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Abstract

We consider four-dimensional U(1)4 gauged supergravity, and obtain asymptotically AdS4,
non-extremal, charged, rotating black holes with one non-zero U(1) charge. The thermody-
namic quantities are computed. We obtain a generalization that includes a NUT parameter.
The general solution has a discrete symmetry involving inversion of the rotation parameter,
and has a string frame metric that admits a rank-2 Killing–Stäckel tensor.
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1 Introduction

Over the past 20 years, there has been a substantial effort to construct black hole solutions
of supergravity theories, with increasing complexity. Before the advent of the AdS/CFT cor-
respondence, such efforts were largely directed at asymptotically flat black holes of ungauged
supergravities, but have since turned to asymptotically AdS black holes of gauged supergrav-
ities. A large variety of solutions are now known, in various dimensions, carrying various
numbers of independent angular momenta and U(1) charges.

In ungauged supergravities, one can start from an uncharged solution, and then introduce
charges in an algorithmic fashion by solution generating techniques. The starting point for
these is typically the Myers–Perry solution [1], which generalizes the Kerr solution from D = 4
spacetime dimensions to higher dimensions. This results in the 4-charge Cvetič–Youm solution
in D = 4 [2, 3], the 3-charge Cvetič–Youm solution in D = 5 [4], and the 2-charge Cvetič–
Youm solution in D ≥ 6 [5]. Another starting point is the doubly rotating black ring in D = 5
[6], which has a 3-charge generalization [7]. These examples possess the maximum number of
independent angular momenta and U(1) charges.

In gauged supergravities, there is a potential in the Lagrangian that inhibits such solution
generating techniques. One must therefore resort to guesswork, aided by the other known
solutions. For supersymmetric solutions, rotation is required, which makes the guesswork
challenging. In the simplest case of Einstein gravity with a cosmological constant, the Kerr–
AdS solution in D = 4 has long been known [8, 9], and since generalized to higher dimensions
[10, 11, 12]. We now have a large catalogue of asymptotically AdS charged and rotating black
hole solutions of gauged supergravities in D = 4, 5, 6, 7; see [13, 14] for a review of these.
However, we still do not know black hole solutions of gauged supergravity in D = 4, 5, 7
with the maximum number of independent angular momenta and U(1) charges. Only in the
simpler case of U(1) gauged supergravity in D = 6 is such a programme complete [15]. The
known solutions can appear rather complicated, but a hint that more general solutions should
be amenable to guesswork is that all known solutions have string frame metrics that possess
rank-2 Killing–Stäckel tensors [14]. This suggests some underlying structure to the geometries
that is yet to be fully understood.

In the hope of taming the contents of this bestiary of solutions, in this paper we turn to
arguably the most basic, but not the simplest, example of a charged and rotating asymptoti-
cally AdS black hole solution of gauged supergravity. We work in 4 dimensions, where there
is an N = 8 gauged supergravity theory with gauge group SO(8), whose Cartan subgroup is
U(1)4. The previously discovered solutions of the theory are: static AdS black holes with 4
independent U(1) charges [16]; and rotating AdS black holes with the 4 U(1) charges pair-
wise equal [3], which includes the Kerr–Newman–AdS solution [8, 9] of the Einstein–Maxwell
system (the dyonic Kerr–Newman–AdS solution was given explicitly in [17]).

We shall write down a rotating solution for which only 1 of the 4 U(1) charges is non-
zero. We compute the thermodynamical quantities and find that there are no supersymmetric
solutions. Then, we generalize the solution to include a NUT parameter, and can perform
electric/magnetic duality. Like the uncharged solution, there is a discrete symmetry that
includes the rotation parameter being inverted through the AdS radius. We write down
a rank-2 Killing Stäckel tensor for the string frame metric, which implies separability of the
string frame Hamilton–Jacobi equation for geodesic motion and of the Klein–Gordon equation.
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2 AdS4 black hole solution

4-dimensional U(1)4 gauged supergravity is a consistent truncation of the maximal N = 8,
SO(8) gauged supergravity. It is N = 2 supergravity coupled to 3 abelian vector multiplets.
The full bosonic Lagrangian for U(1)4 gauged supergravity was given in [18]. Without axions,
which suffices for our purposes here, the truncated bosonic Lagrangian was given in [16].

