental representation of U(nt(a)).

If the two vertices are distinct, the chiral superfields are called bifundamental

fields. Otherwise, the arrow is a loop and the field transforms in the adjoint

representation.

• The superpotential

W =
∑

l=a1a2...ak∈L

λl Tr [Φa1Φa2 . . .Φak ]

is a sum of gauge invariant operators Tr [Φa1Φa2 . . .Φak ] .Gauge invariance requires

l = a1a2 . . . ak to be an oriented loop in the quiver. Each operator has coupling

constant λl.

For a quiver gauge theory to be physically sensible, the gauge anomalies for each

gauge group must vanish. Vanishing of the triangle anomaly with three external gluons

of the U(nv) gauge group yields the condition∑
a∈A|h(a)=v

nt(a) −
∑

a∈A|t(a)=v

nh(a) = 0. (3.1)
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Linear combinations U(1)q of the U(1)v ⊂ U(nv) groups can mix and lead to triangle

anomalies of the form Tr [SU(nv)
2U(1)q] . Vanishing of this mixed anomaly requires∑

a∈A|h(a)=v

nt(a)qt(a) −
∑

a∈A|t(a)=v

nh(a)qn(a) = 0. (3.2)

Quiver gauge theories describing the low energy effective field theory of D-branes at a

Calabi-Yau singularity have a variant of the Green-Schwarz mechanism to cancel the

anomalous U(1)’s. The gauge fields of the anomalous U(1)’s couple to RR-form fields

giving them Stückelberg masses [24, 25, 26]. These massive vector fields decouple in

the IR. The non-anomalous U(1) fields are free in the infrared so they also decouple

and become global U(1) symmetries in the IR. These global U(1) symmetries are called

baryonic symmetries. This is explained from a large-volume perspective in [27, 28, 29].

In the next section we will review baryonic symmetries in more detail.

At a conformal fixed point in the infrared, we expect the NSVZ 1-loop exact beta

functions of the gauge groups SU(nv) and couplings λl to vanish. These constraints

are

β̂1/g2v = 0 2nv +
∑
e∈Q1

(R(e)− 1)nt(e) +
∑
e∈Q1

(R(e)− 1)nh(e) = 0 (3.3)

β̂λl = 0 −2 +
∑

e∈loop l

R(e) = 0. (3.4)

The last condition implies that at a superconformal fixed point, every term in the

superpotential has total R-charge 2.

4 Baryonic and Flavor Symmetries

Global flavor symmetries play a prominent role in our story because they can mix with

the R-symmetry of the superconformal gauge theory. The a-maximization procedure

of Intriligator and Wecht determines the precise form of the mixing. In this section, we

review the constraints on anomalies with flavor symmetries. These constraints will be

essential when we analyze the perturbative expansion of the Hilbert series in section 9.

After dimensional reduction, D3 branes wrapping 3-cycles in L5 become baryonic

particles in the AdS5 supergravity theory. They are charged under the b3(L5) gauge

fields coming from dimensional reduction of the RR 4-form on the same cycle. Under

the AdS/CFT correspondence, these gauge fields are dual to global baryonic U(1)

symmetries. For quiver gauge theories, the baryonic symmetries can be described by

charges qIv satisfying equation (3.2). The charge of a bifundamental field Xt(a),h(a)

7



under the I th global baryonic symmetry is BI(X) = qIh(a)− qIt(a). When qv = 1, none of

the bifundamental fields is charged under the baryonic symmetry. In this case, (3.2)

becomes equivalent to (3.1). The other solutions have non-vanishing baryonic charges,

so the dimension of the solution space of (3.2) is b3(L5) + 1.

Mesonic operators in the quiver gauge theory are uncharged under baryonic sym-

metries. However they are charged under the R-symmetry and possibly additional

flavor symmetries. If L5 has a rank `-dimensional space of isometries, then there are `

Kaluza-Klein gauge fields in the AdS5 supergravity theory [15, 16]. The Kaluza-Klein

gauge fields are dual to non-baryonic flavor symmetries in the SCFT. These symmetries

are called mesonic flavor symmetries because mesons are charged under them.

In addition to the anomalies (5.1), the baryonic symmetries of four dimensional

superconformal field theories satisfy relations:

TrBI = 0 (4.1)

TrBIBJBK = 0 for all I, J,K. (4.2)

since there are no 10-dimensional Chern-Simons couplings that could generate the

corresponding anomalies via dimensional reduction [21, 29].

