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To Hector, friend and colleague for fifty two years.

1. Introduction

De Sitter space is fundamental to our understanding of cluginoThis geometry is a solu-
tion to Einstein’s equations whose driving term is a cosmiclal constant; it represents the past
universe during an inflationary period and also represéetéuture of the current accelerating sce-
nario. However, quantum field theory on such a de Sitter backygl presents problems, primarily
in the choice of vacuum on which to build the thedy[[1, 2]. Tést problematic vacuum and the
one used most often is the Euclidian or Bunch-Davies vac@]ntte propagator in this vacuum
is an analytic continuation of the correlator on a sphereta®dno singularities besides the one at
coincident points. All other vacua, referred tocasacua [}], have an additional singularity in their
propagator and, as a result, have serious difficulties widiticity of scattering amplitudeg|[5] or
with unitarity [8]. Nevertheless, PolyakoY][[], 8] has ardubat the criterion for which vacuum
to use should be based on the behavior of the propagatorgat deodesic distances. Withhe
geodesic distance, the propagator for a particle of mashould vary as exp-iml) rather than
a sum of expiml) and exg—iml); the latter is the behavior in all vacua save the one advdcate
in [, B]. In this vacuum, as well as all the othervacua, the propagator has an additional “in-
frared” singularity at the antipodal point. Consequendassing such propagators for interacting
field theories are quite dramatic. I [8] it is shown that tdesg? the vacuum energy for a mas-
sive scalar field with @¢* interaction develops an imaginary part proportional togpace-time
volume. This maybe interpreted as an explosive matter ptamucanceling the the curvature of
the underlying space. By screening this curvature de Sifbermetry is broken. This would have
severe consequences for the aforementioned use of despidtee in cosmology. This picture was
confirmed in the case of a two dimensional, (1+1), spfice [#resby the use of a fermion-boson
correspondence certain interacting theories can be saxadtly. It was found that a massless
field with a sine-Gordon interaction corresponds to a fremilen one with a de Sitter time depen-
dent mass, explicitly breaking de Sitter symmetry. A subset| study [[1J0] of the conservation
of currents generating de Sitter symmetries showed thahferacting scalar field theories, due to
the aforementioned antipodal, infrared singularity, annaaly develops and these currents are not
conserved.

In the next section, Seﬂ. 2, we shall review parametrizaifate Sitter space and its isometries.
The two dimensional(1+ 1), soluble field theories are discussed in $kc. 3. This is a suynaf
[B] The general non conservation of de Sitter currents ftaracting scalar theories is discussed in
Sec[}; technical details promised [n][10] are presentee. (@omments and conclusions are made
in Sec[b

2. de Sitter Space

A D-dimensional de Sitter space, with coordinates,, - - - ,Xg, withd = D — 1, may be imbed-
ded in a flat (D+1) Minkowski space with coordinatgsYi, - - - , Yp, satisfying the constraint

YZ-Y2—. —YE=—1; (2.1)
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the Hubble parameter is set to one. The parametrization el sse is the flat slicing ong [[L1]
with conformal time where the metric of the space is

ds = dr? — &7dx - dX. (2.2)

The relation between the intrinsic de Sitter coordinatgsand the embedding onas,Y,Yp (Y
denotes a dimensional vector) are

1 1 %
Yo=2(1-2-=
0 2<T T T)’

Yi=-2 (i=1d), (2.3)

1 1 %
Yo==(-T—-=+=].
b 2<T T+T>

There is a one-to-one correspondence between the imbeddardinatesy, satisfying [2]1) and
the intrinsic de Sitter coordinatasX. With Y corresponding tx = (7,X) we shall have use of
the antipodex corresponding to the parity-time reversédnamely—Y. As mentioned in Sed] 1
some propagators have singularities when one point is icl@nt with the antipode of the other
point. We shall be interested in how the isometries of deeSikpace are implemented in the
metric of (2.2). In the embedding space these isometrie @mentz transformations involving
Yo,Y andYp and fall into four classes: (i) velocity transformationgtie; directions, (ii) velocity
transformation in th&p direction, (iii) rotations in thé&; —Y; planes, and (iv) rotations in the—Yp
planes; the infinitesimal forms of these and the correspmnttansformations for the conformal
7,X coordinates are:

