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Abstract

We use the deformed sine-Gordon models recently presented by Bazeia et al [1] to

discuss possible definitions of quasi-integrability. We present one such definition and use

it to calculate an infinite number of quasi-conserved quantities through a modification

of the usual techniques of integrable field theories. Performing an expansion around

the sine-Gordon theory we are able to evaluate the charges and the anomalies of their

conservation laws in a perturbative power series in a small parameter which describes

the “closeness” to the integrable sine-Gordon model. Our results indicate that in the

case of the two-soliton scattering the charges are conserved asymptotically, i.e. their

values are the same in the distant past and future, when the solitons are well separated.

We back up our results with numerical simulations which also demonstrate the exis-

tence of long lived breather-like and wobble-like states in these models.

http://arxiv.org/abs/1011.2176v1


1 Introduction

Solitons and integrable field theories play a central role in the study of many non-linear phe-

nomena. Indeed, it is perhaps correct to say that many non-perturbative and exact methods

known in field theories are in one way or the other related to solitons. The reason for that is

twofold. On one hand, the appearance of solitons in a given theory is often related to a high

degree of symmetries and so to the existence of a large number of conservation laws. On the

other hand, in a large class of theories the solitons possess a striking property. They become

weakly coupled when the interaction among the fundamental particles of the theory is strong,

and vice-versa. Therefore, the solitons are the natural candidates to describe the relevant

normal modes in the strong coupling (non-perturbative) regime of the theory. Such relation

between the strong and weak coupling regimes have been observed in some (1+1) dimensional

field theories, as, for example, in the equivalence of the sine-Gordon and Thirring models [2],

as well as in four dimensional supersymmetric gauge theories where monopoles (solitons) and

fundamentals gauge particles exchange roles in the so-called duality transformations [3].

The exact methods to study solitons in (1 + 1)-dimensional field theories involve many

algebraic and geometrical concepts, but the most important ingredient is the so-called zero

curvature condition or the Lax-Zakharov-Shabat equation [4]. All theories known to possess

exact soliton solutions admit a representation of their equations of motion as a zero curvature

condition for a connection living in an infinite dimensional Lie (Kac-Moody) algebra [5, 6].

In fact, in (1 + 1) dimensions such zero curvature condition is a conservation law, and the

conserved quantities are given by the eigenvalues of the holonomy of the flat connection

calculated on a spatial (fixed time) curve. On the other hand, many techniques, like the

dressing transformation method, for the construction of exact solutions are based on the

zero curvature condition. In dimensions higher than two the soliton theory is not so well

developed, even though many exact results are known for some 2-dimensional theories such

as the CPN models [7], as well as in four dimensional gauge theories where instanton and

self-dual monopoles are the best examples [8]. Some approaches have been proposed for the

study of integrable field theories in higher dimensions based on generalizations of the two

dimensional methods like the tetrahedron equations [9] and of the concept of zero curvature

involving connections in loop spaces [10].

Another important aspect of integrable field theories is that they serve as good appro-

ximations to many physical phenomena. In fact, there is a vast literature exploring many

aspects and applications of perturbations around integrable models. In this paper we want

to put forward a technique that, so far as we know, has not been explored yet and which

suggests that some non-integrable theories often possess many important properties of fully

integrable ones. We put forward and develop the concept of quasi-integrability for theories
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Figure 1: Plots of solitons for various values on n

that do not admit a representation of their equations of motion in terms of the Lax-Zakharov-

Shabat equation, but which can, nevertherless, be associated with an almost flat connection

in an infinite dimensional Lie algebra. In other words, we have an anomalous zero curvature

condition that leads to an infinite number of quasi-conservation (almost conservation) laws.

Moreover, in practice, in physical situations, like the scattering of solitons, these charges

are effectively conserved. The striking property we have discovered is that as the scattering

process takes place the charges do vary in time. However, after the solitons have separated

from each other the charges return to the values they had prior to the scattering. Effectively

what we have is the asymptotic conservation of an infinite number of non-trivial charges.

There are still several aspects of this observation that have to be better understood but we

believe that if our results are indeed robust then such asymptotic charges could play a role in

many important properties of the theory like the factorization of the S-matrix.

We introduce our concept of quasi-integrability through a concrete example involving a

real scalar field theory in (1+1) dimensions which is a special deformation of the sine-Gordon

model. The scalar field ϕ of our theory is subjected to the potential

V (ϕ, n) =
2

n2
tan2 ϕ [1− | sinϕ |n]2 (1.1)

where n is a real parameter which in the case n = 2 reduces the potential to that of the

sine-Gordon model, i.e. V (ϕ, 2) = 1
16
[1− cos (4ϕ)].

This potential (1.1) is a slight modification of that introduced by D. Bazeia et al, [1], in

the sense that we take the absolute value of sinϕ to allow n to take real and not only integer

values.
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Figure 2: Plots of the potential (1.1) against ϕ, for three values of the parameter ε,

where n = 2 + ε, namely ε = −0.5 (fine line), ε = 0.0 (thick line), and ε = 0.5 (dashed

line).

The potential (1.1) has an infinite number of degenerate vacua that allow the existence

of solutions with non-trivial topological charges. It is worth noticing that the positions of

the vacua are independent of n and so they are the same as in the sine-Gordon model, i.e.

ϕvac. = m π
2
, with m being any integer.

The model with the potential (1.1) is fully topological (i.e. it satisfies its Bogomolnyi

bound for any n) and so its one soliton field configurations are known in an explicit form.

They are given by:

ϕ = arcsin

[

e2Γ

1 + e2 Γ

]1/n

, Γ = ± (x− v t− x0)√
1− v2

, (1.2)

where the velocity v is given in units of the speed of light, and the signs correspond to the

kink (+), and anti-kink (−), with topological charges +1, and −1 respectively. In Figure 1

we plot the fields of a one soliton configuration for various values on n. We see from this plot

that the n = 2 case does not appear to be very special; all soliton fields look very similar and

the solitons for different values of n differ only in their slopes.

We are going to use this model to back up our discussion of quasi-integrability and so next

we look at n = 2+ε, with ε small. In Figure 2 we plot the potential (1.1) for ε = −0.5; 0.0; 0.5.

Of course, in this case the kinks solutions are given by (1.2) with n replaced by 2 + ε. In

Figure 3 we plot the one kink solutions (1.2) for the potentials shown in Figure 2, i.e. for

ε = −0.5; 0.0; 0.5. Note that they connect the vacua ϕvac = 0 to ϕvac. =
π
2
, as x goes from

−∞ to +∞, with the slope of the kink increasing as the value of ε decreases.

In this paper we study the concept of quasi-integrability in the context of the theory (1.1)
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Figure 3: Plots of the kink solutions (1.2) against x, with t = 0 and x0 = 0, for three

values of the parameter ε, where n = 2 + ε, namely ε = −0.5 (fine line), ε = 0.0 (thick

line), and ε = 0.5 (dashed line).

from the analytical and numerical points of view1. Our approach and the main results of this

paper can be summarised as follows (more details are given in the following sections):

We first consider a real scalar field theory with a very general potential V (ϕ), and construct

a connection Aµ based on the sl(2) loop algebra which, as a consequence of its equations of

motion, satisfies an anomalous zero curvature condition. Using a modification of the methods

employed in integrable field theories we construct and infinite number of quasi-conserved

charges for such a theory, i.e.

dQ(2n+1)

d t
= −1

2
α(2n+1) (t) n = 0,±1,±2, . . . , (1.3)

where the anomalies α(2n+1) (t) are non-zero due to the non-flatness of the connection Aµ.

The charges Q(±1) are in fact conserved, i.e. α(±1) = 0, and linear combinations of them

correspond to the energy and momentum.

We then restrict ourselves to the case of the potential (1.1) and set up a perturbative

expansion around the sine-Gordon theory. We expand all the quantities, equations of motion,

field ϕ, charges and anomalies, in powers of the parameter ε, related to n appearing in (1.1)

by n = 2 + ε. For instance, we have

Q(2n+1) = Q
(2n+1)
0 + εQ

(2n+1)
1 +O

(

ε2
)

, α(2n+1) = ε α
(2n+1)
1 +O

(

ε2
)

. (1.4)

The anomalies vanish in the lowest order (order zero) in ε because they correspond to the

1Preliminary results of our approach have already been given in [11]

4



sine-Gordon theory which is integrable and so all the charges Q
(2n+1)
0 are conserved during the

dynamics of all field configurations.

In this paper we concentrate our attention on the evaluation of the first non-trivial charge

and its anomaly, namely Q(3) and α(3), but our calculations can easily be extended to the other

charges. We considered the case of the scattering of two kinks and also of a kink/anti-kink in

the theory (1.1), where the solitons are far apart in the distant past and future, and collide

when t ∼ 0. We found that the first order anomaly α
(3)
1 , vanishes when integrated over the

whole time axis. Therefore, from (1.3) we see that

Q
(3)
1 (t = +∞) = Q

(3)
1 (t = −∞) . (1.5)

Consequently, the scattering of the solitons happen in a way that, to first order in ε at least,

the charge is asymptotically conserved. That is a very important result, and if one can extend

it to higher orders and higher charges one would prove that effectively the scattering of solitons

in the theory (1.1) takes place in the sdame way as if the theory were a truly integrable theory.