5 A-Maximization

Given the ultraviolet description of a quiver gauge theory, determining the exact R-

symmetry in the IR is complicated by the possibility that the R-symmetry can mix

with other U(1) global symmetries. Intriligator and Wecht [5] developed a procedure

called a-maximization to determine the true R symmetry in the IR. They first consider

a trial R-symmetry

Rt = R0 +
∑
I

sIF I

where R0 is any U(1) charge assignment whose gauge and superpotential couplings have

vanishing beta functions (3.3). The F I represent arbitrary U(1) flavor symmetries and

sI are parameters. Combined with the general results on flavor symmetries in N = 1

SCFTs [30],

9 Tr(R2F I) = TrF I (5.1)

TrRF JFK is negative definite. (5.2)

Intriligator and Wecht showed that the true R symmetry is the one that minimizes the

4D central charge

a =
3

32

(∑
ψ

3R3
ψ −Rψ

)
.
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Since the a-central charge can be expressed in terms of triangle anomalies, the sum is

over all fermions, ψ, in the quiver gauge theory. A chiral multiplet Xe containing a

complex scalar field with R-charge R(e) also contains a fermion with R-charge R(e)−
1. Bifundamental fields between gauge groups of ranks nv and nw contribute nvnw
fermions to the gauge theory matter content. Similarly, adjoint fields contribute n2

v

fermions. For each gauge group U(nv), there are n2
v gauginos, which all have R-charge

1. In terms of the fields of the quiver, the a central charge is

a =
3

32

2NG +
∑

e∈Arr(v→w)

3nvnw(R(e)− 1)3 − nvnw(R(e)− 1)


where NG =

∑
v∈Q0

n2
v is the number of gauginos. For a superconformal quiver gauge

theory TrR = 0, which lets us write the a-anomaly as

a =
9

32

NG +
∑

e∈Arr(v→w)

nvnw(R(e)− 1)3

 . (5.3)

As emphasized in [31, 10, 29] the baryonic symmetries decouple from the maximiza-

tion procedure, so we can restrict the parameters sI to vary over the `-dimensional

subspace of mesonic flavor symmetries in a-maximization. The space of mesonic flavor

symmetries corresponds directly to the `-dimensional subspace the Reeb vector is varied

over in volume minimization. We have given an account of the original Intriligator-

Wecht procedure, which is sufficient for our purposes. For further developments and

modifications, see [32, 33, 34].

6 Calabi-Yau Algebras

Which quiver gauge theories arise from placing a stack of D3-branes at a Calabi-Yau sin-

gularity? Berenstein and Douglas [35] suggested that the Calabi-Yau condition should

be captured by a form of Serre duality. Additionally, they conjectured that the Calabi-

Yau condition could be captured by a projective resolution of simple modules. In this

section, we will review the homological algebra necessary to state Ginzburg’s version

[36, 37] of Berenstein and Douglas’ conjecture. We will be able to use Ginzburg’s pro-

jective resolution to determine the Hilbert series of any Calabi-Yau algebra of dimension

three.

Following [38], let S :=
⊕

v∈Q0
Cev be the semi-simple algebra generated by the

paths of length zero. Similarly, let T1 =
⊕

a∈Q1
Cxa be the vector space generated

by the arrows. For each arrow a ∈ Q1, there is a relation Ra ≡ ∂
∂xa

W . Define

9



T2 =
⊕

a∈Q1
CRa to be the vector space generated by the relations Ra ≡ ∂

∂xa
W. In

addition to relations, there can also be relations between relations called syzygies. For

any superpotential algebra, there is a universal syzygy [39] associated to every vertex

v ∈ Q0 of the form

Wv :=
∑

a∈Q1|t(a)=v

xaRa =
∑

a∈Q1|h(a)=v

Raxa.

Finally, let T3 :=
⊕

v∈Q0
CWv be the vector space spanned by the universal syzygies.

There are natural maps µ0, . . . µ3 between these spaces. The map µ0 takes two paths

and concatenates them. It is extended by linearity to act on the entire path algebra:

µ0 : A⊗S A→ A

x⊗ y → xy.

The map µ1 is defined on a triple (path, arrow, path) and produces a formal difference

of pairs of paths. By linearity the map extends to the entire path algebra.

µ1 : A⊗S T ⊗S A→ A⊗S A
x⊗ xa ⊗ y → xxa ⊗ y − x⊗ xay.

The map µ2 is defined using a new type of derivative

∂

∂xa
: CQ→ CQ⊗ CQ x→

(
∂x

∂xa

)′

⊗
(
∂x

∂xa

)′′

.

We first explain how this derivative acts on paths. For each occurrence of an arrow xa
in a path, the path can be written as xxay. Split this term into x ⊗ y and then sum

over all possible positions of the middle arrow. In Sweedler notation the left part, x,

is inserted to the first (·)′
and the right part, y, is inserted into second (·)′′

. Using this

derivative, the map µ2 is defined as

µ2 :A⊗S T2 ⊗S A→ A⊗S T1 ⊗S A

x⊗Ra ⊗ y →
∑
b∈Q1

x

(
∂Ra

∂xb

)′

⊗ xb ⊗
(
∂Ra

∂xb

)′′

y.

