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Department of Theoretical Physics and Astrophysics

Faculty of Science, Masaryk University
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relativistic covariant Hořava-Lifshitz gravity presented in arXiv:1007.2410. Then we extend

this construction to the case of RFDiff invariant Hořava-Lifshitz theory. We find well
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1. Introduction and Summary

In 2009 Petr Hořava formulated new proposal of quantum theory of gravity that is power

counting renormalizable [1, 2, 3]. This theory is now known as Hořava-Lifshitz gravity

(HL gravity). It was also expected that this theory reduces do General Relativity in the

infrared (IR) limit. HL theory was studied from different point of view due to the fact

that this is a new and intriguing formulation of gravity as a theory with reduced amount

of symmetries that leads to remarkable new phenomena 1.

The HL gravity is based on an idea that the Lorentz symmetry is restored in IR limit

of given theory and can be absent at high energy regime of given theory. Explicitly, Hořava

considered systems whose scaling at short distances exhibits a strong anisotropy between

space and time,

x′ = lx , t′ = lzt . (1.1)

In (D + 1) dimensional space-time in order to have power counting renormalizable theory

requires that z ≥ D. It turns out however that the symmetry group of given theory

is reduced from the full diffeomorphism invariance of General Relativity to the foliation

preserving diffeomorphism

x′i = xi + ζ i(t,x) , t′ = t+ f(t) . (1.2)

Due to the fact that the diffeomorphism is restricted (1.2) one more degree of freedom

appears that is a spin−0 graviton. It turns out that the existence of this mode could

be dangerous since it has to decouple in the IR regime, in order to be consistent with

observations. Unfortunately, it seems that this might not be the case. It was shown that

the spin-0 mode is not stable in the original version of the HL theory [1] as well as in the

Sotiriou, Visser and Weinfurtner (SVW) generalization [8]. Note that in both of these two

versions, it was all assumed the projectability condition that means that the lapse function

N depends on t only. This presumption has a fundamental consequence for the formulation

1For review and extensive list of references, see [4, 5, 6].
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of the theory since there is no local form of the Hamiltonian constraint but the only global

one. However we would like to stress that these instabilities are all found in the Minkowski

background. Recently, it was found that the de Sitter spacetime is stable in the SVW setup

[9, 10]. Then we can presume that this background is legitimate background.

On the other hand there is the second version of HL gravity where the projectability

condition is not imposed so that N = N(x, t). Properties of given theory were extensively

studied in [11, 12, 13, 14, 15, 14, 17, 18, 19, 20, 21, 22]. It was shown recently in [14] that so

called healthy extended version of given theory could really be an interesting candidate for

the quantum theory of reality without ghosts and without strong coupling problem despite

its unusual Hamiltonian structure [17, 18].

Recently Hořava and Malby-Thompson in [25] proposed very interesting way how to

eliminate the spin-0 graviton. They considered the projectable version of HL gravity to-

gether with extension of the foliation preserving diffeomorphism to include a local U(1)

symmetry. The resulting theory is then called as non-relativistic covariant theory of grav-

ity 2. It was argued there [25] that the presence of this new symmetry forces the coupling

constant λ to be equal to one, however this result was questioned in [26] (see also [30])

where an alternative formulation of non-relativistic general covariant theory of gravity was

presented. Further, it was shown in [25, 26] that the presence of this new symmetry implies

that the spin-0 graviton becomes non-propagating and the spectrum of the linear fluctua-

tions around the background solution coincides with the fluctuation spectrum of General

Relativity.

This new proposal of non-relativistic general covariant HL gravity is very interesting

and it certainly deserves further study. In this paper we present the Hamiltonian analysis

of the formulation of non-relativistic covariant HL gravity given in [26]. We argue that re-

sulting Hamiltonian and constraint structure has the same form as in [25] even if they differ

in explicit form since they are derived from different Lagrangians. This fact shows that

these two Lagrangian formulations of non-relativistic covariant HL gravities are equivalent

on the level of the Hamiltonian formalism as well.