We have also analyzed the first order charge Q
(3)
1 for the breather solution of the theory (1.1),

and found that even though the charge is not conserved, it oscillates around a fixed value. In

other words, the first order anomaly vanishes when integrated over a period π
ν
, and so from

(1.3) we find that

Q
(3)
1 (t) = Q

(3)
1

(

t+
π

ν

)

, (1.6)

where ν is the angular frequency of the breather. That means that the period of the charge

is half of that of the breather.

We have performed many numerical simulations of the full theory (1.1) using a fourth

order Runge-Kuta method, and using various lattice grids to make sure that the results are

not contaminated by numerical artifacts. We have found reliable results with lattice grids of

at least 3001 points, where the kinks were of size ∼ 5 points. Most of the simulations in this

paper were performed with lattices of 10001 points (i.e. well within this reliability). The main

results we have found are the following: We have found that if | ε | does not get very close

to unity the kinks and the kink/anti-kink scatter without destroying themselves and preserve

their original shapes, given in (1.2). For small values of | ε | the anomaly α(3) integrates to zero

for large values of the time interval, and so the charge Q(3) is asymptotically conserved within

our numerical errors. This is an important confirmation of our analytical result described

above, and is valid for the full charge and not only for its first order approximation as in (1.5).

One of the important discoveries of our numerical simulations is that the theory (1.1) also

possesses very long lived breather solutions for ε 6= 0, which correspond to non-integrable

models. These long-lived breathers were obtained by starting the simulations with a field

configuration corresponding to a kink and an anti-kink. As they get close to each other
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they interact and readjust their profiles and some radiation is emitted in this process. We

absorbed this radiation at the boundaries of the grid and the system stabilized to a breather-

like configuration. For n = 2 the resultant field configuration was the exact (and analytically

known) breather while for ε small those breather-like fields lived for millions of units of time.

As one changed ε and made it come close to unity the quasi-breathers radiated more and for

even larger values they eventually died. We also looked at the anomalies for such breather-like

configurations and have found a good agreement with our analytical results described above.

The anomaly, integrated in time, does oscillate and for small values of ε the charge is periodic

in time. That is, again, in agreement with the analytical result (1.6). Notice however, that

the numerical result is stronger in the sense that it corresponds to the full charge and not only

to its first order approximation as in (1.6).

We have also performed similar numerical simulations of wobbles [12] which correspond to

configurations of a breather and a kink. Again, such configurations were obtained by starting

the simulation with two kinks and an anti-kink. As the three solitons interact and adjust their

profiles they radiate energy and this radiation had been absorbed at the boundaries of the

grid. Eventually the system has evolved to a breather and a kink and for small values of ε the

resultant configuration was quite stable, and for n = 2 it agreed with the analytically known

configuration of a wobble. Again, we believe that this is a very interesting result which shows

that non-integrable theories can support such kinds of solutions.

Our results open up the way to investigate large classes of models which are not really

exactly integrable but which possess properties which are very similar to those of integrable

field theories. We believe that they will have applications in many non-linear phenomena of

physical interest.

The paper is organized as follow: in section 2 we introduce the quasi-zero curvature con-

dition, based on the sl(2) loop algebra, for a real scalar field theory subject to a generic

potential, and construct an infinite number of quasi-conserved quantities. In section 3 we

perform the expansion of the theory (1.1) around the sine-Gordon model, and evaluate the

first non-trivial charge and its corresponding anomaly. The numerical simulations, involving

the two solitons scattering, breathers and a wobble, are presented in section 4. In section

5 we present our conclusions; the details of the sl(2) loop algebra, charge calculations and

ε-expansion are presented in the appendices.
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2 The quasi zero curvature condition

We shall consider Lorentz invariant field theories in (1+1)-dimensions with a real scalar field

ϕ and equation of motion given by

∂2ϕ+
∂ V (ϕ)

∂ ϕ
= 0, (2.1)

where V (ϕ) is the scalar potential. Thus we want to study the integrability properties of such

theory using the techniques of integrable field theories [4, 5, 6]. We then start by trying to

set up a zero curvature representation of the equations of motion (2.1), and so we introduce

the Lax potentials as

A+ =
1

2

[

(

ω2 V −m
)

b1 − i ω
d V

d ϕ
F1

]

,

A− =
1

2
b−1 −

i

2
ω ∂−ϕF0. (2.2)

Our Lax potentials live on the so-called sl(2) loop algebra with generators b2n+1 and Fn, with

n integer; their commutation relations are given in Appendix A. The parameters ω and m

are constants, and they play a special role in our analysis. Note, that the dynamics governed

by (2.1) does not depend upon them, but since they appear in (2.2) they will play a role

in the quasi-conserved quantities that we will construct through the Lax equations. In the

expression above we have used light cone coordinates x± = 1
2
(t± x), where ∂± = ∂t± ∂x, and

∂+∂− = ∂2
t − ∂2

x ≡ ∂2.

The curvature of the connection (2.2) is given by

F+− ≡ ∂+A− − ∂−A+ + [A+ , A− ] = X F1 −
i ω

2

[

∂2ϕ+
∂ V

∂ ϕ

]

F0 (2.3)

with

X =
i ω

2
∂−ϕ

[

d2 V

dϕ2
+ ω2 V −m

]

. (2.4)

As in the case of the sine-Gordon model where the potential is given by

VSG =
1

16
[1− cos (4ϕ)] (2.5)

we find that X , given by (2.4), vanishes when we take ω = 4 and m = 1. Then the curvature

(2.3) vanishes when the equations of motion (2.1) hold. The vanishing of the curvature allows

us to use several powerful techniques to construct conserved charges and exact solutions. We

want to analyze what can be said about the conservation laws for potentials when X does not

vanish but can be considered small.
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In general, the conserved charges can be constructed using the fact that the path ordered

integral of the connection along a curve Γ, namely P exp
[

∫

Γ dσ Aµ
dxµ

d σ

]

, is path independent

when the connection is flat [5, 6, 13]. Here, we will use a more refined version of this technique

and try to gauge transform the connection into the abelian subalgebra generated by the b2n+1.

We follow the usual procedures of integrable field theories discussed for instance in [14, 15, 16].

An important ingredient of the method is that our sl(2) loop algebra G is graded, with n being

the grades determined by the grading operator d = T3 + 2 λ d
dλ

(see appendix A for details)

G =
∑

n

Gn ; [Gm , Gn ] ⊂ Gm+n ; [ d , Gn ] = nGn. (2.6)

We perform a gauge transformation

Aµ → aµ = g Aµ g
−1 − ∂µg g

−1 (2.7)

with the group element g being an exponentiation of generators lying in the positive grade

subspace generated by the Fn’s, i.e.,

g = exp

[

∞
∑

n=1

ζn Fn

]

(2.8)

with ζn being parameters to be determined as we will explain below. Under (2.7) the curvature

(2.3) is transformed as

F+− → g F+− g−1 = ∂+a− − ∂−a+ + [ a+ , a− ] = X g F1 g
−1, (2.9)

where we have used the equations of motion (2.1) to drop the term proportional to F0 in

(2.3). The component A− of the connection (2.2) has terms with grade 0 and −1. Therefore,

under (2.7) it is transformed into a− which has terms with grades ranging from −1 to +∞.

Decomposing a− into grades we get from (2.7) and (2.8) that

a− =
1

2
b−1 (2.10)

− 1

2
ζ1 [ b−1 , F1 ]−

i

2
ω ∂−ϕF0

− 1

2
ζ2 [ b−1 , F2 ] +

1

4
ζ21 [ [ b−1 , F1 ] , F1 ]−

i

2
ω ∂−ϕ ζ1 [F1 , F0 ]− ∂−ζ1 F1

...

− 1

2
ζn [ b−1 , Fn ] + . . . .

Next we note that one can choose the parameters ζn recursively by requiring that the

component in the direction on Fn−1 cancels out in a−. Thus we can put that ζ1 = i
2
ω ∂−ϕ,

8



and so on. In the appendix B we give the first few ζn’s obtained that way. In consequence,

the component a− is rotated into the abelian subalgebra generated by the b2n+1. Note that

this procedure has not used the equations of motion (2.1). We then have

a− =
1

2
b−1 +

∞
∑

n=0

a
(2n+1)
− b2n+1 (2.11)

and the first three components are

a
(1)
− = −1

4
ω2(∂−ϕ)

2, (2.12)

a
(3)
− = − 1

16
ω4(∂−ϕ)

4 − 1

4
ω2∂3

−ϕ∂−ϕ,

a
(5)
− = − 1

32
ω6(∂−ϕ)

6 − 7

16
ω4∂3

−ϕ(∂−ϕ)
3 − 11

16
ω4(∂2

−ϕ)
2(∂−ϕ)

2 − 1

4
ω2∂5

−ϕ∂−ϕ.

