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Abstract. We review the relation ofV'=4 superconformal multi-particle models on the real line
to the WDVV equation and an associated linear equation forgvepotentialsf' andU. The su-
perspace treatment gives another variant of the intedfsapiibblem, which we also reformulate as
a search for closed flat Yang-Mills connections. Three- and-patrticle solutions are presented.
The covector ansatz turns the WDVV equation into an algelm@ndition, for which we give a for-
mulation in terms of partial isometries. Three ideas fossifying WDVV solutions are developed:
ortho-polytopes, hypergraphs, and matroids. Various @@srand counterexamples are displayed.
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1 Conformal quantum mechanics: Calogero system
This contribution builds on the recent progress in the @aatibn of \'=4 superconformal multi-particle
mechanics (in one space dimensian) [1]H10]. As a warm-ugintroducen+1 identical particles with

unit mass, moving on the real line, with coordinatésand momenta;, wherei = 1,2,...,n+1, and
define their dynamics by the Hamiltonidn

H = %p,-pi + Vp(zt, ...z, (1)
For the quantum theory, we impose the canonical commutatiations =1)

[, p;] = 165" . 2
Together with the dilatation and conformal boost genesator

D = —%(mipi + pizt) and K = %w’w’ , (3)
the Hamiltonian[(lL) spans the conformal algels&, 1) in 140 dimensions,

[D,H] = —iH, [H,K] = 2iD, [D,K] = iK, (4)
if and only if (x9; +2) Vs = 0, i.e. the potential is homogeneous of degre® If one further demands

permutation and translation invariance and allows only-bedy forces, one ends up with the Calogero
model,

2
VBZZWEW- 5)

1<j

1 Equivalently, it describes a single particle movingiifit! under the influence of the external potential.
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2 N=4 superconformal extension:su(1,1|2) algebra

Our goal is toAN'=4 supersymmetrize conformal multi-particle mechanics. Mast genera\/=4
extension ofso(2, 1) is the superalgebr®(2, 1; ), but here we specialize (2, 1;0) ~ su(1,1]2) »
su(2). Further, we break the outet(2) to u(1) by allowing for a central charg€. The set of generators
then gets extended [11]

(H,D,K) — (H,D,K,Quq,Sa,Jo,C) Wwith a=12 and a=1,2,3 (6)

and hermiticity propertieéQ,)! = Q® and(S,)" = 5°.
The nonvanishing (anti)commutators«f(1, 1/2) read

[D,H] = —iH [H, K] = 2iD

[D, K] = +HK [Ja, Jo] = i€apeJe

{Qq, Q%Y =2H56,° {Qa, 5P} = +2i(04), " Ju — 2D5,° — iC6,°

{S,,5°} =2K4," {Q%, S} = —2i(04) 4" Ju — 2D5s* +iC3"

[D, Qo] = —5Qa [D, Sa] = +55a

[K,Qa] = +iS, [H,S.] = —iQa %
[Ja: Qal = —5(04)," Qs [Jas Sal = =3(0a)a" 55

[D,Q%] = —5Q° [D, 5% = +55°

[K,Q%] = +iS“ [H, S = —iQ"

[Ja, Q%] = 3Q°(04) 5° [0, 5% = 35°(0a) 5" -

Torealize this algebra on tije+1)-particle state space, we must enlarge the latter by addiagsGann-
odd degrees of freedomgy’, and )’ = %T, withi = 1,...,n+1 anda = 1,2, and subject them to
canonical anticommutation relations,

(vl =0, {9 =0 and  {¢}, ) = 6,767 ®)
In the absence of a potential (subscript ‘0’), the genesaane given by the bilinears

Qoo = pi¥hy,  Qf = pi¥" and Sy, = z'Y,, S = 2P,

Hy = Ypipi, Do = —3(@'pi+pia’), Ko = La'a’, Jou = 30(0a), "0},
whereo,, denote the Pauli matrices. Surprisingly however, the fezeegators fail to obey theu(1, 1|2)

algebra, and interactions are mandatory! The minimal dedtion touches only the supercharge and the
Hamiltonian,

Qo = Qoo —1i[S0a, V], Q% = QF —i[S5,V] and H = Hy+V, (10)

keepingS =5y, S = So, D =Dy K = KQ andJ = Jy.
Being a Grassmann-even functionafy andz, the potential” may be expanded in even powers of
the fermionic variables. It turns out that we must go to foumtder for closing the algebra, i.€] [2/4, 6]

(9)

Vo= Ve(x) — Uy(@)Wh’®) + 1Fim(@) iy 9" p) (11)
where the angle brackets..) denote symmetric (or Weyl) ordering. The functioiig and Fj;;; are
totally symmetric in their indices and homogeneous of degr2in {z',...,z"*!}. For completeness,

we also give the interacting supercharge,

Qo = (pj —ia' Uj(@)) ), — 3 a' Fy(x) (v} vFo4l) . (12)
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3 The structure equations for (F, U): WDVYV, Killing, inhomogeneity
Inserting the minimal ansatz ({11) fot into thesw(1, 1|2) algebra and demanding closure, one finds that
Uij = &c‘)]U and Ejkl = &c‘)](?kalF (13)

are determined by two scalar prepotentidland F’, which are subject to so-calletructure equationf2,
41 6]1

(0;0K0pF)(0,0,0; F') — (0;010,F) (0,010, F) = 0 1'0;0;0,F = —6j, (14)
82(9]U—(828J(9kF) akU =0 s :L'ZaZU = -—C. (15)