We shall further truncate and consider black hole solutions with a single U(1) charge. The
bosonic fields of this truncation are a graviton, a vector and a scalar, and the Lagrangian is

L4 = R ⋆ 1− 3
2
⋆ dϕ ∧ dϕ− 1

2
e3ϕ ⋆ F(2) ∧ F(2) + 3g2(eϕ + e−ϕ) ⋆ 1, (2.1)

where F(2) = dA(1). We have used a non-canonical normalization for the scalar kinetic term

to avoid awkward
√
3 factors from appearing. The resulting field equations are

Gab =
3
2
(∇aϕ∇bϕ− 1

2
∇cϕ∇cϕ gab) +

1
2
e3ϕ(F a

cFbc − 1
4
F cdFcdgab) +

3
2
g2(eϕ + e−ϕ)gab,

∇a(e
3ϕF ab) = 0,

�ϕ− 1
4
e3ϕF abFab + g2(eϕ − e−ϕ) = 0. (2.2)

A charged and rotating black hole solution is

ds2 =
1√

Hρ2Ξ2

(
−∆θ(∆θ∆r − V 2

r a
2 sin2 θ) dt2 − 2mrc

√
1 + a2g2s2∆θa sin

2 θ 2 dt dφ

+(∆θṼ
2
r a

2 −∆r sin
2 θ)a2 sin2 θ dφ2

)
+
√
H

(
ρ2

∆r

dr2 +
ρ2

∆θ

dθ2
)
,

A(1) =
2mrs

Hρ2

(
c∆θ

dt

Ξ
− a
√

1 + a2g2s2 sin2 θ
dφ

Ξ

)
,

ϕ = 1
2
logH, (2.3)

where

∆r = r2 + a2 − 2mr + g2r2(r2 + 2ms2r + a2), ∆θ = 1− a2g2 cos2 θ, ρ2 = r2 + a2 cos2 θ,

V 2
r = (1 + g2r2)(1 + g2r2 + 2ms2rg2), Ṽ 2

r = (1 + r2/a2)(1 + r2/a2 + 2ms2r/a2),

H = 1 +
2mrs2

ρ2
, s = sinh δ, c = cosh δ, Ξ = 1− a2g2. (2.4)

The Boyer–Lindquist-type coordinates used are asymptotically static. If m = 0, then the
coordinate change

Ξr̂2 sin2 θ̂ = (r2 + a2) sin2 θ, r̂2 cos2 θ̂ = r2 cos2 θ, (2.5)

gives

ds2 = −(1 + g2r̂2) dt2 +
dr̂2

1 + g2r̂2
+ r̂2 dθ̂2 + sin2 θ̂ dφ2. (2.6)

This is simply anti-de Sitter spacetime, and we see that t and φ are canonically normalized.
The solution has 4 parameters: a mass parameter m; a rotation parameter a; a charge

parameter δ; and a gauge-coupling constant g. In the absence of rotation, with a = 0, the
solution reduces to a particular case of the 4-charge static solution [16], but with only 1 of
the 4 charges non-zero. In the absence of charge, with δ = 0, the solution reduces to the
4-dimensional Kerr–AdS metric [8, 9]. In the absence of gauging, with δ = 0, the solution
reduces to the 4-charge Cvetič–Youm solution [2, 3], but with only 1 of the 4 charges non-zero.

To find this solution, we have been helped by the structure of these limits. We have also
been helped by the structure of the black hole solution in 5-dimensional gauged supergravity
carrying a single non-zero rotation parameter and a single non-zero U(1) charge [19].
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3 Thermodynamics

The outer black hole horizon is located at the largest root of ∆r(r), say at r = r+. Its angular
velocity Ω is constant over the horizon and is obtained from the Killing vector

l =
∂

∂t
+ Ω

∂

∂φ
(3.1)

that becomes null on the horizon. The angular momentum J is given by the Komar integral

J =
1

16π

∫

S2
∞

⋆dK, (3.2)

where K is the 1-form obtained from the Killing vector ∂/∂φ. The electrostatic potential,
which is also constant over the horizon, is Φ = l · A(1)|r=r+. The conserved electric charge is

Q =
1

16π

∫

S2
∞

e3ϕ ⋆ F(2). (3.3)

The horizon area A is obtained by integrating the square root of the determinant of the
induced metric on a time slice of the horizon. The surface gravity κ, again constant over the
horizon, is given by lb∇bl

a = κla evaluated on the horizon. As usual, we take the temperature
to be T = κ/2π and the entropy to be S = A/4.