With the ζn’s determined this way we perform the transformation of the A+ component of

the connection (2.2). Since the ζn’s are polynomials of x−-derivatives of ϕ (see appendix B)

and since there will be terms involving x+-derivatives of ζn’s, we use the equations of motion

to eliminate terms involving ∂+∂−ϕ. Due to the nonvanishing of the anomaly term X in (2.3)

we are not able to transform a+ into the abelian subalgebra generated by the b2n+1. We find

that a+ is of the form

a+ =
∞
∑

n=0

a
(2n+1)
+ b2n+1 +

∞
∑

n=2

c
(n)
+ Fn (2.13)

where

a
(1)
+ =

1

2

[

ω2 V −m
]

, (2.14)

a
(3)
+ =

1

4
ω2 ∂2

−ϕ
d V

dϕ
− 1

2
iω∂−ϕX,

a
(5)
+ = −3

8
iω3(∂−ϕ)

3X +
5

16
ω4∂2

−ϕ(∂−ϕ)
2 d V

dϕ
− 1

2
iω∂−ϕ∂

2
−X +

1

2
iω∂2

−ϕ∂−X

− 1

2
iω∂3

−ϕX +
1

4
ω2 ∂4

−ϕ
d V

dϕ

with X given in (2.4), and V being the potential (see (2.1)). See appendix B for more details,

including the terms involving c
(n)
+ .

The next step is to decompose the curvature (2.9) into the component lying in the abelian

subalgebra generated by b2n+1 and one lying in the subspace generated by Fn. Since the

equation of motion (2.1) has been imposed, it turns out that the terms proportional to the

Fn’s in the combination −∂−a+ + [ a+ , a− ]−X g F1 g
−1, exactly cancel out. We are then left

9



with terms in the direction of the b2n+1 only. Therefore, the transformed curvature (2.9) leads

to equations of the form

∂+a
(2n+1)
− − ∂−a

(2n+1)
+ = β(2n+1) n = 0, 1, 2, . . . (2.15)

with β(2n+1) being linear in the anomaly X given in (2.4), and the first three of them being

given by

β(1) = 0, (2.16)

β(3) = iω ∂2
−ϕ X,

β(5) = iω

[

3

2
ω2(∂−ϕ)

2∂2
−ϕ+ ∂4

−ϕ

]

X.

Working with the x and t variables we have that (2.15) takes the form ∂ta
(2n+1)
x − ∂xa

(2n+1)
t =

−1
2
β(2n+1) and so we find that

dQ(2n+1)

d t
= −1

2
α(2n+1) + a

(2n+1)
t |x=∞

x=−∞ (2.17)

with

Q(2n+1) ≡
∫ ∞

−∞
dx a(2n+1)

x , α(2n+1) ≡
∫ ∞

−∞
dx β(2n+1). (2.18)

As we are interested in finite energy solutions of the theory (2.1) we are concerned with

field configurations satisfying the boundary conditions

∂µϕ → 0 ; V (ϕ) → global minimum as x → ±∞. (2.19)

Therefore from (2.2) we see that

A+ → 1

2

(

ω2 Vvac. −m
)

b1, A− → 1

2
b−1 as x → ±∞, (2.20)

where Vvac. is the value of the potential at the global minimum which, in general, is taken to

be zero. As we have seen the parameters ζn of the gauge (2.7) and (2.8) are polynomials in

x−-derivatives of the field ϕ (see appendix B). Therefore, for finite energy solutions we see

that g → 1 as x → ±∞, and so

a
(−1)
t → 1

4
,

a
(1)
t → 1

4

(

ω2 Vvac. −m
)

as x → ±∞, (2.21)

a
(2n+1)
t → 0 n = 1, 2, . . .

10



We can also investigate this behaviour more explicitly by analyzing (2.12), (2.14), (2.4) and

(2.19). Consequently, for finite energy solutions satisfying (2.19), we have that

dQ(1)

d t
= 0 ,

dQ(2n+1)

d t
= −1

2
α(2n+1) n = 1, 2, . . . (2.22)

Of course, the theory (2.1) is invariant under space-time translations and so its energy mo-

mentum tensor is conserved. The conserved charge Q(1) is in fact a combination of the energy

and momentum of the field configuration. In section 3 we will analyze the anomalies α(2n+1)

for a concrete perturbation of the sine-Gordon model, and we will show that even though the

charges are not exactly conserved they lead to very important consequences for the dynamics

of the soliton solutions.

A result that we can draw for general potentials, thus, is the following. For static finite

energy solutions the charges Q(2n+1) are obviously time independent, and as a consequence

of (2.22) one sees that the anomalies vanish, i.e. α(2n+1) = 0. Under a (1 + 1)-dimensional

Lorentz transformation where x± → γ±1 x± one finds that the connection (2.2) does not really

transform as a vector. However, consider the internal transformation

Aµ → γdAµ γ
−d (2.23)

where d is the grading operator introduced in (A.3). Then, one notices that Aµ, given in (2.2),

transforms as a vector under the combination of the external Lorentz transformation and the

internal transformation (2.23). For the same reasons the transformed connection aµ, defined

in (2.7), is also a vector under the combined transformations. Consequently, the anomalies

β(2n+1), introduced in (2.15), are pseudo-scalars under the same combined transformation.

Therefore, in any Lorentz reference frame the integrated anomalies α(2n+1), defined in (2.18),

satisfy

α(2n+1) = 0 for any static or a travelling finite energy solution (2.24)

where by a travelling solution we mean any solution that can be put at rest by a Lorentz

boost. Even though this result may look trivial, it can perhaps shed some light on the nature

of the anomalies α(2n+1). In fact, as we will see in our concrete example of section 3, the

anomalies vanish in multi-soliton solutions when the solitons they describe are far apart and

so when they are not in interaction with each other. The anomalies seem to be turned on

only when the interaction takes place among the solitons.

2.1 A second set of quasi conserved charges

Note that we can also construct a second set of quasi conserved charges for the theories

(2.1) using another zero curvature representation of their equations of motion. The new Lax
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potentials are obtained from (2.2) by interchanging x+ with x−, and by reverting the grades

of the generators. Then we introduce the Lax potentials

Ã− =
1

2

[

(

ω2 V −m
)

b−1 − i ω
d V

d ϕ
F−1

]

,

Ã+ =
1

2
b1 −

i

2
ω ∂+ϕF0. (2.25)

In this case using the commutation relations of appendix A we observe that the curvature of

such a connection is

F̃+− ≡ ∂+Ã− − ∂−Ã+ +
[

Ã+ , Ã−

]

= X̃ F−1 +
i

2
ω

[

∂2ϕ+
∂V

∂ϕ

]

F0 (2.26)

with

X̃ = − i

2
ω ∂+ϕ

[

d2 V

dϕ2
+ ω2 V −m

]

. (2.27)

The construction of the corresponding charges follows the same procedure as in section 2. We

perform the gauge transformation

Ãµ → ãµ = g̃ Ãµ g̃
−1 − ∂µg̃ g̃

−1 (2.28)

with the group element being

g̃ = exp

[

∞
∑

n=1

ζ−n F−n

]

(2.29)

and analogously to the case of section 2, we choose the ζ−n’s to cancel the F−n’s components

of ã+. We then have

∂+ã− − ∂−ã+ + [ ã+ , ã− ] = X̃ g̃ F−1 g̃
−1 (2.30)

where we have used the equation of motion (2.1) to cancel the component of F̃+− in the

direction of F0. The details of the calculations are given in the appendix C. The transformed

connection takes the form

ã+ =
1

2
b1 +

∞
∑

n=0

ã
(−2n−1)
+ b−2n−1,

ã− =
∞
∑

n=0

ã
(−2n−1)
− b−2n−1 +

∞
∑

n=2

c̃
(−n)
+ F−n.

The transformed curvature (2.30) leads to equations of the form

∂+ã
(−2n−1)
− − ∂−ã

(−2n−1)
+ = β̃(−2n−1) n = 0, 1, 2, . . . (2.31)

12



with β̃(2n+1) being linear in the anomaly X̃ , given in (2.27), and the first three are given by

β̃(−1) = 0,

β̃(−3) = iω ∂2
+ϕ X̃,

β̃(−5) = iω

[

3

2
ω2(∂+ϕ)

2∂2
+ϕ+ ∂4

+ϕ

]

X̃.