The left equationd (14a) arld {15a) are homogeneous quadlrdti(known as the WDVV equation) [12,
13] and homogeneous linear i (a type of Killing equation). The right equatiorls {14b) aAdlf)
introduce well-defined inhomogeneities, so that the pema must be of the form

F = -2 lna+Fom and U = —C Inz + Unom (16)
with Fyom of degree—2 andUjom Of degred) in . This also shows the redundancies

U ~ U + constant and F ~ F + quadratic polynomial a7
which for F' is also apparent in the twice-integrated form[of| (14b),

('9; —2) F = -3 zlet . (18)

It is convenient to seperate the center-of-mass dynantes fhe relative particle motion, since the
two decouple in all equations. The center-of-mass motiaiready nonlinear but explicitly solved by
(d18) without homogeneous terms (the central charge isiaéyitln new relative-motion coordinates,
which again we name’ but withi = 1,2, ..., n, the configuration space is reduced®®. The Killing-
type equation[(15a) implies, as its compatibility conditithe WDVV equation[(14a) contracted with
9;U. Furthermore, the contraction ¢f{14a) with is trivially valid, thanks to[(I4b). This effectively
projects the WDVV equation ta—1 dimensions. Since its symmetry is that of the Riemann terisor
comprises as many independent equations, naq%ei(m—l)z(n—m in number. In particular[(14a) is
empty for up to three particles and a single condition forr foarticles.

The leading part of the potential is also determinchbandF@

Ve = $(QU)0U) + & (9:0;0,F)(9,0,00F) > 0, (19)
and the expressions in(|12) simplify to
xi Ejkl = —ajak(‘)lF and xi Uij = —8]-U. (20)

Therefore, finding a paifF, U') amounts to defining asu(1,1|2) invariant(n-+1)-particle model. For
more than three particles, however, this is a difficult tasid very little is known about the space of
solutions.

2 Here and later, we sometimes reinstate ease the interpretation.
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4 Superspace approach: inertial coordinates iR !

When analyzing supersymmetric systems, it is often a goea id employ superspace methods. This is
also possible for the case at hand, where the constructiamlatsical Lagrangian seems straightforward
in A'=4 superspace [14]-[18].

For each particle, we introduce a standard untwigted4 superfield

ut(t,0%,0,) = ut(t)+0(0,0) with A=1,... n+l, (21)
obeying the constrainf
DA =0=Dv* —  9[D"DJut=0 —  [D%DJut=2¢" (22)

with constantg;”, which will turn out to be the coupling parameters. The gah&f=4 superconformal
action for these fields takes the fofim

S = —[dtd*0d*0 G(n) = i [dt [Gap(u)u?i® — Gap(u) g*g® + fermiong (23)
already written in[[1], with a superpotenti&l(«) subject to the conformal invariance condition
G —Gau® = Lequt (24)

for arbitrary constants4, so that it is of the fornG = —%culnu + terms of degree one.

Generically, such sigma-model-type actions do not admitusti+particle interpretation, however,
unless the target space is flat. This requirement imposestavial condition on the target-space met-
ric Gap(u) [9],

RiemantiG 45) = 0 — GapxGX Gycpp = 0. (25)
Equivalently, there must exist so-callagbrtial coordinatesr?, with i = 1,2, ...,n+1, such that
S = [dt [L6;; @37 — VE'(x) + fermiong . (26)

The goal is, therefore, to find admissible functiond = u4(z) and compute the corresponditgand
V. The above flatness requirement leads to a specific intdigyatgindition for u4 := d;u”, namely

%(u(;p)) = ((u:)_l)iA =: wa,; = Ojwa =

-(z) (27)

which says that the transpose of the inverse Jacobian fer x is again a Jacobian for a map— .
This defines a set of functions4 (x) dual tou®(z), in the sense that their Jacobians are invefses [9],

B B A
WA U = 5A — ’wAJ"LLj = 5@'3’ . (28)

Equivalent versions of the integrability conditidn (27 48]

u[é 8]-11,3;] =0 — WA aijLi =0, (29)
fije = —waiOpu’ s totally symmetric (30)
fije = 0:0;0,F  and  fipp fym; = 0, (31)

which includes the WDVV equation fdf'. In contrast, there is no formulation purely in termd.af

*The constantg“ can be SU(2)-rotated into the constraints, so thetu” = ig® = —D-u? but [D®, Da]Ju® = 0.
4Subscripts o denote derivatives with respectdgi.e. G4 = dG/du” etc..
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Conformal invariance restricts” to be homogeneous quadraticinhencew 4 to be homogeneous
of degree zero (including logarithms!), thys;, is of degree—1. The second prepotential is also
determined by:“ (z) via

Ux) = —gwa(z) sothat C = —2'9;U = cag?, (32)
and automatically fulfills the Killing-type equation_(15d)he classical bosonic potential then reads
V§ = Lou)o,0) = ¢ gPwaws; . (33)
Finally, for the superpotentiak(u) the integrability condition becomes
U?UE;GAB = —0;j — Gap = —wa;wp; = —0awp = —0pwa , (34)
so that, up to an irrelevant-linear shift ofG,
wy = —Gy — G = —viwy, (35)
and we have
U = ¢*Ga and  fix = —%u’?u?u%GABC — Ve = —%gAgBGAB. (36)

However, knowing the superpotential does not suffice: thatiom betweenz’ and v is needed to
determinel/ (z) and F'(x). On the other hand, if a solutiafi to the WDVV equation can be found, this
problem reduces to a linear one [9]:

Wi+ fruh =0 of  way— fipwar = 0,  with  fi = 0;0;0,F . (37)
Finally, we remark again that the center-of-mass degreeeefibm can be decoupled, so that all indices
may run form 1 toz only.