Finally, the map µ3 is defined as

µ3 :A⊗S T3 ⊗S A→ A⊗S T2 ⊗S A

x⊗Wv ⊗ y →
∑

b∈Q1|t(b)=v

xxb ⊗Rb ⊗ y −
∑

b∈Q1|h(b)=v

x⊗Rb ⊗ xby

10



It is simple to check that the composition of two successive maps µj ◦ µj+1 = 0 so we

can form the following complex:

0 −−−→ A⊗S T3 ⊗S A
µ3−−−→ A⊗S T2 ⊗S A

µ2−−−→ A⊗S T1 ⊗S A
µ1−−−→ A⊗S A

µ0−−−→ A −−−→ 0 (6.1)

Ginzburg’s main result is the following theorem:

Theorem 6.1 ([37]). An associative algebra A is Calabi-Yau of dimension three if and

only if the complex (6.1) is exact.

The notion of Calabi-Yau algebras used in this theorem is defined by an analog of

Serre duality.

Definition 6.1 ([37]). A homologically smooth algebra A is said to be Calabi-Yau of

dimension d if there is an A−bimodule quasi-isomorphism f : A → A![d] such that

f = f ![d]. Here

M →M ! := RHomA−Bimod(M,A⊗ A).

We will use the projective resolution (6.1) to compute the Hilbert series of graded

superpontetial algebras.

Definition 6.2. The Hilbert series of a graded superpotential algebra A =
⊕

r∈NAr
is the Q0 ×Q0 matrix H(A; t) with (v, w) entry

Hv,w(A; t) =
∞∑
r=0

tr dim(evArew).

Theorem 6.2 (Ginzburg/Bocklandt [37, 40]). Let A = CQ/(∂W ) be a superpotential

algebra with W homogeneous of degree d. Associate to the quiver the adjacency matrix

MQ(t) with (v, w) entry

Mv,w(Q; t) =
∑

a∈arr(v→w)

tdeg(a).

The Hilbert series of A equals

H(A; t) =
1

1−MQ(t) + tdMT
Q(t−1)− td

where 1 represents the identity matrix.

In the next section we will introduce non-commutative resolutions of local Calabi-

Yau singularities. These form a large family of Calabi-Yau algebras. We expect that

the condition that a gauge theory is superconformal implies that the corresponding

superpotential algebra is Calabi-Yau of dimension three.
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Conjecture 6.1. A superpotential algebra A = CQ/(∂W ) with an R-charge assign-

ment R : Q1 → (0, 1] such that

• Each field of Q1 appears in at least two terms of the superpotential,

• The superpotential W is homogeneous of degree 2,

• The NSVZ beta functions in equation (3.3) vanish,

is a Calabi-Yau algebra of dimension 3.

For the special case of dimer models, this conjecture has been proven [41, 38, 42].

7 Non-Commutative Crepant Resolutions

Bondal and Orlov conjectured that different crepant resolutions f1 : Y1 → X and

f2 : Y2 → X of a local Calabi-Yau singularity X = SpecR should have equivalent

derived categories of coherent sheaves [43]. Van den Bergh gave a new proof of this

conjecture in dimension three [44], which was motivated by [45]. One of his insights

was to introduce a non-commutative algebra A as an intermediate object.

Db(CohY1) ∼= Db(mod−A) ∼= Db(CohY2).

Abstracting the properties of the algebraA led van den Bergh to define non-commutative

crepant resolutions.

Definition 7.1 (van den Bergh [46]). A non-commutative crepant resolution (NCCR)

of a Gorenstein ring R is an homologically homogeneous R-algebra of the form A =

EndR(M) where M is a reflexive R-module.

In practice, we will work with the slightly weaker, but more accessible, class of

non-commutative crepant resolutions given by the next theorem.

Theorem 7.1 (van den Bergh [46]). The algebra

A = EndR(M)

is a non-commutative crepant resolution of a commutative Gorenstein ring R if

• M is a reflexive R-module,

• A has finite global dimension,

• A is a MCM R-module.

12



The second condition is necessary to show that NCCRs of Gorenstein rings of

dimension three are Calabi-Yau three algebras. In this paper, we will focus on NCCRs

of the form A = EndR(M), where M =
⊕N

i=0Mi and M0 = R. Since EndR(M0) ∼= R

we can identify closed loops based at the vertex corresponding to M0 with the elements

of R, or equivalently the holomorphic functions on the variety X = SpecR. If we view

the algebra A is a quiver gauge theory, each module Mv corresponds to a vertex v of

the quiver. The gauge groups U(nv) associated to the modules Mv have ranks

nv = N dimRMv

where N is the number of D3-branes at the singularity and dimRMv is the rank of the

R-module Mv.