OYo=¢£Yi; OYi=€Yg = OT = —€TX . OX = —£[XX; +5ij(T2—1—X-X)/2], (2.4a)
ONo=£€Yp;, OYp =¢€Yyg = OT = —€T; OX = —€X;, (2.4b)
oY = €Yj; OYj = —&Y;; = OX = &Xj; OXj = —¢&X;, (2.4c)
OYp = €Y;; O = —eYp = OT = —£T%; OXj = —£[xXj + &; (T2 +1—-%X-X)/2];. (2.4d)
For any interaction on the background de Sitter space thdstsean energy-momentum ten-
sor, ©yy; even though the explicit appearance of the coordimatpoils the conservation of

this tensor, it can be used to obtain the infinitesimal gdoeseof these transformation§, =
01O, — 30X Oy, or more specifically

s — ~1%O0 + Y (XX +8j(1°-1-%-%)/20;,, (2.52)
]
]
goh) — X Oy — %Oy, (2.5¢)
S = —1x@oy + [xixj + & (T2 +1—%-X) /2Ojy ; (2.5d)

all indices are raised and lowered by the flat space Minkowsdric .
As mentionedd,,, is not conserved, however

1090y, = 0°, (2.6)
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ensures the conservation of all the de Sitter currntsH2.54), i.e.n"’a,S;”’ = 0 As we shal
note, the field equations of motion insufe2.6); below, géx.we show that quantum corrections
violate this relation.

3. Two Dimensional Models

In this section we shall study this interacting fields in aljleiimensional de Sitter back-
ground. In flat (1+1) Minkowski space there are several atting theories that can be solved
exactly. Among these are: (i) the Thirring model|[12], (iiassless QEO[13], and (iii) spin-0 with
a sine-Gordon interactior cog2./m) . The reason these interacting field theories can be solved
is that there is a corresponden¢e [[L4, [15,[1B, 17] wheremosfiields can be written in terms of
spin-0 ones and for the cases cited above the interactingytieeexpressible as a free theory with
opposite statistics.

Such a correspondence between bosonic and fermionic fationg can be extended to a
background de Sitter space. The two interacting fermionetsodi) and (ii) above, go over to free
spin-0 theories preserving de Sitter symmetry. No indtglilf de Sitter space is indicated. The
case of bosons interacting by a sine-Gordon term, (iii) abowrresponds to a free, massive s%)in-
field theory albeit with a mass term that depends on the derSithe, thus explicitly breaking de
Sitter symmetry. A further analysis of this model shows th&0|S|0) has an infinite real part.
indicating a vacuum instability.

3.1 Lagrangians in (1+1) de Sitter Space

In this two dimensional curved space with the metic| (2. B§igpropagators and Lagrangians
are conformally related to the corresponding expressiorikai Minkowski space[[18]. For fields
these conformal transformations are

W < Qs spin 0;
Um < Yos/T  spin Y2; (3.1)
Aum & T?Aggs  spin 1

The metric tensors implied by (2.2) amgso = —g11 = T~2,0o.1 = 0 with \/—g = T2; the corre-
spondingzweibeinses, which we need for a discussion of the spinor dynamics %re:; T,el =
r,e‘l’ = e}) = 0. The connection tensdr, = 0. The action for a free, neutral, massive scalar field,

o, is
%—-L/MUA/_KdW%¢%¢ meg?) = /HHM<%¢%¢ hpdrp—me >; (3.2)

the one for a free massive spingris

S = / drdx\/—_gll— (Pe'?yadu — 20, Pyal) —mftl_lw]

= [ drdx| - (Bodow — doow — Bruow + ) - mi ] @3
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and the one for a massless vector fid|d in the gauged; =0

S = / drdxy/=g —FWFMg# vo _ / drdx— (01A0)2. (3.4)

The conformal transformation ifi (3.1) can be read of fromlLthgrangian correspondences above.
From (3.B) we note that the momentum conjugatey tis

531 i
= a0 ?‘” (3:5)
implying the equalr anticommutation relation
{Wal1.0, W (1.9) } = 18(x—y) 8. (3.6)

3.2 Fermi-bose field correspondence

The expression for fermi fields in terms of bose ones in Ré]], [q.(3.9), valid for Minkowski
space together with (3.6) tells us what modification we neemhdke in order to obtain a similar
relation valid for de Sitter space.

1/2
i (1,X) = (%) exp—iy/md, (T,X)]

(3.7)

1/2
Wo(T,X) = (%) exp—iv/md_(1,X)].