5 Structural similarity to closed flat Yang-Mills connections

It is instructive to rewrite our integrability problem inrtes ofn xn-matrix-valued differential forms, in
a compact formulation closer to Yang-Mills theory. To thiglewe define

(u}) =u, (-0,0;F) :== f and (-0;0;0,Fda*) .= A = Apda®.  (38)
Since Ay, = . f and 9;0;0,F = wa,; Opu’}, we have

A=df - dA=0 and A =wuldu — dA+ANA =0, (39)
from which we learn that

0=AANA = Ld[f,df] = —du' Adu, (40)

which is nothing but the WDVV equation again. Hence, we aokilag for connectionsA which are at
the same time closed and flat. Dealing with a topologicallsiak configuration spac®™, it implies that
A is simultaneously exact and pure gauge. The exactneseadglpart of the definitiori (38), and the
pure-gauge property is what relatdswith . We remark thatd and f are symmetric matrices while

is not. Furthermore, the inhomogeneityl(14b) demandsattéatf = 1. The task is to solvé (40) fof
and foru, which then yield9F and VU = —2u~'3.



6 O. Lechtenfeld, K. Schwerdtfeger and J. Thirigen

Of course, we cannot ‘solve’ the WDVV equation by formal npadations. But even given a solu-
tion A (and hencef), it is nontrivial to construct an associated matrix fuanti.. For this, we must
integrate the linear matrix differential equatién](37),

du’ = Au', (41)
which qualifiesu as covariantly constant in the WDVV background. The fornaélison reads

ul = i & with  fO =1, fO=f and df f& =df*tV, (42)

k=0

up to right multiplication with a constant matrix. The mathimctionsf(’“) are local because

d(df ) = —dfadf® = —dfadf e = —anAafkb =9 (43)
due to the WDVV equation. Likewise, one has

faf® = fafFoY = a(f £ - ). (44)

Note that the naive guesa ' = ¢/ is wrong since[f,df] = d(f? — 25®) £ 0.
We provide two explicit examples far = 2, with the notation

==z, =y and 2?42 =t (45)

Starting from theB, solution with a radial terni [6,/9]

F = —%aj2 Inx — %y2 Iny — i(az—l—y)2 In(z+y) — %(:ﬂ—y)2 In(z—y) + %rz Inr, (46)
we have
1 /1 2_,2)z2 In £+¥ 1 (22 =z
P L e IS A ) 47)
2 In 4 In[(z?—y?) %] r? \zy y?
with (z0, +y9d,)f = 1 and, hence,
222 (ydzx O 4 1242 rdr—ydy xdy—ydx
A=ap= TV (Y Ay , (48)
ryr 0 ady (z2=y?)r zdy—ydr xdr—ydy

It is easy to check that indeed A A = 0 but [A, f] # 0. The solution to[(411) turns out to be

r [zrt r — ul = 12
u =7 4 ’ 4 = { 2 ? 2.2/,2 (49)
rt \zy* yx u® = sxy*/r
with an arbitrary non-degenerate constant mdttias may be checked by inserting it info(41).
One may also begin with a purely radial WDVV solution [9],

F = —%rzlnr — f = %(1117”2)1[ + x;—%ﬂ o3 + Hor, (50)
and find
1 2
B 2z 2y =1 u =r
w="1 <2x arctan £ —y 2y arctan £ +x> — { w? = r?arctan ¥’ (51)

For more generic weight factors in (46} is expressed in terms of hypergeometric functions [9].
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6 Three- and four-particle solutions

An alternative method for constructing solutioif§ U) attempts to find functions (z) satisfying [29).
It is successful fon+1 = 3 since the WDVV equation is empty in this case. Imposing aEonpitation
invariance, a natural choice for three homogeneous quadsahmetric functions ofz?) = (z,y, 2) is

ul = (z+y+2)?,
u’ = (z=y)? + (y=2)* + (z—x)? (52)
u’ = [(2e—y—2)(2y—z—x)(22—z—y)** h(s) ,

whereh is an (almost) arbitrary function of the ratio

_ (ry-n)eyz )y
5 = lep gt (®3)

Not surprisingly, [(BR) fulfils the integrability conditiof£9), so we are guaranteed to produce solutions.
It is straightforward to compute the Jacobian% andw, ; and proceed to the prepotentials. Writing
(g*) = (91,92, g3), the bosonic potential comes out as

2/24 hao—aa ] 3/35)2
VE?I = (:(:L(-]i-ly/-l-z)E + ﬁ [(1_28)93 + 28( (9}3_’_?5’7;}{/\)/2_) ] ((x—ly)2+(y—lz)2+(z—1x)2) (54)
g3 /24 9%—43559293+2s§259;2( SIS BRI > 4 0430) g2
(zty+z)? 324 (1+436)? (—y)? " (y—2)? ' (z—2)? 8(14+30)? (z—y)?+(y—2)*+(z—=)?

where in the second line we specialized to

z—y—2)(2y—z—x)(2z—x—y)|2/3120
Ws) =80 e b = erRuenOee g PR (55)

Puttingg3=0 for simplicity, the corresponding prepotentials are

U =~ In(arty+2) — ey In(e—y) (y—2)(z—2) — 5285 Inl(a—y)*+(y—2)+ (z—)?] , (56)

F = —§(a+y+2)° n(z+y+2) — 1 [(2—y)* In(z—y) + (y—2)* In(y—2) + (z—2)* In(z—z)]
+ 1§—665 [(2x—y—z)2 In(2z—y—2) + (2y—z—2)? In(2y—z—2) + (22—z—7)* In(2z—z—y)| (57)
+ 3 (=) (y=2)+(z—2) In[(2—y)* +(y—2)* +(z—2)] .