Despite the fact that non-relativistic covariant HL gravity seems to solve the problem

of the scalar graviton and the content of the physical degrees of freedom is the same as

in General Relativity there is still one additional first class constraint which is the global

Hamiltonian constraint. The meaning of this constraint should be investigated further as

was nicely discussed on page 30 in [25]. In order to find version of non-relativistic covariant

HL gravity without global Hamiltonian constraint we recall that there exists formulation

of the HL gravity with reduced symmetry group known as restricted-foliation-preserving

Diff (RFDiff) HL gravity [14, 23]. This is the theory that is invariant under following

symmetries

t′ = t+ δt , δt = const , x′i = xi + ζ i(x, t) . (1.3)

The characteristic property of given theory is that in its simplest version [23] based on the

detailed balance construction [1, 2, 3] there is no reason to introduce the lapse function

2This theory was also studied in [27, 28, 29, 30].
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N 3. Then we introduce U(1) symmetry as in [25] or its alternative version given in [26].

Finally we proceed to the Hamiltonian formulation of given theory and we find there is no

global Hamiltonian constraint due to the absence of the lapse function N in the action. We

further determine all constraints in given theory and we show that the number of the first

class and the second class constraints implies that the physical phase space has the same

dimensions as in case of General Relativity. On the other hand we show that the presence

of the second class constraints implies that the symplectic structure of given theory that is

determined by corresponding Dirac brackets between physical degrees of freedom is rather

complicated due to the fact that Dirac brackets generally depend on phase space variables.

Let us outline our results and suggest possible extension of this work. We perform

the Hamiltonian analysis of the theory suggested in [26] and we show that its Hamiltonian

structure is equivalent to the Hamiltonian structure found in paper [25]. We also suggest

an alternative formulation of non-relativistic covariant HL gravity that is based RFDiff HL

gravity. We show that the resulting theory has consistent Hamiltonian formulation with

the same content of the local constraints as in case of non-relativistic covariant HL gravity

but without global Hamiltonian constraint. On the other hand we should stress that we

are not able to solve explicitly the second class constraints with respect to physical degrees

of freedom in the full generality. We are also not able to determine corresponding Dirac

brackets. Then it would be clearly desirable to find exact results at least for some special

situations. It would be also interesting to find exact solutions of the equations of motion of

non-relativistic general covariant RFDiff HL gravity. We hope to return to these problems

in near future.

The organization of this paper is as follows. In the next section (2) we introduce the

non-relativistic general covariant HL gravity in the formulation firstly presented in [26].

Then in section (3) we perform its Hamiltonian analysis. In section (4) we introduce the

non-relativistic general covariant RFDiff-invariant HL gravity. Then we perform its Hamil-

tonian analysis and shows that the resulting theory correctly describes physical degrees of

freedom of D + 1 dimensional gravity.

2. Non-Relativistic Covariant HL Gravity

We begin this section with the introduction of basic notation, for detailed treatment of

D + 1 formalism, see [24].

Let us consider D+1 dimensional manifold M with the coordinates xµ , µ = 0, . . . ,D

and where xµ = (t,x) ,x = (x1, . . . , xD). We presume that this space-time is endowed

with the metric ĝµν(x
ρ) with signature (−,+, . . . ,+). Suppose that M can be foliated by

a family of space-like surfaces Σt defined by t = x0. Let gij , i, j = 1, . . . ,D denotes the

3More general form of RFDiff HL gravity was considered in [14] where the action contains time and space

derivatives of the lapse function N according to general principles of effective field theory construction.

However the presence of such terms has no impact on the Hamiltonian structure of given theory simply

from the fact that the momentum conjugate to N is not primary constraint of the theory and hence the

Hamiltonian constraint is absent. In order to make our analysis transparent we consider the simplest version

of RFDiff HL gravity keeping in mind that it can be easily extended to its more general versions.
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metric on Σt with inverse gij so that gijg
jk = δki . We further introduce the operator ∇i

that is covariant derivative defined with the metric gij . We introduce the future-pointing

unit normal vector nµ to the surface Σt. In ADM variables we have n0 =
√

−ĝ00, ni =

−ĝ0i/
√

−ĝ00. We also define the lapse function N = 1/
√

−ĝ00 and the shift function

N i = −ĝ0i/ĝ00. In terms of these variables we write the components of the metric ĝµν as

ĝ00 = −N2 +Nig
ijNj , ĝ0i = Ni , ĝij = gij ,

ĝ00 = − 1

N2
, ĝ0i =

N i

N2
, ĝij = gij − N iN j

N2
.