8 Volume Minimization

A-maximization determines the true R-symmetry of a superconformal field theory

in the IR. The AdS/CFT dual of this problem is determining the Reeb vector that

generates the U(1) isometry of the Sasaki-Einstein geometry. A geometric dual of

a−maximization for local toric Calabi-Yau threefolds was found by Martelli, Sparks,

and Yau [6]. They showed that the Reeb vector field, and hence the volume of a

Sasaki-Einstein metric on the base of a local toric Calabi-Yau cone could be computed

by minimizing a function computed from toric data. Later, they generalized their result

to manifolds with only a (C∗)` symmetry [7, 14]. The basic idea is that the asymptotic

growth rate of the number of holomorphic functions on the local Calabi-Yau determines

the volume of the Sasaki-Einstein horizon manifold [8].

The equivariant index

C(q,X) = Tr
{
q | H0(X)

}
counts the holomorphic functions on X indexed by their charges q ∈ (C∗)`. The trace in

the definition is of the induced (C∗)` action defined on the vector space of holomorphic

function on X. Let ζa, a = 1 . . . s form a basis for the Lie algebra of U(1)` ⊂ (C∗)`

so we can expand the Reeb vector in components ξ =
∑`

a=1 baζa, where ba are real

parameters. For toric manifolds, the equivariant index reduces to the character

C(q,Xσ) =
∑
m∈Sσ

qm

which counts points in a polyhedral cone Sσ associated to the toric variety. The volume

of the horizon manifold L2n−1 is found by minimizing

Vol[L2n−1](ba) =
2πn

(n− 1)!
lim
s→0

snC(qa = e−sba , Xσ)

13



over all possible values of the Reeb vector. For the case of interest, n = 3 and the

volume is

Vol[L5](ba) = π3 lim
s→0

s3C(qa = e−sba , X)

as a function of the Reeb vector.

9 Hilbert Series

In this section, we will show how the volume of a horizon manifold L5 can be computed

directly from the quiver describing the dual superconformal field theory. As explained

in section 7, given a singular local Calabi-Yau X = SpecR, a noncommutative crepant

resolution describes the gauge theory on a stack of D3-branes placed at the singularity of

X. If the noncommutative crepant resolution is of the form A = EndR(M0⊕· · ·⊕M|Q0|−1

with M0 := R, then the closed loops based at the vertex corresponding to M0 are in

bijection with the elements of the ring R.

To count paths weighted by R-charge, we simply modify the adjacency matrix to

have (v, w) component

MQ(t)vw =
∑

e∈Arrows(v→w)

tR(e)

where R(e) is a trial R-charge for the edge e. Since the superpotential has degree 2,

the Hilbert series is

H(Q; t) =
1

1−MQ(t) + t2MT
Q(t−1)− t2

. (9.1)

The (v, w) entry of the Hilbert series counts the number of distinct paths from vertex

v to vertex w weighted by R-charge where paths are counted up to F-term equivalence.

Since the module M0 corresponds to vertex 0 of the quiver, the Hilbert series of R =

Hom(M0,M0) is given by the (0, 0) entry of the Hilbert series.

To match the Hilbert series to the equivariant index C(q,X) of Martelli, Sparks,

and Yau, we recall the precise form of the correspondence between the Reeb vector ξ

and the R-symmetry. In their normalization, the weight µ of a holomorphic function

on X is determined by Lξf = µif where Lξ is the Lie derivative along the Reeb vector

field. The Reeb vector is normalized by demanding that

LξΩ3,0 = 3iΩ3,0

where Ω3,0 is the no-where vanishing holomorphic three form defined away from the

singularity. The holomorphic functions on X determine eigenfunctions of the Lapla-

cian on its horizon manifold L5. By carefully performing the Kaluza-Klein reduction,

14



Martelli, Sparks, and Yau show that the scaling dimension ∆(O) of a mesonic operator

O in the gauge theory is precisely

∆ = µ.

The superconformal algebra relates the scaling dimensions of chiral primary operators

to their R-charge

R(O) =
2

3
∆(O).

Combining these identifications, the volume of the horizon manifold is

Vol[L5] =

(
2π

3

)3

lim
s→0

s3H0,0(Q; e−s).

10 Examples

10.1 C3

The simplest five-dimensional Sasaki-Einstein manifold is the round five-sphere. Its

metric cone is simply C3. The dual gauge theory is N = 4 SYM, which has three

adjoint scalar fields X, Y, Z, and superpotential W = Tr (XY Z −XY Z) . The quiver

consists of a single node with three loops corresponding to the three adjoint scalar

fields. Let a, b, c denote the trial R-charges for these fields. The weighted adjacency

matrix has the single entry

MQ(t; a, b, c) =
(
ta + tb + tc.