We recognize the roots @f, plus a radial term in the coordinate differences. The pa@ksimplifies in
two special cases:

= O

V& (g1=g3=0) is pure Calogero

0 & h=1
1/6 . cl o ; (58)
0 & h=s : Vg (91=92=0) is pure Calogero

In the full quantum potentialig = V' + %F’”F”’ , the couplingsy” receive quantum corrections.

Stepping up to four particles, i.e+1 = 4, it becomes much more difficult to construct solutions,
since the integrability condition is no longer trivial. Oattempts to take a known WDVV solution
and exploit the linear equatioris (37) fmf} have met with success only sporadically. In most cases, the
hypergeometric functiopF? turns up in the expressions. A simple permutation-symmettample uses
the A3 solution with a radial term,

F=—3(% $i)21n > al+y Z(xi_wj)2ln(mi_mj)_%(Zi<j($i_xj)2) In Zi<j(xi_$j)2> (59)

i<j
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for which we discovered [9]

ut = (stytztw)?,

u? = (2=y)? + (2-2)" + (2-w)’ + (y=2)" + (y-w)” + (2-w)?, (60)
ud = u? I(7x+yp—qz—w) and u! = u? (%),

with

p* = (z—y+z—w) + 2/ (w—2)(y—2) o
@ = (z—y—z+w) + 24/ (w—y)(z—2) and I(x) —/0 — (61)

The Jacobians and the bosonic potential are algebraic bot @alogero type. It remains a challenge to
find (u?, w3, u*) for the A3 WDVV solution without radial term,

F =1 IHZw 821‘ —27)?In(2'—27) . (62)

1<J

7 Covector ansatz for prepotential
For the rest of the presentation, we concentrate on the WDy0A&on inR",
(0010, F)(0,0,0; F') — (0;0,0,F)(0p0,0;F) = 0 with (°0; —2) F = —% ziz’ | (63)

since, together witli/ =0, its solutions already produce genuife=4 superconformal mechanics mod-
els. Leaving aside a possible radial term

Fag = —r%Inr with r? = zl(alcl)2 ) (64)

we employ the standard ‘rank-one’ or ‘covector’ ansaiz [2]

F=-3 Z (-z)? Ina-x (65)

«

containing a sefa} of covectors
a = (a,00,...,0pn) € (R"* or €i(R")” — alr) = ax = oz’ (66)
subject to the normalization

Z Qo = 5@'3’ — Z a®@a =1 (67)

which takes care of the inhomogeneity [n](64). The WDVV emumturns into an algebraic condition
on the set of covectors [19, 20, 6],

Z op (aiBj—a;Bi)(aBi—cuBy) = 0 with B =d8"qp;. (68)

‘s ol B-x

Apart from the normalizatior (67), the covectors are pridjec so we may think of them as a bunch of
rays. Let us denote their number (the cardinality{af) by p. We may assume that no two covectors
are collinear. Since an orthogonal pair of covectors doésamtribute to the double sum, two mutually
orthogonal subsets of covectors decouple id (68), and ficesfto consider indecomposable covector
sets. Inn=2 dimensions,[(67) implies_(68), but already for the lowesttrivial dimensionn=3 only
partial results are known|[2, 22,[4,(5,123] 24, 6].
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8 Partial isometry formulation of WDVV

Let us gain a geometric understanding[ofl (68). Each o%yb'(@—l) pairs(a, 3) in the double sum spans
some planer ~ aAB € A%((R™)*), but not all of these planes need be different. When we grbep t
pairs according to these plar@ﬁ;e tensor structurén A 3)®? of (@8) tells us that this equation must
hold separately for the subset of coplanar covectors p@mtato each plane,

Z a-f |ans|? —0 V. (69)

opon oz f-x

Depending on the numbaerof covectors contained in a given plamgone of three cases occurs:

case (a) = contains zero or one covector — equation trivial
case (b) = contains two covectors; ~ a A 3 — orthogonality o - 5 =0
case (c) = containsg > 2 covectors — projector condition onr:

Y a®a = Aly = AP for \;eR and P?=P; with rankPr)=2. (70)

The latter is the proper covector normalization for the ptasubsystem, which implies the (trival)
WDVV equation onr to hold. Establishing the projector conditidn {70) simn&ausly for all planes
is a nontrivial problem, since covectors usually lie in mtran one plane, which imposes conditions
linking the planes.