(2.1)

Let us now consider the general form of Hořava-Lifshitz action

S =
1

κ2

∫

dtdDx
√
gN

[

KijGijklKkl − V(g)
]

, (2.2)

where Kij denotes the extrinsic derivative

Kij =
1

2N
(∂tgij −∇iNj −∇jNi) . (2.3)

Further the generalized De Witt metric Gijkl is defined as

Gijkl =
1

2
(gikgjl + gilgjk)− λgijgkl , (2.4)

where λ is a real constant that in case of General Relativity is equal to one. Finally V(g) is
general function of gij and its covariant derivative. Note also that we consider projectable

version of HL gravity where N = N(t).

The action (2.2) is invariant under foliation preserving diffeomorphism

t′ − t = f(t) , x′i − xi = ξi(t,x) . (2.5)

Following [25] we introduce U(1) transformation with parameter α(x, t) under which gij , Ni

and N transform as

δαN = 0 , , δαgij(x, t) = 0 , δαNi(x, t) = N(t)∇iα(x, t) . (2.6)

As was shown in [25] the action (2.2) is not invariant under the transformation (2.6) at

least for D 6= 2. Then the general procedure how to find an invariant action was formulated

in [25]. It is based on an introducing of the scalar field ν that transforms under (2.6) as

δαν(t,x) = α(t,x) . (2.7)

Then it turns out that the action invariant under (2.6) can be written in the form

S =
1

κ2

∫

dtdDx
√
gN((Kij +∇i∇jν)Gijkl(Kkl +∇k∇lν)− V(g)) (2.8)

or in even more suggestive form by introducing

N̂i = Ni −N∇iν , K̂ij =
1

2N
(∂tgij −∇iN̂j −∇jN̂i) (2.9)

– 4 –



so that

S =
1

κ2

∫

dtdDx
√
gN

[

K̂ijGijklK̂kl − V(g)
]

. (2.10)

However from this analysis it is clear that ν has a character of the Stückelberg field and

hence the symmetry (2.6) is trivial. The novelty of the analysis [25] in the formulation [26]

is in the introduction of the additional term into action

Sν,k =
1

κ2

∫

dtdDx
√
gG(gij)(A− a) , (2.11)

where

a = ν̇ −N i∇iν +
N

2
∇i∇iν . (2.12)

In the original work [25] the function G(g) was equal to R−Ω where R is D−dimensional

curvature and Ω is constant. Note that in principle it is possible to consider more general

form of G as was suggested in [26]. Further, a transforms under α variation as

a′(t,x) = a(t,x) + α̇(t,x)−N i(t,x)∇iα(t,x) .

(2.13)

Now when we presume that A transforms under α variation as

A′(t,x) = A(t,x) + α̇(t,x)−N i(t,x)∇iα(t,x) (2.14)

we immediately find that (2.11) is invariant under α−variation. Say differently, A can be

interpreted as the gauge field that has to be introduced when we gauge the α transformation

[25]. More precisely, it is clear that the action (2.10) is invariant under general α(t,x)

however as we argued this is trivial Stückelberg extension with no impact on physical

content of given theory. On the other hand let us presume that we want to construct

more interesting modification of given theory when we add (2.11) without A to the original

HL action. Now this term is invariant under α−variation on condition that α obeys the

equation

α̇(t,x) −N i(t,x)∇iα(t,x) = 0 . (2.15)

that means that α is covariantly constant [25] and hence should be interpreted as a pa-

rameter of a global symmetry. Gauging this symmetry means that we relax this condition

and also introduce the gauge field A that transforms as (2.14).

It is clear from the analysis given above that the non-relativistic covariant HL gravity

is invariant under (2.6) for arbitrary λ as was firstly stressed in [26]. Then it was argued

that there is no scalar graviton in the perturbative spectrum about the flat background

that makes this action very attractive since it solves the main issue of HL gravity.