One finds that T dS + ΩdJ + ΦdQ is an exact differential, and so we may integrate the
first law of black hole mechanics,

dE = T dS + ΩdJ + ΦdQ, (3.4)

to obtain an expression for the thermodynamic mass E.
There are several other definitions of mass for asymptotically AdS spacetimes in the liter-

ature. The AMD (Ashtekar–Magnon–Das) mass is one such definition, for 4 dimensions [20]
and higher [21]. One introduces a conformally rescaled metric gab = Ω2gab, with Ω = 0 and
dΩ 6= 0 on the conformal boundary. Its Weyl tensor is Ca

bcd, and we define na = ∂aΩ. For an
asymptotic Killing vector field K, which here is K = ∂/∂t, there is an associated conserved
quantity. In 4 dimensions, the AMD mass is

E =
1

8πg3

∫

Σ

dΣaΩn
cndCa

cbdK
b, (3.5)

where dΣa is the area element of the S2 section of the conformal boundary. The AMD mass
has previously been used to compute the mass of various asymptotically AdS rotating black
holes [22, 23, 24]. For definiteness, we take Ω = 1/gr for our solution. As r → ∞, one finds
that the Weyl tensor component Ct

rtr behaves as

Ct
rtr =

m[2 + (1 + a2g2)s2]

2Ξg2r5
(2Ξ + a2g2 sin2 θ) +O

(
1

r6

)
. (3.6)

The conformal boundary has metric

ds23 = −∆θ

Ξ
dt2 +

1

g2∆θ

dθ2 +
sin2 θ

Ξg2
dφ2. (3.7)

Substituting these into (3.5), we can compute the AMD mass, and find that it agrees with
the thermodynamic mass.

4



In summary, we find the thermodynamic quantities

E =
m[2 + (1 + a2g2)s2]

2Ξ2
,

S =
π
√
(r2+ + a2)(r2+ + a2 + 2ms2r+)

Ξ
, T =

r2+ − a2 + g2r2+(3r
2
+ + a2 + 4ms2r+)

4πr+
√

(r2+ + a2)(r2+ + a2 + 2ms2r+)
,

J =

√
1 + a2g2s2cma

Ξ2
, Ω =

√
1 + a2g2s2a(1 + g2r2+)

c(r2+ + a2)
,

Q =
msc

2Ξ
, Φ =

2mscr+
r2+ + a2 + 2ms2r+

. (3.8)

Supersymmetric AdS4 black holes are known [25, 26]. In this single-charge case, the BPS
condition, up to choices of signs, is [26]

E − gJ −Q = 0. (3.9)

This leads to the relation

(2e2δ + 1)(e2δ − 1)2a2g2 + (3e2δ + 1)2 = 0, (3.10)

which has no solutions. Hence, there are no supersymmetric solutions with a single U(1)
charge.

4 NUT parameter generalization

A more general solution that includes a NUT parameter ℓ is

ds2 =
1√

H(r2 + y2)Ξ2

(
− (V 2

y R− V 2
r Y ) dt2 − 2c

√
1 + a2g2s2(mrY + ℓyR)

a
2 dt dφ

+(Ṽ 2
r Y − Ṽ 2

y R)a2 dφ2

)
+
√
H

(
r2 + y2

R
dr2 +

r2 + y2

Y
dy2
)
,

A(1) =
2mrs

H(r2 + y2)

(
c(1− g2y2)

dt

Ξ
−
√

1 + a2g2s2(a2 − y2)

a

dφ

Ξ

)

+
2ℓys

H(r2 + y2)

(
c(1 + g2r2)

dt

Ξ
−
√

1 + a2g2s2(r2 + a2)

a

dφ

Ξ

)
,

ϕ = 1
2
logH, (4.1)

where

R = r2 + a2 − 2mr + g2r2(r2 + 2ms2r + a2), Y = a2 − y2 + 2ℓy + g2y2(y2 + 2ℓs2y − a2),

V 2
r = (1 + g2r2)(1 + g2r2 + 2ms2rg2), Ṽ 2

r = (1 + r2/a2)(1 + r2/a2 + 2ms2r/a2),

V 2
y = (1− g2y2)(1− g2y2 − 2ℓs2yg2), Ṽ 2

y = (1− y2/a2)(1− y2/a2 − 2ℓs2y/a2),

H = 1 +
2(mr + ℓy)s2

r2 + y2
, s = sinh δ, c = cosh δ, Ξ = 1− a2g2. (4.2)

Without any NUT parameter, making the coordinate change y = a cos θ and renaming R(r)
as ∆r(r) recovers the AdS4 black hole (2.3).
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We have been guided towards this more general solution, from the solution without any
NUT parameter, by symmetry. In particular, if we let x = ir and replace m → −im, then
the solution is symmetric under the simultaneous interchange of ℓ and m and of x and y. We
also note that the metric determinant has a very simple expression, with

√−g =

√
H(r2 + y2)

aΞ
. (4.3)

In the absence of charge, with δ = 0, the solution reduces to the 4-dimensional Kerr–
NUT–AdS metric [8, 9]. In the absence of gauging, with δ = 0, the solution reduces to the
4-charge Cvetič–Youm solution generalized to include a NUT parameter [3], but with only 1
of the 4 charges non-zero; this 1-charge solution has also been rederived by a different method
[27].