)
The Hilbert series is

H(Q; t; a, b, c) =
1

1− (ta + tb + tc)− (t2−a + t2−b + t2−c) + t2
.

Imposing the constraint that all the R-charges must sum to 2, we can eliminate c =

2− a− b. We expand the Hilbert series in t = e−s as

s3H0,0(Q; e−s) =
1

ab(2− a− b)
1

s3
+O(s).

Minimizing the volume over a and b we find that

V ol[S5] = π3

which agrees with our choice of normalization.

15



a
b

c
d0 1

Figure 1: Klebanov-Witten quiver for the conifold.

10.2 Conifold

The weighted adjacency matrix of the conifold is

MQ(t; a, b, c, d) =

(
0 ta + tb

tc + td 0.

)
From this we determine the Hilbert series

H(Q; t;x, y) =
1− t2

(1− t2−x) (1− tx) (1− t2−y) (1− ty)
.

We can impose the constraint that the total R-charge is 2 by eliminating d and writing

the Hilbert series in terms of x = b+ c and y = a+ c. Expanding the Hilbert series in

t = e−s yields

s3H0,0(Q; e−s) =
2

x(2− x)y(2− y)
+O(s).

Minimizing this expression with respect to x and y, we find the volume of the horizon

manifold

Vol[T 1,1] =
16π3

27
.

11 Perturbative Expansion of the Hilbert Series

11.1 Overview

In this section, we will prove that the volume formula of Martelli, Sparks, and Yau

applied to a quiver arising from a NCCR precisely matches the AdS/CFT prediction

from a-maximization. We will perturbatively expand the Hilbert series H(Q; t) in the

variable t = e−s. Our main result is that the expansion takes the form

s3Hv,w(Q; e−s) = s3
nvnw
λ(s)

+O(s)

where nv and nw are the ranks of the gauge groups corresponding to vertices v and w,

λ(s) =
32

27
as3 +O(s4),
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and a is the central charge defined in equation (5.3). From this we can compute the

volume of the horizon manifold purely in terms of the fields of the quiver gauge theory.

Vol[L5] =

(
2π

3

)3

lim
s→0

s3H0,0(Q; e−s)

=

(
2π

3

)3(
27

32

)
N2

a

=
π3N2

4a
.

The volume is precisely as predicted by the AdS/CFT correspondence.

To determine the most singular term in the expansion of H(Q; e−s), we must get

control over the eigenvalues of the denominator matrix

DQ(s) ≡
(
1−MQ(e−s) + e−2sMT

Q(es)− e−2s
)
.

By a change of basis, the leading pole in the expansion of H(Q; e−s) is governed by the

eigenvalue of DQ(s) with the highest order zero in s. Using perturbation theory, we

will show there is a unique eigenvalue, λ(s), that vanishes as s3. We begin by Taylor

expanding the matrix DQ(s), the eigenvalue λ(s), and its corresponding eigenvector

|Ψ(s)〉 as follows:

DQ(s) = D
(0)
Q + sD

(1)
Q + s2D

(2)
Q + . . .

|Ψ(s)〉 = |Ψ0〉+ s|Ψ(1)〉+ s2|Ψ(2)〉+ . . .

λ(s) = λ(0) + sλ(1) + s2λ(2) + . . .

We first identify the eigenvectors of the leading term D
(0)
Q in the expansion. The (v, w)

component of DQ(s) is

Dvw
Q (s) =

 ∑
e∈Arr(v→w)

−1 +
∑

e∈Arr(w→v)

1

+O(s).

The null vectors of D
(0)
Q are spanned by the rank vector |φ0〉 with vth component nv and

baryonic charge vectors |φJ〉 with components nvq
J
v . This follows from our definition

of baryonic symmetries as solutions of∑
a∈A|h(a)=v

nt(a)qt(a) −
∑

a∈A|t(a)=v

nh(a)qn(a) = 0.

Since D
(0)
Q is a real anti-symmetric matrix, we can choose a complete set of orthogonal

eigenvectors |φJ〉. Let |φ0〉 = |Ψ(0)〉, and label the other null vectors |φJ〉, J = 1, . . . , r.