3. Hamiltonian Formalism For Non-relativistic Covariant HL Gravity

For reader’s convenience we again write non-relativistic covariant HL action

S =
1

κ2

∫

dtdDx
√
gN(K̂ijGijklK̂kl − V(g)) +

+
1

κ2

∫

dtdDx
√
gG(R)(A− a) , (3.1)
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where we now restrict to the case when G depends gij through the D− dimensional curva-

ture R(gij). From (3.1) we find the conjugate momenta

πij =
1

κ2
√
gGijklK̂kl , pN ≈ 0 , pi ≈ 0 ,

pA ≈ 0 , pν = − 1

κ2
√
gG

(3.2)

that imply the 3 +D primary constraints

pN ≈ 0 , pi(x) ≈ 0 , Φ1(x) : pA(x) ≈ 0 , Φ2(x) : pν(x) +
1

κ2
√
gG(x) ≈ 0 . (3.3)

Then following standard procedure we determine the Hamiltonian in the form

H =

∫

dDx(NHT +N iHi + vAΦA + vNpN + vip
i)−

− 1

κ2

∫

dDx
√
gG(R)(A−N i∇iν +

N

2
∇i∇iν) ,

(3.4)

where vN , vi, v
A, A = 1, 2 are Lagrange multipliers related to corresponding primary con-

straints and where

HT =
κ2√
g
πijGijklπ

kl − 1

κ2
√
gV(g) − 2

κ2
ν∇i∇jπ

ij ,

Hi = −2gil∇kπ
kl .

(3.5)

Note that N and pN do not depend on x. Now the requirement of the preservation of the

primary constraints pN ≈ 0, pi(x) ≈ 0,Φ1(x) ≈ 0 implies following secondary ones

∂tΦ1 = {Φ1,H} = − 1

κ2
√
g G ≡ −ΦII

1 ≈ 0 ,

∂tpN = {pN ,H} = −
∫

dDxHT +
1

2

∫

dDxΦII
1 ∇i∇iν ≈

≈ −
∫

dDxHT ≈ 0

∂tpi = {pi,H} = −Hi −ΦII
1 ≈ −Hi ≈ 0 .

(3.6)

Now using following formulas

{

R(x), πij(y)
}

= −Rij(x)δ(x − y) +∇i∇jδ(x− y) − gij∇k∇kδ(x − y) ,

∇i∇jGijklπ
kl − gij∇m∇mGijklπ

kl = ∇k(∇lπ
kl) +

1− λ

λD − 1
∇i∇iπ

(3.7)
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we find that the time derivative of Φ2 is equal to

∂tΦ2 = {Φ2,H} ≈ −2N
dG
dR

(

RijGijklπ
kl − 1− λ

(λD − 1)
∇k∇kπ

)

= 2N
dG
dR

ΦII
2 ,

(3.8)

where

ΦII
2 = −Rijπ

ji +
λ

Dλ− 1
Rπ +

1− λ

(λD − 1)
∇k∇kπ ≡ Mij(g(x))π

ji(x) ,

(3.9)

where generally Mij(g(x)) is a differential operator acting on πij that it reduces to ordinary

multiplicative operator in case λ = 1. Note that in the calculation of (3.8) we used following

result

{pν ,H} = −N∇iHi +
1

κ2
∇i(

√
gN iG) + N

2κ2
∇i∇i(

√
gG) ≈ 0 , (3.10)

where in the final step we used the fact that the result is proportional to the constraints

Hi and ΦII
1 ≈ 0. In the same way we find that

− 2

{√
gG,

∫

dDxNν∇i∇jπ
ij(x))

}

≈

≈
{
∫

dDxN∇iνHi,
√
gG
}

≈ √
g∂iG∇iν ≈ 0 .

(3.11)

Let us review constraints that we derived at this stage. We have following set of

secondary constraints ΦII
1 ≈ 0 ,ΦII

2 ≈ 0 ,Hi ≈ 0 and one global T =
∫

dDxHT ≈ 0. Note

also that pν = Φ1 −ΦII
1 ≈ 0 that according to (3.10) is the first class constraint. Then the

total Hamiltonian takes the form

HT =

∫

dDx(NHT +N iHi + vApA + vNpN + vip
i + vνpν + v1IIΦ

II
1 + v2IIΦ

II
2 ) ,

(3.12)

where vN , vi, v
A, v1II , v

2
II are corresponding Lagrange multipliers. Note that we included

the expression (A−N i∇iν + N
2 ∇i∇iν) into definition of the Lagrange multiplier v1II .