Following the same reasoning as in section 2, we find that for finite energy solutions we have

the quasi conservation laws

d Q̃(−1)

d t
= 0 ,

d Q̃(−2n−1)

d t
= −1

2
α̃(−2n−1) n = 1, 2, . . . (2.32)

with

Q̃(−2n−1) ≡
∫ ∞

−∞
dx ã(−2n−1)

x , α̃(−2n−1) ≡
∫ ∞

−∞
dx β̃(−2n−1). (2.33)

3 The expansion around the sine-Gordon model

The construction of quasi conserved charges of section 2 was performed for a very general

potential, and no estimates were done on how small the anomaly of the zero curvature con-

dition really is. We now turn to the problem of evaluating the anomalies α(2n+1), introduced

in (2.18), and to discuss the usefulness of the quasi conservation laws (2.22). In order to do

that we choose a specific potential which is a perturbation of the sine-Gordon potential and

that preserves its main features like infinite degenerate vacua and the existence of soliton-like

solutions. So we consider the potential given in (1.1) and we put n = 2 + ε i.e. we take

V (ϕ, ε) =
2

(2 + ε)2
tan2 ϕ

[

1− | sinϕ |2+ε
]2
. (3.1)

In order to analyze the role of zero curvature anomalies we shall expand the equation of

motion (2.1) for the potential (3.1), as well as the solutions, in powers of ε. We then write

ϕ = ϕ0 + ϕ1 ε+ ϕ2 ε
2 + . . . (3.2)

and

∂ V

∂ ϕ
=

∂ V

∂ ϕ
|ε=0 +

[

d

d ε

(

∂ V

∂ ϕ

)]

ε=0

ε+ . . .

=
∂ V

∂ ϕ
|ε=0 +

[

∂2V

∂ε∂ϕ
+

∂2V

∂ϕ2

∂ϕ

∂ε

]

ε=0

ε+ . . .

13



Using the results of appendix D, where we give the detailed calculations of such expansion,

we have that the order zero field ϕ0 must satisfies the sine-Gordon equation, i.e.

∂2ϕ0 +
1

4
sin (4ϕ0) = 0. (3.3)

On the other hand the first order field ϕ1 has to satisfy the equation

∂2ϕ1 + cos (4ϕ0) ϕ1 = sin(ϕ0) cos(ϕ0)
[

2 sin2 ϕ0 ln
(

sin2(ϕ0)
)

+ cos2(ϕ0)
]

. (3.4)

We shall consider here only the anomalies for the charges constructed in section 2 (the anal-

ysis for the charges constructed in section 2.1 is very similar). We expand the anomaly X

introduced in (2.4) as

X = X0 +X1 ε+X2 ε
2 + . . . (3.5)

and we also expand the parameters

ω = ω0 + ω1 ε+ ω2 ε
2 + . . .

m = m0 +m1 ε+m2 ε
2 + . . . . (3.6)

Then we find that

X0 =
i ω0

2
∂−ϕ0

[

d2 V

dϕ2
|ε=0 +ω2

0 V |ε=0 −m2
0

]

. (3.7)

Using the results of appendix D we find that X0 vanishes by an appropriate choice of param-

eters, i.e.

X0 = 0 when ω0 = 4 and m0 = 1. (3.8)

With such a choice the first order contribution to X reduces to (again using the results of

appendix D)

X1 = i 2 ∂−ϕ0

[

−6 sin2 ϕ0 ln
(

sin2 ϕ0

)

− cos2 ϕ0 −m2
1

+ 8
(

ω1

2
− 1

)

sin2 ϕ0 cos2 ϕ0

]

(3.9)

and so we see that X1 does not depend upon ϕ1.

Since the anomalies α(2n+1), introduced in (2.18), are linear in X and since X0 = 0, it

follows that their zero order contribution vanishes, as it should since sine-Gordon is integrable.

Thus we write our anomalies as

α(2n+1) = α
(2n+1)
1 ε+ α

(2n+1)
2 ε2 + . . . (3.10)

and the first order contribution to the first two of them are (remember that α(1) = 0)

α
(3)
1 = i ω0

∫ ∞

−∞
dxX1 ∂

2
−ϕ0, (3.11)

α
(5)
1 = i ω0

∫ ∞

−∞
dxX1

[

3

2
ω2
0 (∂−ϕ0)

2
∂2
−ϕ0 + ∂4

−ϕ0

]
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with X1 given in (3.9). Thus, the first order anomalies do not depend on the first order field

ϕ1. The first order charges, however, do depend upon ϕ1. To see this we expand the charges

as

Q(2n+1) = Q
(2n+1)
0 +Q

(2n+1)
1 ε+Q

(2n+1)
2 ε2 + . . . (3.12)

Then we find that Q
(2n+1)
0 are conserved and correspond to the charges of the sine-Gordon

model, and involve ϕ0 only. As an example we present the first charge at first order

Q
(3)
1 =

∫ ∞

−∞
dx

[

8 (∂−ϕ0)
3 (ω1 ∂−ϕ0 + 4 ∂−ϕ1) + ∂3

−ϕ0 (ω1 ∂−ϕ0 + 2 ∂−ϕ1)

+ 2 ∂3
−ϕ1 ∂−ϕ0 +

1

4
sin (4ϕ0)

(

ω1∂
2
−ϕ0 + 2∂2

−ϕ1

)

− 2 ∂2
−ϕ0 ∂+∂−ϕ1 − iX1∂−ϕ0

]

which, indeed, does depend on ϕ1.

We can now evaluate the anomaly, to first order, for some physical relevant solutions of

the theory (2.1) with the potential given by (3.1). As we have stressed this earlier the first

order anomaly depends only upon the zero order field ϕ0 which is an exact solution of the

sine-Gordon equation (3.3).

3.1 Anomaly for the kink

First we look at the case of one kink. The kink solution is given by (1.2) with n = 2 + ε and

it is an exact solution of (2.1) for V given by (3.1). The first order anomaly depend upon the

kink solution of the sine-Gordon equation (3.3) which is given by

ϕ0 = arctan (ex) . (3.13)

Inserting this expression into (3.11) and (3.9) we find that

α
(3)
1 = α

(5)
1 =

∫ ∞

−∞
dx

sinh x

cosh4 x

[

6 ex ln
(

1

2

ex

cosh x

)

+ e−x
]

. (3.14)

This expression can be integrated explicitly using the fact that

d

d x





2 sinh(x) + ex (e2x − 3) ln
(

1
2

ex

coshx

)

2 cosh3 (x)



 =
sinh x

cosh4 x

[

6 ex ln
(

1

2

ex

cosh x

)

+ e−x
]

and so
∫ ∞

−∞
dx

sinh x

cosh4 x

[

6 ex ln
(

1

2

ex

cosh x

)

+ e−x
]

= 0. (3.15)

Therefore, the first order anomalies vanish, i.e. α
(3)
1 = α

(5)
1 = 0, agreeing with the general

result shown in (2.24).
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3.2 Anomalies for the 2-soliton solutions

3.2.1 The soliton/anti-soliton scattering

Let us consider a 2-soliton solution corresponding, for η = 1, to a soliton moving to the right

with speed v and located at x = −L at t = 0, and an anti-soliton moving to the left with

speed v and located at x = L at t = 0. For η = −1 the roles of soliton and anti-soliton

are interchanged. The solution at order zero in the ε-expansion is given by a solution of the

sine-Gordon equation (3.3) given by

ϕ0 = ArcTan

[

η v cosh y1
sinh τ1

]

(3.16)

with

y1 =
x√

1− v2
, τ1 =

v t− L√
1− v2

+ η ln v. (3.17)

Putting this expression into (3.11) and (3.9) we find that the first anomaly at first order is

α
(3)
1 =

8 v2

(1− v2)3/2
sinh τ1 cosh τ1

∫ ∞

−∞
dx

1

Λ3
1

[

v
((

3 + v2
)

Ω1 + 4 v2
)

cosh2 y1 − 2 vΩ1

]

×

×
[

−6
v2 cosh2 y1

Λ1

ln

(

v2 cosh2 y1

Λ1

)

− sinh2 τ1

Λ1

−m2
1 + 8

(

ω1

2
− 1

)

v2 cosh2 y1

Λ1

sinh2 τ1

Λ1

]

,

(3.18)

where we have introduced

Λ1 = sinh2 τ1 + v2 cosh2 y1, Ω1 = sinh2 τ1 − v2 cosh2 y1. (3.19)

Note that α
(3)
1 given in (3.18), is an odd function of τ1 due to the term sinh τ1 in front of the

integral. All other terms involving τ1 in (3.18) appear as cosh τ1 or sinh2 τ1, and so are even

in τ1. Consequently we see that
∫ ∞

−∞
dt α

(3)
1 = 0. (3.20)

We point out that this result is independent of the values of ω1 and m1 which appear in the

expression for α
(3)
1 . Note that, from (2.22), (3.10) and (3.12), we have that

dQ
(3)
1

d t
= −1

2
α
(3)
1 (3.21)

and so

Q
(3)
1 (t = ∞) = Q

(3)
1 (t = −∞) . (3.22)

Thus, in the scattering of the soliton and anti-soliton the charge at first order is conserved

asymptotically. From the physical point of view that is as effective as in the case of the

integrable sine-Gordon theory. The solitons have to scatter preserving higher charges (at least

in first order approximation).
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3.2.2 The soliton/soliton scattering

Next we consider a 2-soliton solution corresponding, for η = 1, to a soliton moving to the

right with speed v and located at x = −L at t = 0, and another soliton moving to the left

with speed v and located at x = L at t = 0. For η = −1 the roles of soliton and anti-soliton

are interchanged. The solution, at order zero in the ε-expansion, is again given by a solution

of the sine-Gordon equation (3.3), namely

ϕ0 = ArcTan

[

−η cosh τ2
v sinh y2

]