Label the remaining non-null eigenvectors |φJ〉, J = (r+1), . . . , |Q0|−1. We will show

that λ(s) = 32
27
as3 +O(s4). To accomplish this, we will need the following intermediate

results:
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• The rank vector |Ψ(0)〉 is a null vector of D
(0)
Q + sD

(1)
Q . We write this as(

D
(0)
Q +D

(1)
Q s
)
|Ψ(0)〉 = 0. (11.1)

• The order s2 correction to λ(s) vanishes. That is

〈Ψ(0)|D(2)
Q |Ψ

(0)〉 = 0. (11.2)

• The first non-zero correction to λ(s) is

〈Ψ(0)|D(3)
Q |Ψ

(0)〉 =
32

27
a. (11.3)

• The baryonic vectors |φJ〉, J = 1 . . . r are orthogonal to the rank vector |Ψ(0)〉 to

order s3, that is

〈φJ |D(2)
Q |Ψ

(0)〉 = 0 J = 1, . . . r (11.4)

• The matrix governing the mixing of the baryonic symmetries

〈φJ |D(1)
Q |φK〉 J,K = 1, . . . r (11.5)

is positive definite.

All of these results will follow from general properties of N = 1 superconformal field

theories. We demonstrate properties (11.1), (11.2), and (11.3) in section 11.2. The

remaining two properties, (11.4) and (11.5), are shown in sections 11.3 and 11.4, re-

spectively.

We expand the eigenvalue equation

DQ(s)|Ψ(s)〉 = λ(s)|Ψ(s)〉 (11.6)

order by order in s. Multiplying through by 〈Ψ0| on the left and dropping terms of

order O(s4) we have

〈Ψ0|
(
D

(0)
Q + sD

(1)
Q + s2D

(2)
Q + s3D

(3)
Q

) (
|Ψ(0)〉+ s|Ψ(1)〉+ s2|Ψ(2)〉+ s3|Ψ(3)〉

)
(11.7)

=s3
(
〈Ψ(0)|D(3)

Q |Ψ
(0)〉+ 〈Ψ(0)|D(2)

Q |Ψ
(1)〉
)

(11.8)

where we have used equations (11.1) and (11.2). For this expression to match the

right-hand side of the eigenvalue equation (11.6), λ(0) = λ(1) = λ(2) = 0, and the first

non-vanishing correction to λ(s) is

λ(3) = 〈Ψ(0)|D(3)
Q |Ψ

(0)〉+ 〈Ψ(0)|D(2)
Q |Ψ

(1)〉. (11.9)
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We will show that the first order correction to the eigenvector |Ψ(1)〉 vanishes and hence

λ(3) = 〈Ψ(0)|D(3)
Q |Ψ

(0)〉. (11.10)

We again expand (11.6) perturbatively in s and multiply both sides of the equation

by 〈φK |. Since 〈φK | was chosen to be a set of mutually orthogonal eigenvectors to

the real anti-symmetric matrix, D
(0)
Q , 〈φK |D(0)

Q = −λK〈φK |. At order s we have the

constraint

〈φK |D(0)
Q |Ψ

(1)〉 = 0 (11.11)

−λK〈φK |Ψ(1)〉 = 0. (11.12)

where λK is the corresponding eigenvalue of the eigenvector |φK〉. The order s2 term

in the expansion is

〈φK |D(2)
Q |Ψ

(0)〉+ 〈φK |D(1)
Q |Ψ

(1)〉+ 〈φK |D(0)
Q |Ψ

(2)〉 = 0. (11.13)

We have shown that the first order correction, |Ψ(1)〉, to |Ψ(s)〉 must lie in the

nullspace of D
(0)
Q . The nullspace is spanned by the rank vector |Ψ(0)〉 and the vectors

|φJ〉, J = 1, . . . , r associated to the baryonic U(1) symmetries.

Restricting the basis vectors to the baryonic vectors |φK〉, K = 1, . . . , r we can

further simplify (11.13). Since the baryonic vectors are in the null space of of D
(0)
Q ,

equation (11.13) reduces to

〈φK |D(2)
Q |Ψ

(0)〉+ 〈φK |D(1)
Q |Ψ

(1)〉 = 0. (11.14)

By (11.4), the first term vanishes. Furthermore, 〈φK |D(1)
Q |φJ〉 is positive definite by

(11.5). Combined, these two results imply that the leading correction, |Ψ(1)〉, to the

eigenvector |Ψ(s)〉 must be proportional to |Ψ(0)〉. Thus, equation (11.9) simplifies, and

λ(3) = 〈Ψ(0)|D(3)
Q |Ψ

(0)〉 (11.15)

as claimed. All that remains to complete our proof is to show the lemmas given in

bullet points. This will be accomplished in the rest of this section.