As the final step we analyze the stability of the secondary constraints. Let us begin with

the constraint Hi. It is convenient to extend these constraints by appropriate combinations

of additional constraints pν ≈ 0, pA ≈ 0 so that

Hi = −2gik∇lπ
kl + ∂iApA + ∂iνpν . (3.13)

Then TS(N
i) =

∫

dDxN iHi is generator of the spatial diffeomorphism that is clearly

preserved during the time evolution of the system since the Hamiltonian is invariant under

spatial diffeomorphism. Further, pν ≈ 0 is preserved during the time evolution of the system

– 7 –



according to (3.10). On the other hand the time evolution of the constraint ΦII
1 ≈ 0 is

equal to

∂tΦ
II
1 =

{

ΦII
1 ,HT

}

≈
∫

dDx

(

N
√
g
dG
dR

ΦII
2 (x) + v2II(x)

{

ΦII
1 ,ΦII

2 (x)
}

)

≈

≈
∫

dDxv2II(x)
{

ΦII
1 ,ΦII

2 (x)
}

= 0 .

(3.14)

Since

{

ΦII
1 (x),ΦII

2 (y)
}

= Mij(y)
({

ΦII
1 (x), πji(y)

})

≈

≈ Mij(y)

(√
g
δG
δR

δR(x)

δgij(y)

)

6= 0 .

(3.15)

we find that the equation (3.14) implies that v2II = 0. In the same way the requirement of

the preservation of the constraint ΦII
2 implies

∂tΦ2 = N {Φ2,T}+
∫

dDxv1II(x) {Φ2,Φ1(x)} = 0

(3.16)

that due to the fact that {Φ2,T} 6= 0 and (3.15) allows to determine v1II as a function of

the canonical variables. In other words, ΦII
1 and ΦII

2 are the second class constraints.

We see that the requirement of the preservation of the secondary constraints does not

imply additional constraints so that we obtained following constraint structure. We have

first class constraints Hi ≈ 0, pν ≈ 0, pi ≈ 0, pA ≈ 0 together with two global first class

constraints pN ≈ 0,T ≈ 0. Then we have two second class constraints ΦII
1 ,ΦII

2 . The

detailed discussion of these constraints will be given in the next section.

In this section we performed the Hamiltonian analysis of non-relativistic covariant

HL gravity in the formulation presented in [26] and we showed that it leads to the same

structure of the constraints as in the original proposal [25]. Note that our analysis is valid

for general λ with agreement with [26]. Further, as was shown in [25] the number of physical

degrees of freedom is the same as in the General Relativity even if the constraint structures

of these two theories are different. On the other hand the non-relativistic covariant HL

gravity has an additional global Hamiltonian constraint. However when we consider RFDiff

invariant HL gravity as the starting point for U(1) extension of HL Gravity we find theory

with the same content of physical degrees of freedom as in non-relativistic covariant HL

gravity with additional important difference which is an absence of the global Hamiltonian

constraint.

4. Non-Relativistic Covariant RFDiff HL Gravity

RFDiff invariant Hořava-Lifshitz gravity was introduced in [14] and further studied in

[23]. This is the version of the Hořava-Lifshitz gravity that is not invariant under foliation
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preserving diffeomorphism but only under reduced set of diffeomorphism

t′ = t+ δt , δt = const , x′i = xi + ξi(t,x) (4.1)

As was argued in [23] the simplest form of RFDiff invariant Hořava-Lifshitz gravity takes

the form

S =
1

κ2

∫

dtdDx
√
g(K̃ijGijklK̃kl − V(g)) , (4.2)

where

K̃ij =
1

2
(∂tgij −∇iNj −∇jNi) . (4.3)

Note that this action differs from HL gravity action (2.2) by absence of the lapse N and

by replacement of the extrinsic curvature Kij with K̃ij given above. This action is in-

variant under RFDiff symmetries (4.1) that is reduced with respect to foliation preserving

diffeomorphism.