5 Symmetries

5.1 Electric/magnetic duality

The field equations (2.2) admit the electric/magnetic duality symmetry

F(2) → e3ϕ ⋆ F(2), ϕ → −ϕ. (5.1)

We can perform this transformation on the general solution (4.1). Using the orientation
εtryφ = 1, the vector and scalar become

A(1) =
2mys

r2 + y2

(√
1 + a2g2s2(1 + g2r2)

dt

Ξ
− c(r2 + a2)

a

dφ

Ξ

)

− 2ℓrs

r2 + y2

(√
1 + a2g2s2(1− g2y2)

dt

Ξ
− c(a2 − y2)

a

dφ

Ξ

)
,

ϕ = −1
2
logH. (5.2)

As before, we recover solutions in [2, 3] for g = 0, in [16] for a = 0, and in [8, 9, 17] for δ = 0.

5.2 Inversion symmetry

The Kerr–NUT–AdS solutions [28] of Einstein gravity in arbitrary dimensions possess discrete
inversion symmetries, under which a rotation parameter ai is inverted through the AdS radius
1/g. This type of symmetry had previously been noted in 5 dimensions [29]. A metric with
over-rotation, |aig| > 1, is mapped to a metric with under-rotation, |aig| < 1, under such a
symmetry.

The inversion symmetry persists for the general solution with a single U(1) charge above,
not only for the metric, but for all fields. Under the transformation

a → 1

ag2
, r → r

ag
, y → y

ag
, m → m

a3g3
, ℓ → ℓ

a3g3
, φ → gt, gt → φ, s → ags.

(5.3)

the solution is invariant. The peculiar-looking factors of
√

1 + a2g2s2 that appear in the
solution are interchanged with c =

√
1 + s2 under the inversion transformation.
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5.3 Killing tensor

A general feature of charged and rotating supergravity black hole solutions that generalize
the Kerr or Myers–Perry solution seems to be that their string frame metrics admit rank-2
Killing–Stäckel tensors [14]. These are symmetric tensors Kab that satisfy ∇(aKbc) = 0.

Consider here the string frame metric ds̃2, which is related to the original Einstein frame
metric ds2 by ds2 =

√
H ds̃2. The inverse string frame metric is, including the NUT param-

eter,

(
∂

∂s̃

)2

= − a4

r2 + y2

(
Ṽ 2
r

R
− Ṽ 2

y

Y

)
∂2
t −

2c
√

1 + a2g2s2

(r2 + y2)

(
mr

R
+

ℓy

Y

)
2a ∂t ∂φ

+
1

(r2 + y2)

(
V 2
y

Y
− V 2

r

R

)
a2 ∂2

φ +
R

r2 + y2
∂2
r +

Y

r2 + y2
∂2
y . (5.4)

The components (r2 + y2)g̃ab are additively separable as a function of r plus a function of y.
For the string frame metric, a rank-2 Killing–Stäckel tensor is given by

K̃ = K̃ab ∂a ∂b =
a4Ṽ 2

y

Y
∂2
t −

2c
√

1 + a2g2s2ℓya

Y
2 ∂t ∂φ +

V 2
y a

2

Y
∂2
φ + Y ∂2

y − y2
(

∂

∂s̃

)2

, (5.5)

and there is a separability structure. This induces a rank-2 conformal Killing–Stäckel tensor,
with components K̃ab, for the Einstein frame metric. The Hamilton–Jacobi equation for
geodesic motion and the massive Klein–Gordon equation separate for the string frame metric,
whereas only the Hamilton–Jacobi equation for null geodesics and the massless Klein–Gordon
equation separate for the Einstein frame metric.

6 Conclusion

We have presented an asymptotically AdS rotating black hole solution of 4-dimensional U(1)4

gauged supergravity that possesses 1 non-zero U(1) charge, and studied some of its proper-
ties. It is arguably the most basic of the charged and rotating AdS black hole solutions of
gauged supergravity. Therefore, we hope that it will provide further insights into construct-
ing more general solutions with the maximum number of independent angular momenta and
U(1) charges in not only four dimensions, but also higher dimensions. Such gravitational
backgrounds would be useful for studying the AdS/CFT correspondence.
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