, (3.23)

where

y2 =
x√

1− v2
+ η ln v, τ2 =

v t− L√
1− v2

. (3.24)

Following the same procedure as in the case of soliton/anti-soliton solution, by putting (3.23)

into (3.11) and (3.9) we find that the first anomaly, at first order, is

α
(3)
1 =

8 v2

(1− v2)3/2
sinh τ2 cosh τ2

∫ ∞

−∞
dx

1

Λ3
2

[

v
((

v2 + 3
)

Ω2 − 4v2
)

sinh2 y2 + 2 vΩ2

]

×
[

−6
cosh2 τ2

Λ2
ln

(

cosh2 τ2

Λ2

)

− v2 sinh2 y2

Λ2
−m2

1 + 8
(

ω1

2
− 1

)

cosh2 τ2

Λ2

v2 sinh2 y2

Λ2

]

(3.25)

with

Λ2 = cosh2 τ2 + v2 sinh2 y2, Ω2 = cosh2 τ2 − v2 sinh2 y2. (3.26)

Again, one notices that α
(3)
1 given in (3.25) is odd in τ2. Indeed, except for the factor sinh τ2 in

front of the integral, all other terms are even in τ2 since they involve only cosh τ2. Consequently,

we again have
∫ ∞

−∞
dt α

(3)
1 = 0 (3.27)

and such result is independent of the values of ω1 and m1. Again, using (3.21) we see that

Q
(3)
1 (t = ∞) = Q

(3)
1 (t = −∞). So, the solitons scatter preserving higher charges asymptoti-

cally, like in the case of soliton/anti-soliton scattering discussed above.

3.3 Anomalies for breathers

As we show in the next section the theory (2.1) with potential (3.1) has long lived breather-like

solutions. Hence, next we evaluate the anomaly, to first order, for such a solution. For that we
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need the solution for the zero order field ϕ0 which is a breather solution for the sine-Gordon

equation (3.3), i.e.

ϕ0 = arctan





√
1− ν2

ν

sin (ν t)

cosh
(√

1− ν2 x
)



 , (3.28)

where ν is the frequency of the breather (0 < ν < 1), and we have chosen to express it in

its Lorentz rest frame. Putting this configuration into (3.11) and (3.9) we find that the first

anomaly, to first order, is

α
(3)
1 = −4 ν3

(

1− ν2
)

sin (2 ν t)
[

I1 (ν, t)−m2
1 I2 (ν, t) + 8

(

ω1

2
− 1

)

I3 (ν, t)
]

(3.29)

with

I1 (ν, t) =
∫ ∞

−∞
dx

[

2
(

1− ν2
)

sinh2
(√

1− ν2 x
)

Ω (3.30)

+ cosh2
(√

1− ν2 x
) ((

1− 2 ν2
)

Ω− 4 ν2
(

1− ν2
))]

×

× 1

Λ3



−6
(1− ν2) sin2 (ν t)

Λ
ln

(

(1− ν2) sin2 (ν t)

Λ

)

−
ν2 cosh2

(√
1− ν2 x

)

Λ





and

I2 (ν, t) =
∫ ∞

−∞
dx

[

2
(

1− ν2
)

sinh2
(√

1− ν2 x
)

Ω

+ cosh2
(√

1− ν2 x
) ((

1− 2 ν2
)

Ω− 4 ν2
(

1− ν2
))] 1

Λ3
(3.31)

and

I3 (ν, t) =
∫ ∞

−∞
dx

[

2
(

1− ν2
)

sinh2
(√

1− ν2 x
)

Ω

+ cosh2
(√

1− ν2 x
) ((

1− 2 ν2
)

Ω− 4 ν2
(

1− ν2
))]

×

× 1

Λ3





ν2 (1− ν2) sin2 (ν t) cosh2
(√

1− ν2 x
)

Λ2



 , (3.32)

where we have denoted

Λ = ν2 cosh2
(√

1− ν2 x
)

+
(

1− ν2
)

sin2 (ν t) ,

Ω = ν2 cosh2
(√

1− ν2 x
)

−
(

1− ν2
)

sin2 (ν t) . (3.33)

Note that the time dependence of the integrals Ij (ν, t), j = 1, 2, 3, comes only through the

factor sin2 (ν t) = 1
2
[1− cos (2 ν t)]. Since these integrals are multiplied by the factor sin (2 ν t)

in (3.29), we conclude that α
(3)
1 is periodic in time with period T ≡ π

ν
. In addition, we observe
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that Ij (ν, t) = Ij (ν,−t), and so α
(3)
1 (t) = −α

(3)
1 (−t), due to the overall factor sin (2 ν t) in

(3.29). Consequently, we have that

∫ t+T

t
dt′ α

(3)
1 (t′) =

∫ T/2

−T/2
dt′ α

(3)
1 (t′) = 0, (3.34)

where we have used the fact that
∫ t+T
t =

∫−T/2
t +

∫ T/2
−T/2+

∫ t+T
T/2 , and so the first and third

integrals cancel due to the fact that α
(3)
1 (t) = α

(3)
1 (t + T ). Consequently, we find from (3.21)

that the charge (to first order) is periodic in time

Q
(3)
1 (t) = Q

(3)
1

(

t +
π

ν

)

. (3.35)

4 Numerical support

To check our results on the anomaly we have decided to perform various simulations of the

Bazeia at al model - studying two kinks, a kink-antikink, and a system involving two kinks

and an antikink.

In all our numerical work the time evolution was simulated by the fourth order Runge -

Kuta method. We used various lattice grids (to make sure that our results were not contam-

inated by any numerical artefacts, the issue here was the size of the lattice and the lattice

step). We found that to have reliable results the lattice grid (given that the kinks were of

size ∼ ±5) had to stretch to, at least, ±50. Hence most of our work was performed using

even larger grids and the results given in this paper were obtained in simulations in which the

lattice contained 10001 equally spaced points and stretched from -75 to 75. At the edge of

the grid (in practice from -71 to -75 and from +71 to +75) we absorbed the kinetic energy of

the fields. During the scattering process there was some radiation sent out towards the edges

of the grid and it is this radiation that our procedure absorbed (so that we would not have

any reflection of the radiation from the boundaries). Thus our procedure had the effect of

simulating an infinite grid in which we looked only at the fields in a finite region. Thus, due

to this absorption, the total energy seen in our simulations would decrease but this decrease

could be associated with the system radiating some energy towards the boundaries and the

energy seen by us corresponded to the energy of the system that we have tried to describe.

4.1 Kink-kink interactions

First we looked at the interaction between 2 kinks. To study this we placed two kinks at some

distance from each other and then performed a simulation to see what happens.
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Figure 4: Trajectories: a) n = 2, b) n = 1.9,

When we performed this simulation with static kinks we have found that the kinks repel.

To decide what happens during the scattering we decided to plot the positions of the kinks

as a function of time. There are several possible definitions of ‘the position of the kink’ but,

physically the most sensible one, involves looking at the energy density of each kink, with the

position being defined at the location of the maximum of this density. This is the definition

we have used in our analysis.

In fig.4 we present the trajectories of two kinks (given the definition of the position as

mentioned above), initially at rest, as seen in simulations for n = 2 and n = 1.9. The kinks

were initially placed at d = ±7.0 and so far away from any boundary.

It is clear from these plots that the kinks repel. We have repeated our simulations for

various values of n and each time the situation was the same. Looking at the plots of the

trajectories we do not see much difference between n = 2 and n = 1.9.

Next we sent the kinks towards each other with some velocities. In the fig. 5 we present the

trajectories of kinks sent towards each other with velocity v = 0.5 for the cases corresponding

to n = 2 and n = 1.9. Initially the kinks were placed at d = ±15.5

In both cases the kinks clearly come very close towards each other but then they repel and

move away from each other. At larger velocities they get closer before their repulsion always

sends them back. Similar results were obtained for other values of d, n and their velocties.

Incidentally, the sine-Gordon model (i.e. the model with n = 2) possesses a solution

describing two moving kinks and our results (for n = 2) reproduce them very well and,

surprise, surprise, the model does not have any static solutions involving more than one kink.

On the other hand, the sine-Gordon moving kinks solutions are known in an explicit form,

and because these kinks are described by explicit functions it is often said that the ”kinks

pass through each other”. This is clearly wrong when one looks at the energy density of the
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Figure 5: Trajectories: a) n = 2, b) n = 1.9,

moving kinks as they move towards each other. In fact, one easily observes that the kinks

never come on top of each other (i.e. the two peaks of the energy density never form a double

peak); in practice, the functions which describe each kink switch after the kinks’ interaction.

We have also looked at the scattering of two kinks from the point of view of the integrability

discussed in the previous section - i.e. from the point of view of the anomalies.