For a more quantitative formulation, we exprdsg (70) in teofpartial isometries. After introducing
acounting index. = 1, ..., p for the covectorda} = {aq,...,a,}, we collect their components in an
nxp matrix A. This defines a map

A:RP SR givenby A= (aq). " with AAT =1, (72)
encoding the total normalization (67). For each nontriplaher, we select alky,, € 7, s = 1,...,¢,
via

Br: RP — RY by {ag} — {aq,} (72)

and write the combination

At RTSRY by Ap = AB] = (oig,)i 0. (73)
Our projector condition then reads
AL AL = M\ Pr —  ATAL = M Qs (74)

with projectorsP, on R™ and @, on R? of rank two and multipliers\, for any nontrivial planer.
Therefore,A is a WDVV solution iff \1/4;7 is a rank-2 partial isometry (74) for each nontrivial plarie
An alternative version of (74) is

A ATA = M A, (75)
Note that4 # A_B, . Since the projectors are of rank 2, we may split over R2:

3 D,: R R?* and C,: R+ R" suchthat A, =CD, . (76)

5 A given covector may occur in different pairs, thus in diéfiet groups. Covectors are not grouped, only their pairs.
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The situation can be visualized in the following honcomrtiwediagram:

(77)

We illustrate the partial isometry formulation with the gilmst nontrivial example, which occurs at
n=3 andp=6, by providing a one-parameter family of covectdrs 3,~, o', 8’,7'}(t) via

a B Y o g 7'

L (6t -3t =3t 0 3w —3w
A=-10 3V3 —3/3t 23w V3w 3w with w=+/2-3t2. (78)

6\o o 0 2v3  2v3 23

It is easily checked thatd AT = 1. A quick analysis of linear dependence reveals that 12 ofléhe
covector pairs are grouped into 4 planes of 3 pairs eachinig&/pairs ungrouped. 3 coplanar pairs
imply 3 coplanar covectors, hence there are 4 nontriviaigdacontaining=3 covectors, namely

(@Bv),  (af9), (By), (B9, (79)
and 3 planes containing just two covectors, which are indetttbgonal,
—B8-8 =749 =0. (80)
Let us test the projector condition _(74) for two of the planes

2t —t —t 1 0 0

Aapy = (o V3t ft) = A A] =3 (o 1 o) = 3t*- Py, (81)
0 0 0 00 0
6t 3w 3w 1142 (6-3 0 0

Aapryy = 6 0 V3w V3w = AWAI = 6—§23t2 0 2-32 2w| , (82)
0 23 23 0 2w 4

where the matrices on the right are idempotent. Hence, in bases A, is proportional to a partial
isometry, with a (parameter-dependent) multipher The other two nontrivial planes work in the same

way. We have proven thdt (I78) produces a family of WDVV sol$i. This scheme naturally extends to
include imaginary covectors as well.

9 Deformed root systems and polytopes

It is known for some time [19, 20] that the st of positive roots of any simple Lie algebra (in fact, of
any Coxeter system) is a good choice for the covectors. S letke

{a} = of = @E‘ U @;‘ with aLrop =2 and asasg=1 or% . (83)

where the subscripts ‘L’ and ‘S’ pertain to long and shorttspaespectively. Having fixed the root
lengths, we must introduce scaling factofg,} = {f., fs} In

F = —3 (fLZ + fsz ) (-)? In || . (84)

acd acdd
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The normalization conditio_(67) has a one-parameter isolut

= L + (h—nV
(fLZ +fsz>oz®a =1 — { in: :Lvigh—rhzjt with t € R, (85)

acdt acdd

whereh and " are the Coxeter and dual Coxeter numbers of the Lie algebsagctively. The roots
define a family of over-complete partitions of unity. Amagly) all simple Lie-algebra root systems
obey [69), and they do so separately for the pairs of longsrdot the pairs of short roots and for the
mixed pairs, of any plane. This leads to the freedont)(to rescale the short versus the long roots
and provides a one-parameter family of solutions to the WDA¢Gdation [[21l]. The=0 solution was
discovered first [19, 20]. (In the simply-laced case themniy one solution, of course.)

For illustration we give two examples. Lét;} be an orthonormal basis R**!. For

Ay @A {o} = {e—¢, >0 | 1<i<j<n+tl} we find

Faen = 23 @2/ (@ —27) — 22 (32" (Y ,a")
1<j

(86)

with center-of-mass decoupling, while for the non-simjalged casén=2, p=6) without center of mass

Gy: {a} = { Hlei—ej), sleitej~2er) | (i,j,k) cyclic}  onegets
(87)
Fg, = 352 (21 —2?)?In(2'—2?) — S8 (2! +2°—22°)? In(22' —2?—2%) + cyclic.

A natural question is whether one can deform the Lie algebrat systems by changing the angles
between covectors but kedp [69) valid. So which deformati@spect the WDVV equation? Based
on a few examples, we conjecture that the (suitably resaaeldranslated) covectors should form the
edges of some polytope R™. Non-concurrent pairs of edges then have no reason to baraplith
other edges, thus better be orthogonal. Concurrent edgg paithe other hand, always belong to some
polytope face, hence automatically combine with furtheplanar edges to a nontrivial plane The
hope is that the polytope’s incidence relations take catbe¥WDVYV equation, e.g. in the form df (I74).
Forp > %n(m-l), there is enough scaling freedom to finally arrange the nlizaten (67) with{f,}.