In the aboveA is an ultra violet cut-off,y = 0.577--- is the Euler-Mascheroni constant add.
depends on a free massless bose fgid y),

@ = [ dyeRorp(r.y) £ a0(r.y); (3.9

Ris a spatial cutoff and the limR — o will be taken at the end of all calculations. It is the factors
1Y/2 in front of the identities of[(3]7) that distinguish this fieion-boson correspondence from the
one in flat Minkowski space.

3.2.1 Composite Operators

Using (3.7) we obtain directly the translation of fermionssaperators into the language of
bose fields

_ A X
QY = %ycos[Zx/ﬁ/_mdyé//Rdy, o(t,y)],
(3.9)

<

By

<
I

— CTA x
: : |?ysm[2\/ﬁ/_mdyé//Rdyq0(r,y)].
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Bearing in mind the caveats expressed in R¢f] [17], it is enfant for comparing boson and
fermion Lagrangians or actions to $®& o« and obtain
— A\
PP = T—cosz\/ﬁ(p(r,x),
ny
(3.10)

— TN
: i =1—sin2 ,X) .
Pysy |nysm V/TTQ(T,X)

Again, it is the extra factors involving the conformal timehat differentiate this correspondence
from the one in flat space and it is these terms that will bearsiple for breaking de Sitter
symmetry for interacting theories.

We now turn to current operators. First we note that the Nwethirrent and axial current
obtained from|[(3]3) are

. 1
Ju = p Yy,
(3.11)
5 l T .
Iy = ?-WVuVSUJ--

This time the extra factors involving cancel and the correspondence is as in flat space.

. &
ju(t,x) = \Lﬁdevfp(r,x);

(3.12)
: 1
jp(1,%) = ﬁa“(p(r,x).
3.3 Interacting Theories — Correspondence

We shall look at a class of two dimensional theories that,na tanguage, bose or fermi,
have non-trivial interactions, while in the other language free field theories. These are: (i) the
Thirring Model, (ii) massless fermion QED and (iii) a sinex@on interaction.

3.4 Massless Thirring modek- Free massive boson

The action for a fermion with a current-current interactidhirring model, on a de Sitter space

Pyodoy — Ao Yo — Yy1o1 Y + 1P yiy) — g(Jojo - jxjx] , o (B.13)

Sthirring = /deX{%(

which, using [(3.12), is equivalent to a free mass-less boserawith the fermi field—bose field
identification [3.J7) rescaled to

= <ﬂ>l/2ex {-iﬁr/x dye’/R[dop/B + B4 ]} (3.14)
L»U172— my p - y (012 y , .

andpB = (1+g/+/m). De Sitter symmetry holds in both formulations.
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3.4.1 Massless QED
With the photon field in thé; = 0 gauge, the fermi action is

2

SoeD = /drdx[é (YYodop — Sy — Yyrov Y + 1Py ) — e joAo+ % (01A0)°| -
(3.15)

Solving the equation of motion f@k an using [3.1]2) results in a scalar field action ag irj (3.2) wit
mg = €/m. Again, the de Sitter symmetry is valid in both formulations

3.4.2 Sine-Gordon Interaction

We consider a cg8¢ interaction with a special value f@, namelyB = 2,/m.

1
Sine-Goraon— > | dTdX [ 2090 — 219910~ cos(2yTg) (3.16)

Eq. (3.ID) allows us to identify the above Wﬂ’%l of (B:3) withm; = grry/(TA\) . This explicit
1/t behavior of the fermion mass breaks de Sitter symmetry. vBale shall look at this case in
greater detalil.
In the fermionic language the action is
: i/ — 1 _ U
Sr—dep—mass deX? (L.UW)aOLIJ —yoy+ ELIJW)LIJ) - M% (3.17)

with M related to the strength of the sine-Gordon interaction. vimeium to vacuum amplitude is
(0,0ut|0,in) = exptrin(iy*d, — M /%) ; (3.18)

to evaluate the above we need the eigenvalues of the Diraatopewith a non constant mass
term y*o,, — M/T3. If @ is an eigenfunction of this operator thegy is an eigenfunction of
—yHd, — M/ 13 with the same eigenvalue and we may repldce [3.18) with

(0,0ut|0,in) = exp%trln (iy" 0y —M/T3) (—iyHay —M/T3) (3.19)

which requires us to look at the eigenvaluegigf'd, —M/13) (—iy#d, —M/1%) = 92 +M?/18+
3iyyM/T4. After rotating to Euclidian timer — itz we want to determine the reality properties of
the eigenvalue of the operator (wigh* spatial dependence and diagogst

—02 + K2~ M?/t2 £ 3iM/tE). (3.20)