In order to find the U(1) extension of given theory we introduce the field ν and replace

Ni with N̂i as

N̂i = Ni −∇iν . (4.4)

Then it is again easy to see that the action is invariant under transformation

N ′
i(t,x) = Ni(t,x) +∇iα(t,x) , ν ′(t,x) = ν(t,x) + α(t,x) . (4.5)

Clearly this replacement is as trivial as the one performed in the projectable version of

Hořava-Lifshitz gravity. Then following the same procedure as in section (2) we find the

action in the form

SRFD =
1

κ2

∫

dtdDx
√
g(K̂ijGijklK̂kl − V(g) + G(R)(A− a)) , (4.6)

where

K̂ij =
1

2
(∂tgij −∇iNj −∇jNi +∇i∇jν +∇j∇iν) . (4.7)

Clearly this action is invariant under (4.1) and under (4.5). Further A and a transform as

scalar under (4.1)

A′(t′,x′) = A(t,x) , a′(t′,x′) = a(t,x) (4.8)

Note that the action (4.6) can be derived from non-relativistic covariant HL action by

setting N = 1 and hence one can expect that these theories describe the same local physics.

However the my difference between these two formulations emerges when we perform the

Hamiltonian analysis of the action (4.6).

As in previous section we find the primary constraints

pi(x) ≈ 0 , Φ1 : pA(x) ≈ 0 , Φ2 : pν(x) +
1

κ2
√
gG(x) (4.9)

and the relation between K̂ij and conjugate momenta πij

K̂ij =
1√
g
Gijklπ

kl . (4.10)
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Then it is easy to find the total Hamiltonian in the form

H =

∫

dDx(HT +N iHi + viΦi + vNpN + vip
i)−

− 1

κ2

∫

dDx
√
gG(R)(A−N i∇iν +

1

2
∇i∇iν) ,

(4.11)

where

HT =
κ2√
g
πijGijklπ

kl − 1

κ2
√
gV(g) − 2

κ2
ν∇i∇jπ

ji ,

Hi = −2gil∇kπ
kl .

(4.12)

The requirement of the preservation of the primary constraints pi(x) ≈ 0,Φ1(x) ≈ 0 implies

following secondary ones

∂tΦ1 = {Φ1,H} = − 1

κ2
√
gG(R(D)) ≡ −ΦII

1 ≈ 0 ,

∂tpi = {pi,H} = −Hi − ΦII
1 ≈ −Hi ≈ 0 .

(4.13)

In case of the preservation of the constraint Φ2 we proceed as in previous section and we

find

∂tΦ2 = {Φ2,H} ≈ −2
dG
dR

(

RijGijklπ
kl − 1− λ

(λD − 1)
∇k∇kπ

)

=
dG
dR

ΦII
2 ,

(4.14)

where

ΦII
2 = −Rijπ

ji +
λ

Dλ− 1
Rπ +

1− λ

(λD − 1)
∇k∇kπ ≡ Mij(g(x))π

ji(x) ,

(4.15)

and where generally Mij(g(x)) is a differential operator acting on πij that it reduces to

ordinary multiplicative operator in case λ = 1. Note also that pν ≈ 0 is the first class

constraint.

Following general analysis of constraints systems we introduce the total Hamiltonian

in the form

HT =

∫

dDx(HT +N iHi + vApA + vνpν + vip
i + v1IIΦ

II
1 + v2IIΦ

II
2 ) .

(4.16)

As the final step we should perform the analysis of the secondary constraints. However

this was done in previous section so that we do not repeat it here.
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Let us now discuss the second class constraints ΦII
1 ,ΦII

2 . According to standard analy-

sis these constraints have to vanish strongly and allow to solve for two phase space variables

as a functions of remaining physical phase space variables that span the reduced phase

space. However solving these constraints in full generality is very difficult. On the other

hand it is easy to see that in linearized approximation these constraints can be solved as

h = 0 , π = 0 where h is the trace part of the metric fluctuation and π is its conjugate

momenta.

Even if we cannot solve these constraints explicitly in general case we can still determine

the number of physical degrees of freedom. To do this note that there are D(D+1) gravity

phase space variables gij , π
ij , 2D variables Ni, p

i, 2 variables A, pA and 2 variables ν, pν .