This expectation is actually bourne out in the case ofAh@oot system, which,
with p = n(n+1), is in fact the minimal irreducible system in each dimension
and uniquely fixeq f, }. Starting with an arbitrary bunch (%fn(n+1) rays inR",
we reduce the freedom in their directions by imposing firfitlyn-simplex inci-
dence relations and secondly the orthogonality conditfonskew edges. Let us
do some counting of moduli (minus global translations, tiots and scaling):

ray moduli incidences simplex moduli orthogonality  finaldadi
# n?(n—1) —3(n-2)(n®-1) F(n—-1)(n+2) —1(n—2)(n+1) n
n=2,3,4 2,9, 24 0,—4,-15 2,5,9 0,—-2,-5 2,3, 4

We find that the moduli spack1(A,,) of these so-calledrthocentricn-simplices ist just:-dimensional.
It can be shown [25] that indeed it fits perfectly to a familyWDVV solutions found earlier [22, 23,
24], lending support to our polytope idea. We remark thatpiteious exampld (78) represents a one-
parameter subset ifvf(As).

Let us make this observation more explicit in the casevefl. Using the recursive construction
of orthocentricn-simplices presented inl[6] for=4 and computing the corresponding scaling factors
is feasible but algebraically involved. Therefore, we jpstsent a ‘nice’ one-parameter subfamily of
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solutions, witht € R andw? = ¢? — 1,

wv2 0 YV2 -9V2 -9V2 5V2 O 5v2 —gv2 0 0
AL 0 EE BE BVE 5VE V6 Ve Ve e 0 |
20 BB o0 BV 0 BB LB VB VB 4B
0 0 0 0 0 0 t t t t

Fort2:§ we have the root system ofy, att2:% the first six covectors disappear and leale When
0<t?< %, the first six covectors are imaginary, and in the singuaitlt>—0 we obtain theds roots
and fundamental weights, but can no longer maintain our abzation.

A more familiar parametrization embeds tHg root system intdR®, in the hyperplane orthogonal to
the center-of-mass covectdr, e;, with s € Ry andu? = 20s*—10s+1,

u 0 w 0 wuw O 1-s —S —s —s
—u 0 0 uwu 0 wu —s 1-s —s —s
1
A= ———— 10 v —u 0 0 —u -8 -5 1-s -8 . 89
(1—4s)v/5 (89)
0O v 0 —u —u O -5 —S —s 1-s

0o 0 0 0 0 O 4s—1 4s—1 4s—1 4s—1

Now s=0 yields the roots ofd,, beyonds = i(l—%) the first six covectors turn imaginary, and the

singular limits—+ (u—1) gives thed; roots and fundamental weights, orthogonal alsd }oe; — 5es.
This pattern generalizes to an interpolation betweendheoots and thed,,_; roots and fundamental
weights.

What about deformations of other root or weight systems? Métgvo more
prominent examples in=3 dimensions. First, consider thpe=9 positive roots of
B3 and observe that, from four copies of them, we can asseméledbes of a
truncated cube. It is possible to deform the latter into adated cuboid while
keeping the orthogonalities and producing a six-paranfateily of covectors,

{a'x} = {dlxl, doa?, dsx®; 63(62£E1:|261332), 61(63x2:|:02:173), 62(01x3:|:03x1)}, ci,d; € R. (90)

The normalization) _ , f, a®a = 1 can be achieved with

2

2,.2_2_ 2 2_ 2,2 2 2 2, .2
_ Jegtei—es—c3  cg—citeg—cy  cg—ci—cstey 1 1 1 2 _ 2,.2,.2, 2
{fa} - { 012 d2 ) 2 d2 ) 012 d2 ) o2 c% ) o2 c% ) o2 C% 9 ¢ = CO+Cl+C2+C3 . (91)

One sees that the relevant combinatighg, o depend only the three ratlés It turns out that we have
constructed a three-dimensional moduli space of WDVV smhst[22) 23] 24]

Second, again usings, it is possible to combine four copies of its three pos-
itive vector weights with six copies of its four positive spr weights to the edge
set of a rhombic dodecahedron, with each rhombic face bdagsgcted into two
triangles. There exists a three-parameter family of defbions in line with the
orthogonalities, given by

QT = dlxla Bx = d2x27 VT = d31’3; a+§+ﬁ/ ) a_g_w ) —a+25—~/ ) _a_26+7 ) (92)

and re-normalization is achieved by
—d2+d2+d2 d2 —d3+d2 d2+d2—d2
fo="5F. fa="gg" . L= fena= g, & =dtd+di. (93)
In this case, the combinationg’f, o depend only on the ratio#, and we again discover a two-
J

dimensional family of WDVV solutions [23, 24]. It seems tlradeed the polytope’s incidence relations
imply the WDVV equation, thus allowing us to construct saos F' purely geometrically, by guessing
appropriate polytopes with certain edge multiplicities.
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10 Hypergraphs

Sadly, our ortho-polytope concept fails, as may be seen fherfirst counterexample &t, p) = (3, 10):

1 2 3 4 5 6 7T & 9 10
L (23 23 2v2 0 V2 V2 V6 V6 0 0
A= — |22 —2v2 0 4 V3 V3 -1 -1 -6 V2 (94)
4v3 ( 0 0 0 0 V3 V3 3 3 & 3\&)

is properly normalizedd AT = 15, and may be checked to
fulfil the partial-isometry condition$ (74) for each nowitai
plane. It turns out, however, that there exists no polyhedro
whose edges are built from (suitably rescaled copies of) all
ten column vectors in (94). In the attempt shown to the
left, one of the would-be edges (labelled ‘9’) ruinsidethe
convex hull created by the others.

This lesson demonstrates that it may be better to restrisetues to the essential featureAyfwhich
is the coplanarity property of its columas Even though there is not always an ortho-polytope, we may
still hope that each x p matrix A with

AAT =1, and g(aghap) =2 = agz-ap=0 Ya,b=1,...,p (95)
already obeys the crucial conditiolis74) for@h2 planes.