Aside from the explicit imaginary terms, the real part of i®ve operator is just a one dimensional
Schrédinger equation with ar/d® attractive potential resulting in an infinite number of rtaga
eigenvalues whose logarithms have imaginary parts. Thke tre(3.18), after rotating to Euclidian
time, introduces an other factor iafesulting in an infinite sum of real contributions to the exguot

in (3-I8) and a vanishin¢d, out/0,in) amplitude.
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4. Anomalies

The discussion in the previous section is not totally satisfry for two reasons. It is limited
to (1+1) dimensions and one should be able to discover trakimg of de Sitter symmetry directly
in the boson sector, without recourse to a boson-fermioivalgunce. We shall remedy both in this
section.

Earlier we showed that the validity of ed. (2.6) determirresdonservation of currents gener-
ating de Sitter transformations. We shall examine whethartheory of an interacting scalar field,
@(1,X) governed by the action

2
S = /drddxr*D [%d“cp(pa“(p—vw) , (4.1)

this condition is satisfied when quantum loop correctiomsiracluded. Details of calculations will
be presented for the case where

P
V(@) =5 @+ e 4.2)

and then generalized to arbitrayf@). Using equations of motion obtained frofn {4.1) it is straigh
forward to show that the corresponding energy-momentuisoten

1
O = 127204 00,9— Ny [T °50a00" 9~ 1"V (g) (4.3)

does satisfy[(2]6). We shall show, however, that to ogdee regularizedone loop correction does
not satisfy this relation. This will be true for the propagatdvocated in[[7]8] as well as all other
a-vacua propagators save the Euclidian one. Explicitlypttopagator we shall use is

Din(x,%e) = C(1—7,) P24 812 (215); (4.4)

—5+iv(m)

with Y; the coordinates in the embedding space corresponding fmthex; in the de Sitter space,

zj =Y;-Y;. 2is an associated Legendre function of the second kindzamji= /m? — (D — 1)2/4;

the constan€ depends only on the dimension of the de Sitter space and$&nhio insure a correct

residue atzy» = 1, corresponding t¥; = Y,. In addition to the “ultraviolet” singularity af; =Y,

(B.4) has an “infrared", singularity @, = —1, namelyY, = —Y; or x; = X1, the point antipodal to

xq [[3)]. Itis this singularity that will be responsible for then-conservation of de Sitter currents.
To determine the conservation, or lack thereof, we shadlystie matrix element

Tuv (X Y1,Y2) = (T [Opv (X) @(y1) @(y2)]) . (4.5)

where the symbarl in the matrix element above indicates the conformal timerdered product.
To zeroth order irg we find

T (X Y1,Y2) = [127°0,Dm(X, Y1), Dm(X,Y2) + (Y1 ¢+ Y2)]
— Nuv [Tz_Dr]aBaaDm(xaY1)aBDm(X7YZ) - T_szDm(X7Y1)Dm(X7YZ)] , (4.6)
whereT is the time associated with thecoordinate. Up to terms involving equal time commu-

tators,[@oy (T,X), (T,¥;)] coming from differentiating the time orderingy, (x;y1,y2) satisfies an
equation analogous tp (.6).
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Figure 1: Lowest order loop correction B,y (X;y1,Y2).

Aside from mass renormalizations, to org@ghe correction td,, (X;y1,Y2) is given by Fig. 1,
resulting in

STy (6¥2.¥2) = g [ d°28(2+1){12 °3,Dim(x.2)0,Dim(x,2

- n—gv[T%DnaBaa Dm(X,2)dgDm(X,2) — TﬁszDm()Q 2)2]}Dm(za Y1)Dm(zY2) -
4.7)
For the de Sitter currents to be conserved we require that
A(XY1,Y2) = TNHY0u0Toy (X Y1, ¥2) — NV 8Tuv (X y1,Y2) = 0. (4.8)

The validity of
/d526(22 + 1){T27Da“aIJD(X> Z)aVD(Xv Z)TiDrnZaVD(X» Z)z]}D(Zvyl)D(Z»yZ) = Oa (49)

which follows from the equations of motion, would insufe§pAlthough this relation igormally
satisfied it involves products of functions singular, badhz = x and atz = x; thus before we
conclude anything the integral ifi_ (#.8) must be regulated.the singularity az = x is a short
distance one, the curvature of the underlying space doesamg into play and it is removed
by the usual ultraviolet renormalization. The singulartyz = x is new and requires its own
regularization.