In summary the total number of degrees of freedom is ND.o.f = D2 + 3D + 4. On the

other hand we have D first class constraints Hi ≈ 0, D first class constraints pi ≈ 0, 2 first

class constraints pν ≈, pA ≈ 0 and two second class constraints ΦII
1 ,ΦII

2 . Then we have

Nf.c.c = 2D + 2 first class constraints and Ns.c.c. = 2 second class constraints. Then the

number of physical degrees of freedom is [31]

ND.o.f. − 2Nf.c.c −Ns.c.c. = D2 −D − 2 (4.17)

that exactly corresponds to the number of the phase space physical degrees of freedom of

D + 1 dimensional gravity. For example for D = 3 the equation (4.17) is equal to 4 which

is the number of phase space degrees of freedom of massless graviton.

In summary the Hamiltonian of non-relativistic general covariant RFDiff HL gravity

gives the appropriate number of physical degrees of freedom of gravitational theory without

introducing global Hamiltonian constraint. There is also another interesting aspect of given

theory which is its non-trivial symplectic structure. In fact, let us denote the constraints

ΦII
1,2 as ΦII

A where A,B = I, II so that the Poisson bracket between constraints can be

written as
{

ΦII
A (x),ΦII

B (y)
}

= △AB(x,y) . (4.18)

From the structure of these constraints we find that the matrix △AB has following structure

△AB(x,y) =

(

0 ∗
∗ ∗

)

, (4.19)

where ∗ means non-zero elements. Then the inverse matrix (△−1)AB has the form

(△−1)AB =

(

∗ ∗
∗ 0

)

. (4.20)

Now we observe that

{

gij(x),Φ
II
1 (y)

}

= 0 ,
{

gij(x),Φ
II
2 (y)

}

6= 0 ,
{

πij(x),ΦII
1 (y)

}

6= 0 ,
{

πij(x),ΦII
2 (y)

}

6= 0 .

(4.21)
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Then we find that the Dirac brackets between canonical variables take the form

{gij(x), gkl(y)}D = −
∫

dzdz′
{

gij(x),Φ
II
A (z)

}

(△−1)AB(z, z′)
{

ΦII
B (z′), gkl(y)

}

= 0 ,

{

πij(x), πkl(y)
}

D
=

= −
∫

dzdz′
{

πij(x),ΦII
A (z)

}

(△−1)AB(z, z′)
{

ΦII
B (z′), πkl(y)

}

= Ωijkl(x,y) ,

{

gij(x), π
kl(y)

}

D
=
{

gij(x), π
kl(y)

}

−

−
∫

dzdz′
{

gij(x),Φ
II
A (z)

}

(△−1)AB(z, z′)
{

ΦII
B (z′), πkl(y)

}

= Ωkl
ij (x,y) ,

(4.22)

where the matrix Ω depends on phase-space variables according to (4.20) and (4.21). Hence

the non-relativistic covariant RFDiff HL gravity has well defined Hamiltonian formulation

with symplectic structure that generally depends on phase space variables. Note however

that in case of the linearized approximation one can choose the constraints in such a

way that the Dirac bracket coincides with the Poisson bracket. Explicitly, in linearized

approximation the second class constraints can be chosen as h = 0, π = 0 as follows from

the analysis given above. These constraints have vanishing Poisson brackets with remaining

dynamical variables and consequently the Dirac brackets between physical phase space

variables coincide with Poisson brackets.

As the final remark we again emphasize the important point that the Hamiltonian of

non-relativistic covariant RFDiff HL gravity does not vanish on constraint surface. This

is the similar situation as in case of the Hamiltonian of the healthy extended HL gravity

[17, 18] which is however in sharp contrast with the Hamiltonian of General Relativity. As

we argued in these papers this fact has a strong impact on the definition of observables in

healthy extended Hořava- Lifshitz gravity or in any theory of gravity where the Hamiltonian

is not given as linear combination of constraints. Since the discussion presented in [17, 18]

can be applied in case of the non-relativistic covariant RFDiff HL gravity as well we are

not going to repeat it here. Instead we recommend these papers to reader that is interested

in these problems.
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