To do this we considered the scattering of two kinks for values of n close to 2. We looked

at various positions of kinks and various velocities. All results were qualitatively similar so

here we present our results for v = .5. The kinks were initially placed at ±15.5. We performed

many simulations of the dynamics of such systems. In each case, as mentioned above, the

kinks came close to each other, reflected and then moved to the boundaries with essentially

the original velocity. Thus the scattering was very elastic. Looking at the scattering in more

detail it was easy to see that, strictly speaking, there was also some radiation emitted during

the scattering and that the amount of this emitted radiation increased with the increase of

|ε| = |n − 2|; however, even for n = 1 this radiation constituted less than 2% of the total

energy. Hence the scattering was very elastic.

We have also looked at the values of the first anomaly and its time integrated value for

these scatterings.

In fig 6. we present a representative selection of our results. Fig. 6a and 6b present

the time dependence of the anomaly and its time integrated form for n = 2, as seen in our

simulations. Of course we know that for n = 2 the anomaly vanishes so our results provide the

test of our numerics. We note that our values of the anomaly are very small - i.e. consistent

with zero. Next we looked at the values of n 6= 2 for which the anomaly does not vanish. In

fig 6c and 6d present our results for the anomaly and its integrated form for n = 1.99 and fig

6e and 6f present similar results for n = 2.01. Fig 6g and 6h refer to the case of n = 1.98
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while fig 6i and 6j give the results for n = 2.1 and fig 6k and 6l for n = 3.

From these results we see very clearly that for all values of n (with the exception of n = 3)

the integrated anomaly is approximately zero. This supports our analytical results and it

shows that (for small ε) the unintegrated total anomaly is approximately proportional to

ε = n − 2. This is supported further by the observation that the anomaly changes sign as

ε → −ε. The second order (in ε) effects are comparable to those of the first order and the

expansion in ε clearly does not converge for ε ∼ 1. This last point is very clear from the

case of n = 3 in which case ε = 1. Of course it would be nice to understand why all the

terms in the ε power series expansion are comparable in magnitude; at this stage we have no

understanding of this fact.

4.2 Kink antikink scattering - quasi-breathers

Next we have looked at the kink - antikink configurations and breathers. In the sine-Gordon

model we do have breathers and their analytical form is well known. They are in fact bound

states of a kink and an antikink. This is all well known; what is perhaps less known, is that

one can generate breathers by taking a kink and an antikink and placing them not too close to

each other and then let the configuration evolve in time. As the kink and the antikink attract

they move towards each other, alter their shape and, at the same time, emit some radiation

and become a breather. Interestingly, they do not annihilate but do form a breather. If we

then absorb the energy at the boundaries the system stabilises and essentially stops emitting

further energy as the fields have taken the shape of a breather which is a time dependent

solution of the model.

It is sometimes thought that the existence of breathers and of other similar configurations

(wobbles etc) is, at least in part, associated with the integrability of the sine-Gordon model.

Actually, as we have stressed this before, the models of Bazeia et al [1] do not appear to

be integrable for any n other than 2; so we have decided to apply our procedure to look at

configurations of a kink and an antikink for other values of n. However, before we discuss

some of our results obtained in such cases let us first present them for the sine-Gordon model.

In fig. 7 we present the time dependence of the energy of the field configuration which

involved a kink and an antikink initially placed at d = ±3 (fig 7a) and d = ±5 (fig 7b). In

fig 7c we present the plot of the time dependence of the position of the kink (or antikink) for

x < 0.

We note that in both cases (and also in other cases we have looked at, for which the

results are not presented here) we have a very small initial drop of the total energy of the

configuration to the energy of the resultant breather. The final energy of the breather is given
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Figure 6: Anomalies and the corresponding integrated anomalies (from left to right

and then down) for n = 2.0, n = 1.99, n = 2.01, n = 1.98, n = 2.10 and n = 3.00
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Figure 7: (ab) Time dependence of total energies; (c). Position of the kink.

by E = 2E0

√
1− ω2 and its frequency ω is related to the intial extend given by d.

Next, we repeated the same procedure of generating breathers for field configurations

corresponding to other values of n. In fig 8. we present our results for two values of n, namely

n = 1 and n = 3.1, in which the kink and the antikink were initially placed at d = ±4.0. Our

plots give the time dependence of the total energy of the configuration (after the absorption

at the boundaries has eliminated the radiation reaching the boundaries).

We note a fundamental difference; for n = 1 the energy seems to ‘stabilise’ around some

finite nonzero value while for n = 3.1 it quickly goes to zero.

We have performed many simulations (for different values of n and for different distances

between kinks and antikinks) running them for very long times. We have found that for some

values of n the fields annihilate very quickly; while for the others the fields evolved towards

breather-like configurations. This was not much dependent on the distance between the initial

kinks but depended much more on n. In fact, as the distance d increased the whole process,

like for the sine-Gordon model, was slower, the initial radiation was smaller and the generated

breather was larger (and so its oscillations were slower). Looking at the dependence on n it

was clear that the closer n was to 2 the more stable the breather was (this was true from

about ∼ 0.8 to around ∼ 2.8); and for some values of n (very close to 2, like 2.01 or so) the

resultant configuration was almost indistinguishable from a breather. In fact, in all such cases,

the energy kept decreasing but this decrease was infinitesimal. Thus we could say that we had

a quasi-breather (i.e. a long-lived breather). As the lifetime of such a quasi-breather could

be counted in millions of units of time, such fields, for practical (but not purely mathematical)

reasons were not very different from a breather.

24



     0

     1

     2

     3

     4

     5

     6

     7

     8

     9

    10

    11

    12

0 20000 40000 60000
time

en
er

g
y

     0

     1

     2

     3

     4

     5

     6

0 10000 20000 30000 40000
time

en
er

g
y

Figure 8: Time dependence of the total energy (a) n = 1, (b) n = 3.1.

In fig. 9 we present some results of our simulations (for n = 2.01) which demonstrate the

existence of our quasi-breathers. In fig 9ab we present the plots of the field configuration for

two values of t, namely t = 355500 and t = 356300. We see that the fields look very much

like those of the n = 2 breather.

In fig. 10 ab and c we present the time dependence of the energy of the configuration

on t, a detail of this dependence at large t and the time dependence of the value of field at

x = 0. Note the extremely large values of t in the plots of the energy density. Note also the

irregularity of the energy decrease. The energy gradually appears to decrease less and less

and then suddenly drops and changes its slope of decrease. It then continues in the same way

until the slope changes again etc. We do not understand these changes but, in any case, the

total decrease of the energy is still very modest and it is clear that the quasi-breather is not

going to “die” soon.

The plot in fig. 10c presents the time variation of the field at x = 0. As the field is

symmetric around x = 0 this plot demonstrates the frequency of the oscillation.

We have performed similar simulations starting with the initial kinks and antikinks at

other distances from each other and for other values of n. The results were qualitatively the

same; the further the initial structures were - the slower was the decrease in energy (i.e the

longer the life-time of the breather). The same was true when we considered n further away

from n = 2. This once again suggests that the models for n 6= 2 (but close to 2) are quasi-

integrable as discussed in the previous sections. Hence we have also looked at the behaviour

of the anomaly for our quasi-breathers.

In fig. 11 ab we present the plots of the anomaly and the time integrated anomaly (at
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Figure 9: Field configurations (of n = 2.01) for (a) t = 355500 and (b) t = 356300
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Figure 11: The first anomaly, b) the integrated first anomaly for n = 2.01, c) and

d) the same for n = 2.7.

later times) of our n = 2.01 quasi-breather and in fig. 11 cd the similar plots for n = 2.7.

We see that, when compared to the two-kink case, the time integrated total anomaly is

nonzero at all times (as the kink and antikink are bound into a pulsating quasi-breather) but

when one looks at the time integrated anomaly over a multiple of the period of its oscillations

its value is very very small (i.e. close to zero). For n = 2.01 this value is so small that it is

difficult to see that it changes at all, for n = 2.7 the value is small but nonzero and the value

changes - thus the quantity corresponding to the anomaly is, strictly speaking, not conserved.

4.3 Wobbles

Finally we looked at wobbles i.e., fields involving a kink and a breather. In the sine-Gordon

model they are again well known and, in fact, one has their analytical form. Of course, as

before, we can generate them, numerically, from field configurations involving an antikink and

two kinks (or vice-versa). However, as these configurations have an excess of energy, which is

emitted when an antikink a kink form a breather, this energy can be, in part, converted into the

motion of the remaining kink (or of the breather). Hence it is much harder, by comparison

with pure breathers (where one can exploit the symmetry of the initial configuration), to

generate non-moving wobbles. We have performed many simulations and the resultant fields

sometimes were static but most of the time were moving. Clearly, the result of the simulation

depends on the excess of energy - so further the initial structures were from each other the

more likely there were to remain static. But this, in turn, slowed down the process of the

generation of the breather. In addition, the futher n was from n = 2 the more radiation was

sent out by the system and more likely it was that this radiation would set in motion the kink

or the breather. However, for n close to 2 we did manage to obtain wobbles and in the plots

given below we show some of our results.
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Figure 12: a) Total energy, b) Potential energy

Figure 13: a) t = 0, b) t = 6400, c) t = 12800

First we present our results for n = 2, i.e. for the sine-Gordon model.