As the residue of the pole at, = —1 in (4.4) does depend on the masg [19], the regularization
we use consists aubtractingfrom (@.7) an expression in with all propagatddg,(x,z) = (1 —
2,)~(0-2/49(0-2/2 (7)) replaced by

—34iv(m)

Du(x,2) = [cosliv(m) + (D — 2)/2) /cos(iv(M) + (D —2)/2 (1~ B) P 2/4 2 22 (z5)

(the prefactor involving the cosines makes the residugs=at-1 in D, andDy equal) and at the
end lettingM — . The substitutionm — M is performed only in the propagators and not in the
mthat appears explicitly if (4.7). The formal manipulationay now be carried out resulting in

A(Xy1,Y2) = / d°28(Z + 1)t "° (M2 — m?) D (X, 2)?Dm(z, Y1) Dim(2.2) - (4.10)

The conservation of the de Sitter currents depends on whathe 0 asM — «. To perform the
indicated integration we follow the procedure pf [8]. Welslshow that in the largev limit the
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integrand will be peaked at= x and we can replace the propagatbss(z,y;) by Dm(X,Vi). As the
resultant integral is invariant under Lorentz transfoiiora in the imbedding space, we may set
x=(0,1,0,---,0) and asDy(x,z) = Du(x-z—i€) (the dot product being taken in the imbedding
space)[(4.10) becomes 9after integrating @yer- - ,zp)

A(X,Y1,Y2) ~ M2 / d2dz(Z—Z+1) P V*Dy(z1 —ie)?Dm(Xy1)Dm(Xy2);  (4.11)

the + subscript in(--- ). denotes that further integrations are to be restricteddaegion where
the expression inside the parenthesis is positive.Zgetegration is divergent and depends on the
largezy cut-off; however, as pointed out iff [8], due to analiticititiee propagator in the lower half
plane the coefficient of this cut-off is zero. The result o$ tintegration is

—2ine(z)In(zZ2—1) D=2
A(X;,Y1,Y2) ~ M / dz { 2(1-ig(z)),/(Z-1D=3
2Z2-1)In(Z2-1) D=4
X Dwi(z1—i€)?Dim(%Y1)Dm(X:Y2) (4.12)
Relying on the analiticity of the propagators in the lowelf péane, we find that when the integra-
tion overz; extended over the whole real line the result is zero. TaKwegcut of the logarithms

and the square root ifi (4]12) to be in the intervdl < z; < 1 we obtain the result as an integration
only over the range-1 <z < 1.

L —2ime(z1) D=2
. 2
A(X,Y1,Y2) ~ M /4dzl 2(1—-ig(z)),/(1-Z D=3
2ine(z1)(Z-1) D=4
X Dm(z1 —i€)*Dm(Xy1)Dm(X;y2) - (4.13)
Using explicitly the propagator irﬂ}ADM =1-2)"02 /4Q(D 212 (z_ig) we are

iv(M)
asked to look at the largd limit of [cogiv(M) + (d —2)/2] Dy (z—i€)>. From [19] we find

cosiv(M) + (D —2)/2) 'Du(z) — \f my0-32 [ 2 (E DI ] 41
(Z2-1)3

with all Zs having a small negative imaginary part. A& —1 this limit is infinite while for all

z> —1itis zero, justifying our earlier replacementD,(z ;) of zby x. The integral of the square

of (¢.14) multiplied by the dimension dependent factorgfiii3) behaves ad —2 resulting in

NI=

A(X;,Y1,Y2) ~ Dm(X,Y1)Dm(X,Y2) , (4.15)
or, going back to egs[ (2]5g—2.5d)
uv g i) 9 . .9 2
n"9,S," (%) (rar+>qa)q>gqo®- (4.16)
This can be generalized to any interaction of scalar fielde@§4.]L),
- 7] 0\ 02
pv DIV
10,870 ~ (13- 455 ) V(9. @17)

As the propagator for the Euclidian vacuum has no antipodgusarity, these anomalies do not
apply for that case.

10
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5. Summary

Several questions remain unanswered. The technical oees ar
(i) Are these results dependent on the infrared regulavizatcheme?
(i) How do higher order corrections affect these results?

(iii) Do interacting fermions induce a similar anomaly? Tesults in [P] would indicate that the

answer is no. This is not surprising as spin-0 fields are matiegbogical in the infrared than
spin ones.

A more fundamental question is: is the propagatof]in [7] the  use in perturbative calculations
on this positive curvature space or does the result predéie serve as another nail in the coffin
of the a-vacua [b][20]?
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