Suppose we have: nontrivial planes and label them py= 1,...,m. Theg,>2 covectors in the
planer, are grouped in the subsft,,. } C {a,}, withs = 1,...,q,. A shorter way of encoding this
coplanarity information is by using only thabelsrather than denoting the covectors. Thus, we combine
the a4 for each nontrivial planer, in the subsefat|s=1,...,q,} =: II, C {1,...,p}, and then

write down the collectiorff (A) := {11y, Iy, ..., II,,} € P({1,...,p}) of these (overlapping) subsets.
Such subset collections are known sismple hypergraphg26]. They
are graphically represented by writing a vertex for eachectr la-
bel and then, for eaclu, by connecting all vertices whose labels oc-
cur inII,. The resulting graph hag vertices andm connectionsll,,,
called hyperedges Note that a vertex represents a covector, and a
hyperedge stands for a (nontrivial) plane, thus gaining me dimen-
sion in drawing.@ As an example, the hypergraph fdr _{(94) reads
{{1234}{1580}{2670}{179}{289}{356}{378}{457}{468}{490}} and is
represented on the left (with)’="10"). To the mathematically inclined
reader, we note that our simple hypergraphs are not of thé geogral kind: they are also

e linear: the intersection of two hyperedges has at most one vertegueness of planes)

e irreducible the hypergraph is connected (the covector set does notmEEe)

e complete when adding the trivialg,=2) planes, each vertex pair is contained in some hyperedge

e orthogonal a nonconnected vertex pair is ‘orthogonal’ (property @&dh=2 planes)
Of course, two hypergraphs related by a permutation of $abed equivalent. Thus, our program is
to construct, for a given value @f, all orthogonal complete irreducible linear simple hypapihs and
check the partial-isometry conditioris {74) for each plan&nfortunately, this is not so easy, because the
orthogonality is not a natural hypergraph property but degeon the dimension of a possible covector
realization. In fact, it is not guaranteed that such a ratbn exists at all. Therefore, the classification
of complete irreducible linear simple hypergraphs withertices has to be amended by the construction
of the corresponding covector setsRft, subject to the orthogonality condition.

® Our simple hypergraphs contain orjy-vertex hyperedges wit}, > 2, hence no one- or two-vertex hyperedges.
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11 Matroids

Luckily, there is another mathematical concept which alatly captures the linear dependence in a sub-
set of a power set, namely the notion ahatroid[27,[28, 29]. There exist several equivalent definitions
of a matroid, for example as the collecti¢a’, } of all circuits C,, C {1,...,p}, which are the minimal

dependent subsets of our ground &kt . . , p}:
e The empty set is not a circuit.

e No circuit is contained in another circuit.

o If C1 # Cy share an elememt then(C; U C2)\{e} is or contains another circuit.
Of course, we identify matroids related by permutationshefground set.

The idea is that each circuit corresponds to a subset ofrlindapendent covectors. Indeed, every
nxp matrix A produces a matroid. However, the converse is false: noyevetroid is representable
in someR". If so, it is called anR-vector matroid, with rankr < n. The rankr, = |C,| — 1 of an
individual circuitC), is the dimension of the vector space spanned by its covedmduding one- and
two-element circuits qualifies our matroids @isiple It may happen that two rank-circuits span the
same vector space, for example if they agreé @fi their elements. Hence, it is useful to unite all rahk-
circuits spanning the sanadedimensional subspace in a so-caltetlat F;, with 2 < d < r. We call such
ad-flat minimalif it arises from a single circuit, i.dF,;| = d+1. In this way, we may label the matroid
more efficiently by listing all 2-flats, 3-flats etc., all theaywup tor—1. Needless to say, we are only
interested irconnectedmatroids, i.e. those which do not decompose as a direct suso, for a given
dimensionn we study onlyR-vector matroids of rank=n and ignore those of smaller rank, since they
can already be represented in a smaller vector space. ¥inalneed to implement the orthogonality
property. So let us call a matromthogonal if any pair of covectors which does not share a 2-flat is
orthogonal. Note that further orthogonalities (inside&) may be enforced by the representation.

A matroid of rankr can be represented geometricallyRfi—! as follows. Mark a node for every
element of the ground set (the covectors). Then, connectlmeall covectors in one 2-flat, for all
2-flats. Next, draw a two-surface containing all covectoreme 3-flat, for all 3-flats, and so on. We
illustrate this method on two examples, the and theB3; matroid:

12

The A, case has=4, and itis natural to label the ten covectors by péiys, with 1 < i < j < 5. Then,

{Cu} = {H{(@5) (k) (5k) }, {(25) (k) (GO (RO}, { (i) (20) (k) (kO) }, { (k) (i€) (k) (70) },
(W)@ a0y with (5) = (ij) or (j4)
lists ten circuits of rank 2, fifteen circuits of rank 3 and tveecircuits of rank 4. The former represent
ten 2-flats, the middle unite in triples to five 3-flats and tiéer combine to the trivial 4-flat,

{Fo} = {@) k) (GR)}
{F3} = {{(@) (k) (@0) (GF) (G0) (KO)}} (97)
{Fa} = {{(12)(13)(14)(15)(23)(24)(25)(34)(35)(45) } } -

(96)
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Orthogonality is required between pairs with fully distitabels. TheB3 example is of rank three but
less symmetric. We label the three short roots bpd the six long ones byandi, with i = 1,2, 3, and
obtain sixteen rank-2 circuits grouping into seven 2-flaig #nirty-nine rank-3 circuits combining into
the unique 3-flati(#£ j # k # 1),
{Cy} = {{igk} {ik}. {ij7}, {igkY, (ijk}, ©8)
{ijagh igagy, {ijagh {iaigh, {iadjy, {iagk}, {iagh}, {iijk}, {ij}} |

{B)={{1,2,3,3},{1.3,2,2},{2,3,1,1}, {1,2,3}, {1, 2,3}, {1.2.3},{1.2.3}} , (99)

Here, we see that_L z andi L 7, but the realization ifiR? actually enforces L j as well.