In fig. 12 we plot the time dependence of the total and of the potential energy seen in

the simulation involving the kink, the antikink and the kink originally located at -15.5, 0 and

+15. In the following figure we exhibit the field configurations for three values of t, namely

for t = 0, t = 6400 and t = 12800. We note a fast decrease of the total energy over the initial

period and then stability. The potential energy is virtually always close to 12 and then it

decreases to just over 4 when the breather is ‘breathing’, i.e. when almost all its energy is

kinetic. Note that, for the breather, the flow of energy between the kinetic and the potential

energies is very uneven; most of the time the breather’s energy is mainly potential and the

periods over which the kinetic energy dominates are relatively short.

Next we present our results for the case of n 6= 2 i.e. n = 2.01. In this case the energy

continues to decrease but this decrease is very slow. In fig 14c we present the details of

the plot of the total energy for larger values of t. We clearly see the decrease - hence the
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Figure 14: a) Total energy, b) Potential energy, c) Total energy for large values of

t (n = 2.01)

breather is slowly dying but its decay is very slow indeed. And fig 15 shows the fields at some

representative values of time (for n = 2.01). It is clearly very difficult to see any fundamental

difference between the wobbles in these two systems (for n = 2 and n = 2.01), although

as fig 14b shows, the time dependences of the breather oscillations in both cases are very

different (much shorter for the n = 2.01 wobble and slowly decreasing when compared to that

of n = 2.00).

As we have mentioned before, in our studies we have also seen simulations in which the

breather and the kink which form the wobble move relative to each other. In fig 16. we show

the field configurations for one of such cases. This case corresponds to n = 1.9.

Figure 15: Fields at 3 values of t; a) t = 0, b) t = 6400, c) t = 12800
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5 Summary

In this paper we have made the first steps to introduce the concept of quasi-integrability

and discussed it on the example of the models of Bazeia et al [1]. We showed that when

the models are close to being intergrable and so can be compared with them then one can

introduce many quantities, which in the integrable case are conserved and which, in the non-

integrable case, are not conserved. One can then calculate their anomalies that are responsible

for this nonconservation, in a power series of the difference of the quasi-integrable models from

their integrable neighbours. In the models of Bazeia et al [1] this difference is provided by

ε = n− 2.

We can then calculate these anomalies for various field configurations. We have shown

that the anomalies are very small for many such configurations and are only significant when

the fields describe strongly time-dependent tightly bound objects; i.e. the field configurations

like those of breathers or wobbles. And, conveniently, the models of Bazeia et al do possess

such configurations.

In fact, the models of Bazeia et al, which depend on a parameter n (which when n = 2

reduce to the integrable sine-Gordon models) have many very similar properties and can be

used to discuss the concept of quasi-integrability. All models (i.e. for any n) have one kink

solutions and their scattering properties are very similar. Moreover, no other analytic solutions

of these models (when n 6= 2) are known.

However, the models can be studied numerically. When we studied these models for n 6= 2

but close to 2 we have found that the models do, indeed, possess long-lived breather-like field
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configurations; i.e. when we have constructed breather-like field configurations and let them

evolve they gradually emitted some energy but this process was extremely slow; and so we

can claim that these models (for n close to 2) possess ’very long-lived’ breather-like solutions.

Their life-time is closely related to how close n is to 2 and when n < 0.8 or n > 2.8 this decay

was relatively fast so that the ‘existence’ of these states cannot be taken too seriously.

We have also looked at wobble-like states (i.e. states involving a breather and a kink) and

the situation was found to be similar although the range of n for which such states appeared

to be long lived was smaller. This is partly related to our construction of such states; we

generated them all by taking initial configurations consisting of kinks and antikinks and then

evolving them and absorbing, at the boundaries, any energy emitted by the configuration.

For the wobble-like states, as the configuration was less symmetric the energy was emitted

non-symmetrically and this often lead to more perturbation of the resultant (wobble-like) field

configuration.

Thus, in addition to supporting our studies of quasi-integrability, our numerical results

demonstrated also the existence of long-lived breather-like and wobble-like states.
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A The algebra

We consider the sl(2) algebra

[T3 , T± ] = ±T±, [T+ , T− ] = 2 T3. (A.1)

We take the following basis for the corresponding loop algebra

b2m+1 = λm (T+ + λ T−) , F2m+1 = λm (T+ − λ T−) , F2m = 2 λm T3. (A.2)

The algebra is

[ b2m+1 , b2n+1 ] = 0,

[F2m+1 , F2n+1 ] = 0,

[F2m , F2n ] = 0,

[ b2m+1 , F2n+1 ] = −2F2(m+n+1),

[ b2m+1 , F2n ] = −2F2(m+n)+1,

[F2m+1 , F2n ] = −2 b2(m+n)+1.

We have a grading operator

d = T3 + 2 λ
d

dλ
(A.3)

such that

[ d , b2m+1 ] = (2m+ 1) b2m+1, [ d , Fm ] = mFm. (A.4)

B The gauge transformation (2.7)

The first six parameters ζn of the gauge transformation (2.7), determined through (2.10) are

given by

ζ1 =
1

2
iωϕ(0,1),

ζ2 =
1

2
iωϕ(0,2),
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ζ3 =
1

6
i
(

ω3(ϕ(0,1))3 + 3ωϕ(0,3)
)

,

ζ4 =
1

6
i
(

4(ϕ(0,1))2ϕ(0,2)ω3 + 3ϕ(0,4)ω
)

,

ζ5 =
1

30
i
(

3ω5(ϕ(0,1))5 + 30ω3ϕ(0,3)(ϕ(0,1))2 + 40ω3(ϕ(0,2))2ϕ(0,1) + 15ωϕ(0,5)
)

,

ζ6 =
1

30
i
(

23(ϕ(0,1))4ϕ(0,2)ω5 + 40(ϕ(0,2))3ω3 + 145ϕ(0,1)ϕ(0,2)ϕ(0,3)ω3

+ 35(ϕ(0,1))2ϕ(0,4)ω3 + 15ϕ(0,6)ω
)

,

where ϕ(0,n) ≡ ∂n
−ϕ.

The first few components of transformed gauge potentials introduced in (2.7) are given by

a− =
1

2
b−1

+ b1

[

−1

4
ω2(∂−ϕ)

2
]

+ b3

[

− 1

16
ω4(∂−ϕ)

4 − 1

4
ω2∂3

−ϕ∂−ϕ

]

+ b5

[

− 1

32
ω6(∂−ϕ)

6 − 7

16
ω4∂3

−ϕ(∂−ϕ)
3 − 11

16
ω4(∂2

−ϕ)
2(∂−ϕ)

2 − 1

4
ω2∂5

−ϕ∂−ϕ

]

+ ....

and

a+ = b1

[

1

2

(

ω2 V −m
)

]

+ b3

[

1

4
ω2 ∂2

−ϕ
d V

dϕ
− 1

2
iω∂−ϕX

]

+ b5

[

−3

8
iω3(∂−ϕ)

3X +
5

16
ω4∂2

−ϕ(∂−ϕ)
2 d V

dϕ
− 1

2
iω∂−ϕ∂

2
−X +

1

2
iω∂2

−ϕ∂−X

− 1

2
iω∂3

−ϕX +
1

4
ω2 ∂4

−ϕ
d V

dϕ

]

+ F2X

+ F3 ∂−X

+ F4

[

1

2
ω2(∂−ϕ)

2X + ∂2
−X

]

+ F5

[

ω2(∂−ϕ)
2∂−X +

1

2
ω2∂−ϕ∂

2
−ϕX + ∂3

−X

]

+ F6

[

3

8
ω4(∂−ϕ)

4X +
3

2
ω2(∂−ϕ)

2∂2
−X +

5

2
ω2∂2

−ϕ∂−ϕ∂−X + ω2∂3
−ϕ∂−ϕX + ∂4

−X

]

+ ...
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The anomalous terms of the gauge transformation (2.7), i.e., those that do no vanish due

to the anomaly X introduced in (2.4), are given by

X g F1 g
−1 − [ a+ , a− ] =

b3
[

iω∂2
−ϕX

]

+ b5

[

3

2
iω3(∂−ϕ)

2∂2
−ϕX + iω∂4

−ϕX

]

+ F2 [−∂−X ]

+ F3

[

−∂2
−X

]

+ F4

[

−1

2
ω2(∂−ϕ)

2∂−X − ω2∂−ϕ∂
2
−ϕX − ∂3

−X

]

+ F5

[

−5

2
ω2∂−ϕ∂

2
−ϕ∂−X − ω2(∂−ϕ)

2∂2
−X − 1

2
ω2(∂2

−ϕ)
2X − 1

2
ω2∂−ϕ∂

3
−ϕX − ∂4

−X

]

+ ...