19



11.2 The Smallest Eigenvalue

Let t = e−s and perturbatively expand the denominator about s = 0. The (v, w) entry

of the denominator matrix is

Dvw
Q (s) =

 ∑
e∈Arr(v→w)

−1 +
∑

e∈Arr(w→v)

1


+

2δvw +
∑

e∈Arr(v→w)

R(e) +
∑

e∈Arr(w→v)

(R(e)− 2)

 s

+

−2δvw +
∑

e∈Arr(v→w)

−R(e)2

2
+

∑
e∈Arr(w→v)

(
R(e)2

2
− 2R(e) + 2

) s2

+

4

3
δvw +

∑
e∈Arr(v→w)

R(e)3

6
+

∑
e∈Arr(w→v)

(
R(e)3

6
−R(e)2 + 2R(e)− 4

3

) s3 + . . .

(11.16)

The function R(e) is the trial R-charge of an edge. All of the identities we will need

to simplify the anomalies with the R-charge will also apply to any trial R-charge R(e)

[21]. The sums
∑

e∈Arr(v→w) are over all arrows from vertex v to vertex w in the quiver.

These terms come from expanding MQ(es). The sums over the arrows in the reverse

direction arise from expanding e−2sMT
Q(es) and the corresponding summands are the

terms in the Taylor expansion of exp(s(R(e)− 2)).

Vanishing of the triangle anomaly with three gluons (3.1) implies that the sum of

the ranks of the incoming and outgoing arrows at each node vanishes. This yields the

first half of (11.1),

D
(0)
Q |Ψ

(0)〉 = 0.

The second half of (11.1),

D
(1)
Q |Ψ

(0)〉 = 0

follows from (3.1) and the vanishing of the NSVZ beta function (3.3).

At order s2, the rank vector, |Ψ(0)〉, is not in the null space of D
(2)
Q , but we can

show equation (11.2)

〈Ψ(0)|D(2)
Q |Ψ

(0)〉 = 0
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holds by expanding the equation out in components:

〈Ψ(0)|D(2)
Q |Ψ

(0)〉 =

−2
∑
v∈Q0

n2
v +

∑
e∈Arr(v→w)

−nvnw
R(e)2

2
+

∑
e∈Arr(w→v)

nvnw

(
R(e)2

2
− 2R(e) + 2

)
=

−2
∑
v∈Q0

n2
v +

∑
e∈Arr(w→v)

nvnw (−2R(e) + 2)

 (11.17)

= 0.

In going from the first line to the second line, we have used the equality of the number

of incoming and outgoing arrows. The last equality follows from the vanishing of the

NSVZ beta functions of the gauge groups. Finally at order s3, we show (11.3).

〈Ψ(0)|D(3)
Q |Ψ

(0)〉 =
1

3

∑
v∈Q0

4n2
v +

∑
e∈Arr(w→v)

nvnw
(
(R(e)− 1)3 + 3(R(e)− 1)

)
=

1

3

∑
v∈Q0

n2
v +

∑
e∈Arr(w→v)

nvnw(R(e)− 1)3


=

1

3
(NG + TrR3)

=
32

27
a

where we have used (11.17) to simplify the second line. We have found that the smallest

eigenvalue is proportional to the a-anomaly.

11.3 Absence of Mixing

When the quiver gauge theory has baryonic U(1) symmetries, there are additional null

vectors, |φJ〉, J = 1 . . . r, of D
(0)
Q . In this section we show (11.4),

〈φJ |D(2)
Q |Ψ

(0)〉 = 0 J = 1, . . . r

which we used to simplify (11.9). Expanding the order s2 term,

− 2
∑
v∈Q0

n2
vq
I
v −

∑
e∈Arr(v→w)

nvnwq
I
v

R(e)2

2
+

∑
e∈Arr(w→v)

nvnwq
I
v

(
R(e)2

2
− 2R(e) + 2

)
= −2

∑
v∈Q0

n2
vq
I
v +

∑
e∈Arr(w→v)

nvnw

(
(qIv − qIw)

R(e)2

2
− 2qIvR(e) + 2qIv

)
. (11.18)
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To simplify this, we multiply the equation β̂1/g2v = 0 by nvq
I
v and sum over the vertices,

v, of the quiver.

0 = 2nv +
∑

e∈Arr(v→w)

(R(e)− 1)nw +
∑

e∈Arr(w→v)

(R(e)− 1)nw

0 = 2
∑
v∈Q0

n2
vq
I
v +

∑
e∈Arr(v→w)

nvnwq
I
v(R(e)− 1) +

∑
e∈Arr(w→v)

nvnwq
I
v(R(e)− 1)

0 = 2
∑
v∈Q0

n2
vq
I
v +

∑
e∈Arr(w→v)

nvnwq
I
w(R(e)− 1) + nvnwq

I
v(R(e)− 1) (11.19)

Using equation (11.19), the quadratic term (11.18) simplifies to

1

2

∑
e∈Arr(w→v)

nvnw(qIv − qIw)

(
R(e)2

2
−R(e) + 1

)
. (11.20)

The constraint TrBI = 0 implies
∑

e∈Arr(w→v) nvnw(qIv−qIw) = 0. We use this constraint

to bring equation (11.20) to the form

1

2

∑
e∈Arr(w→v)

nvnw(qIv − qIw)(R(e)− 1)2

=
1

2
TrR2BI

= 0

where we have used the vanishing of the TrR2BI anomaly.