C The gauge transformation (2.28)

The first six parameters ζ−n of the gauge transformation (2.28) and (2.29) are given by

ζ−1 =
1

2
iωϕ(1,0),

ζ−2 =
1

2
iωϕ(2,0),

ζ−3 =
1

6
i
(

ω3(ϕ(1,0))3 + 3ωϕ(3,0)
)

,

ζ−4 =
1

6
i
(

4(ϕ(1,0))2ϕ(2,0)ω3 + 3ϕ(4,0)ω
)

,

ζ−5 =
1

30
i
(

3ω5(ϕ(1,0))5 + 30ω3ϕ(3,0)(ϕ(1,0))2 + 40ω3(ϕ(2,0))2ϕ(1,0) + 15ωϕ(5,0)
)

,

ζ−6 =
1

30
i
(

23(ϕ(1,0))4ϕ(2,0)ω5 + 40(ϕ(2,0))3ω3 + 145ϕ(1,0)ϕ(2,0)ϕ(3,0)ω3

+ 35(ϕ(1,0))2ϕ(4,0)ω3 + 15ϕ(6,0)ω
)

,

where ϕ(n,0) ≡ ∂n
+ϕ.

The first few components of transformed gauge potentials introduced in (2.28) are given

by

ã+ =
1

2
b1

34



+ b−1

[

−1

4
ω2(∂+ϕ)

2
]

+ b−3

[

− 1

16
ω4(∂+ϕ)

4 − 1

4
ω2∂3

+ϕ∂+ϕ

]

+ b−5

[

− 1

32
ω6(∂+ϕ)

6 − 7

16
ω4∂3

+ϕ(∂+ϕ)
3 − 11

16
ω4(∂2

+ϕ)
2(∂+ϕ)

2 − 1

4
ω2∂5

+ϕ∂+ϕ

]

+ ...

and

ã− = b−1

[

1

2

(

ω2 V −m
)

]

+ b−3

[

1

4
ω2 ∂2

+ϕ
d V

dϕ
+

1

2
iω∂+ϕX̃

]

+ b−5

[

5

16
ω4∂2

+ϕ(∂+ϕ)
2d V

dϕ
+

1

4
ω2 ∂4

+ϕ
d V

dϕ
+

3

8
iω3(∂+ϕ)

3X̃ +
1

2
iω∂+ϕ∂

2
+X̃

− 1

2
iω∂2

+ϕ∂+X̃ +
1

2
iω∂3

+ϕX̃

]

+ F−2

[

−X̃
]

+ F−3

[

−∂+X̃
]

+ F−4

[

−1

2
ω2(∂+ϕ)

2X̃ − ∂2
+X̃

]

+ F−5

[

ω2
(

−(∂+ϕ)
2
)

∂+X̃ − 1

2
ω2∂+ϕ∂

2
+ϕX̃ − ∂3

+X̃

]

+ F−6

[

−3

8
ω4(∂+ϕ)

4X̃ − 3

2
ω2(∂+ϕ)

2∂2
+X̃ − 5

2
ω2∂2

+ϕ∂+ϕ∂+X̃ − ω2∂3
+ϕ∂+ϕX̃ − ∂4

+X̃

]

+ ...

The anomalous terms of the gauge transformation (2.28), i.e., those that do no vanish due

to the anomaly X̃ introduced in (2.27), are given by

X̃ g̃ F−1 g̃
−1 − [ ã+ , ã− ] =

b−3

[

iω∂2
+ϕX̃

]

+ b−5

[

3

2
iω3(∂+ϕ)

2∂2
+ϕX̃ + iω∂4

+ϕX̃

]

+ F−2

[

−∂+X̃
]

+ F−3

[

−∂2
+X̃

]

+ F−4

[

−1

2
ω2(∂+ϕ)

2∂+X̃ − ω2∂+ϕ∂
2
+ϕX̃ − ∂3

+X̃

]
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+ F−5

[

−5

2
ω2∂+ϕ∂

2
+ϕ∂+X̃ − ω2(∂+ϕ)

2∂2
+X̃ − 1

2
ω2(∂2

+ϕ)
2X̃ − 1

2
ω2∂+ϕ∂

3
+ϕX̃ − ∂4

+X̃

]

+ ...

D The ε-expansion

V = V |ε=0 +
d V

d ε
|ε=0 ε+ . . .

= V |ε=0 +

[

∂V

∂ε
+

∂V

∂ϕ

∂ϕ

∂ε

]

ε=0

ε

+





∂2V

∂ε2
+ 2

∂2V

∂ε∂ϕ

∂ϕ

∂ε
+

∂V

∂ϕ

∂2ϕ

∂ε2
+

∂2V

∂ϕ2

(

∂ϕ

∂ε

)2




ε=0

ε2 + . . . (D.1)

Analogously, we have

∂ V

∂ ϕ
=

∂ V

∂ ϕ
|ε=0 +

[

d

d ε

(

∂ V

∂ ϕ

)]

ε=0

ε+ . . .

=
∂ V

∂ ϕ
|ε=0 +

[

∂2V

∂ε∂ϕ
+

∂2V

∂ϕ2

∂ϕ

∂ε

]

ε=0

ε

+





∂3V

∂ε2∂ϕ
+ 2

∂3V

∂ε∂ϕ2

∂ϕ

∂ε
+

∂2V

∂ϕ2

∂2ϕ

∂ε2
+

∂3V

∂ϕ3

(

∂ϕ

∂ε

)2




ε=0

ε2 + . . . (D.2)

and

∂2 V

∂ ϕ2
=

∂2 V

∂ ϕ2
|ε=0 +

[

d

d ε

(

∂2 V

∂ ϕ2

)]

ε=0

ε+ . . .

=
∂2 V

∂ ϕ2
|ε=0 +

[

∂3V

∂ε∂ϕ2
+

∂3V

∂ϕ3

∂ϕ

∂ε

]

ε=0

ε

+





∂4V

∂ε2∂ϕ2
+ 2

∂4V

∂ε∂ϕ3

∂ϕ

∂ε
+

∂3V

∂ϕ3

∂2ϕ

∂ε2
+

∂4V

∂ϕ4

(

∂ϕ

∂ε

)2




ε=0

ε2 + . . . (D.3)

Calculating we have

V |ε=0 =
1

8
sin2 (2ϕ0) =

1

16
[1− cos (4ϕ0)]

∂ V

∂ ϕ
|ε=0 =

1

4
sin (4ϕ0)

∂2 V

∂ ϕ2
|ε=0 = cos (4ϕ0)
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∂3V

∂ϕ3
|ε=0 = −4 sin (4ϕ0)

∂4V

∂ϕ4
|ε=0 = −16 cos (4ϕ0) (D.4)

and

∂ V

∂ε
|ε=0 = −1

2
sin2(ϕ0)

[

2 sin2(ϕ0) log | sin(ϕ0) | +cos2 (ϕ0)
]

(D.5)

∂2 V

∂ ϕ∂ε
|ε=0 = −1

4
sin(2ϕ0)

[

8 sin2 ϕ0 log | sin(ϕ0) | +cos(2ϕ0) + 1
]

∂3 V

∂ ϕ2∂ε
|ε=0 = −1

2
[4 (cos(2ϕ0)− cos(4ϕ0)) log | sin(ϕ0) | +cos(2ϕ0) + 1]

∂4 V

∂ ϕ3∂ε
|ε=0 = sin(2ϕ0) [−(−4 log | sin(ϕ0) | +4 cos(2ϕ0)(4 log | sin(ϕ0) | +1) + 1)]

and

∂2 V

∂ε2
|ε=0 =

1

4
tan2(ϕ0)

[

sin4(ϕ0)
(

8 log2 | sin(ϕ0) | −8 log | sin(ϕ0) | +3
)

+ sin2(ϕ0)
(

−4 log2 | sin(ϕ0) | +8 log | sinϕ0 | −6
)

+ 3
]

∂3 V

∂ϕ∂ε2
|ε=0 =

1

32
tan(ϕ0) sec

2(ϕ0)
[

24 log2 | sin(ϕ0) | +16 log | sin(ϕ0) |

+ 8 cos(6ϕ0) log
2 | sin(ϕ0) | (D.6)

+ cos(2ϕ0)
(

−40 log2 | sin(ϕ0) | +4 log | sin(ϕ0) | +23
)

+ 8 cos(4ϕ0)(log | sin(ϕ0) | −1)2 − 4 cos(6ϕ0) log | sin(ϕ0) | +cos(6ϕ0) + 16
]

∂4 V

∂ϕ2∂ε2
|ε=0 =

1

16
sec4(ϕ0)

[

44 log2 | sin(ϕ0) | +16 log | sin(ϕ0) |

+ 10 cos(6ϕ0) log
2 | sin(ϕ0) | +4 cos(8ϕ0) log

2 | sin(ϕ0) |

+ 2 cos(2ϕ0)
(

−29 log2 | sin(ϕ0) | + log | sin(ϕ0) | +6
)

− 2 cos(6ϕ0) log | sin(ϕ0) | +cos(4ϕ0)(3− 16 log | sin(ϕ0) |) + 9]
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