11.4 Positivity

In this section we show that the matrix in (11.5),

〈φJ |D(1)
Q |φK〉 J,K = 1, . . . r

is negative definite. This will complete the proof of our main result. It is necessary to

show this lemma to ensure that λ(s) is the only eigenvalue that vanishes as s3. The new

field theory ingredient we will need is that the matrix of trace anomalies, TrRBIBJ is

negative definite. For a trial R-charge, TrRtB
IBJ is also negative definite if the trial

R-charge is sufficiently close to the true R-charge. From β̂1/g2v = 0 we can multiply

equation (3.3) by nvq
I
vq
J
v and sum over v to obtain

2
∑
v∈Q0

n2
vq
I
vq
J
v +

∑
e∈Arr(v→w)

(R(e)− 1)nvnwq
I
vq
J
w +

∑
e∈Arr(w→v)

(R(e)− 1)nvnwq
I
vq
J
w = 0.
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From TrBI = 0 we can multiply through by nvq
I
vq
J
v and sum over v to obtain∑

e∈Arr(v→w)

nvnwq
I
vq
J
w =

∑
e∈Arr(w→v)

nvnwq
I
vq
J
w.

Using these identities we can simplify

TrRBIBJ =
∑

e∈Arr(v→w)

nvnw(qIv−qIw)(qJv−qJw)(R(e)−1)+
∑

e∈Arr(w→v)

nvnw(qIv−qIw)(qJv−qJw)(R(e)−1)

to conclude that

nvq
I
vQvwnwq

J
w = −1

2
TrRBIBJ .

Therefore the matrix

〈φJ |D(1)
Q |φK〉 J,K = 1, . . . r

is positive definite since TrRBIBJ is negative definite. This completes the proof of

our main result.

12 Conclusion

We have established the equivalence of a-maximization and volume minimization for

AdS5 × L5 compactifications where L5 is Sasaki-Einstein whenever the quiver gauge

theory is known. These are the most general supersymmetric compactifications with

only self-dual five-form flux. By restricting to this family of Freund-Rubin compacti-

fications, we have essentially restricted to non-commutative crepant resolutions of the

cone X = C(L5). However, more general supersymmetric compactifications of the form

AdS5 × L5 exist. One famous example is the Pilch-Warner solution [47, 48, 49], which

has RR and NS-NS three-form fluxes in addition to the self-dual RR five-form flux.

The most general N = 1 compactification of the form AdS5 × L5 with all possi-

ble fluxes turned on was considered in [50]. These geometries can be systematically

studied using generalized complex geometry [51]. The volume calculations of Martelli,

Sparks, and Yau based on Duistermaat-Heckman localization have been adapted to

this setting [52]. These geometries are the natural candidates for duals of general su-

perconformal quiver gauge theories. Since our computation of the Hilbert series only

required the superpotential algebra to be Calabi-Yau of dimension three, it is likely

that the equivalence of volume minimization and a-maximization can be extended to

this setting.

Generalizing to AdS5×L5 compactifications with all fluxes turned on can be viewed

as a non-commutative deformation of the usual AdS/CFT correspondence. These

deformations have been studied in the context of quiver gauge theories, Calabi-Yau
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algebras, and in supergravity. Deformations of Calabi-Yau algebras are captured by

Hochschild cohomology and correspond to superpotential deformations [53, 54]. A very

interesting class of deformations comes from exactly marginal deformations [55, 56, 57].

It would be exciting to match exactly marginal deformations of quiver gauge theories

to deformations of corresponding generalized complex geometries [58].

Hilbert series play an important role in the computation of the BPS index of multi-

trace operators [59, 60]. Further exploitation of Calabi-Yau algebras [37] may yield new

results about the BPS index. Another closer related index is the N = 1 superconformal

index [61, 62]. It is possible that the superconformal index for quiver gauge theories

might have a simple expression as well.

Our method of determining the Hilbert series (9.1) provides a new way of determin-

ing the singularity associated to a quiver gauge theory. It would be interesting to apply

it to gauge theories engineered from branes wrapping obstructed curves [63] [64]. We

hope that the Hilbert series will help elucidate the structure of N = 1 superconformal

quiver gauge theories. This would greatly enhance our understanding of the AdS/CFT

correspondence.
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