The task then is to classify all connected simple orthog&aéctor matroids for given data, p).
There are tables in the literature which, however, do na&csdbr orthogonality. Another disadvantage
is the fact that matroids capture linear dependencies ofatov subsets at any rank up tp while
the WDVV equation sees only coplanarities. Therefore, gnsugh to write down only the 2-flats,
which brings us back to the complete irreducible linear $infyypergraphs again. Still, the advantage
of matroids over hypergraphs is that they provide a natettihg for the orthogonality property and the
partial-isometry condition (74). Once we have constru@qmhrametric representation of Bavector
matroid as a family of.xp matricesA, we may implement the orthogonalities and directly tes) (74
for all nontrivial planesr. A good matroidis one which passes the test and thus yields a (family of)
solution(s) to the WDVV equation.

Another bonus is the possibility to reduce a good matroiddimaller good one by graphical methods.
The two fundamental operations on a matrdidare the deletion and the contraction of an elemeat
{1,...,p} (corresponding to a covector). In the geometrical repitasien these look as follows.

e deletionof a, denotedM\{a}: remove the node and all miminald-flats it is part of

e contractionof a, denotedM /{a}: remove the node and identify all nodes on a line witta
then remove the loops and identify the multiple lines create

Both operations reduce by one. Deletion keeps the rank while contraction lowersyibhe. On the
matrix A, the former means removing the columaricorresponding to the covectat,) while the latter
in addition projects orthogonal t@,. Connectedness has to be rechecked after deletion, bulicimp
ity and theRR-vector property are hereditary for both actions! Furthamn contraction preserves the
orthogonality, but deletion may produce a non-orthogonadraid. Since the contraction of a good ma-
troid corresponds precisely to the restrictionvesystems introduced by [23, 24], we are confident that
it generates another good matroid. A similar statementshimidthe multiple deletion which produces a
Vv-subsystem in the language bf [23] 24].

The first nontrivial dimension id=r=3, where simple matroids (determined p¥> }) are identical
with complete linear simple hypergraphs (given{dy,}). Their number grows rapidly with the cardi-
nality p:

numberp of covectors 2 3 45 6 7 8 9 10 11 12
how many simple matroids?| 0 1 2 4 9 23 68 383 5249 232928 28872972
of the above areconnected |0 O O 1 3 12 41 307 4844 227612 28639649
of the above ar&®-vector 0 001 3 11 38 *? ? ? ?
of the above are orthogonal [0 0 0 0 1 1 1 1 3 ? ?

Below, we list all good ') and a few bad{) cases up tp=10, with graphical/geometric representation
and name. Parametesst, v indicate continuous moduli.
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({123}, {145}} ._/; A3\{6} R-vector but not orthogona
({123}, {1456)} .Z:.ﬂ B3\ {4, 5,9} R-vector but not orthogona
({123}, {145}, {356)} & D(2,1;a)\{7} R-vector but not orthogona
{{123}, {145}, {356}, {246}} &:@ As(s,t,u) v
({123}, {145}, {356}, {347}, {257}, {167}} & 6@40f A3 = D(2,1;0)(s,1) v
{{123}, {145}, {3561}, {347}, {257}, {167}, {246}} ﬁ. Fano matroid — naR-vector 4
({123}, {145}, {356}, {347}, {257}, {248}, {1678}} éé. Bs\{9}(s,1) v
{{123}, {145}, {347}, {257}, {2489}, {1678}, {3569} } ﬁ Bs(s,t,u) v
{{150}{167}{259}{268}{456} {479} {480} {1234} {3578}{3690}} 4{ > C AB(1,3)(t) v
{{179}{289} {356} {378} {457} {468} {490} {1234} {1580}{2670}} [/ C AB(1,3)(t) v

We have developed a Mathematica program which automatigetherates all hypergraphs subject
to the simplicity, linearity, completeness and irreduifpiproperties up to a givem. Furthermore,
hypergraphs that admit no orthogonal covector realizatimnruled out, thereby drastically reducing
their number. For a generated hypergraph we then gradusilly & parametrization of the most general
admissible set of covectors whereby it turns out whethehtipergraph is representable. A major step
forward would be to completely automate this process algoare confident that this is feasible. Finally,
on the surviving familiesi(s, t, .. .) of covector sets, the program tests the partial-isometpenty (74)
equivalent to the WDVV equation, for all nontrivial planes

A natural conjecture is that our class of hypergraphs or
matroids always produces WDVV solutions, rendering this
final test obsolete. However, running the program for a
while reveals a counterexample (at,p) = (3,10), given
by the hypergraph to the right. In this diagram, the hol-
low nodes indicate additional orthogonality inside a plane
spanned by four covectors. We must conclude that a ge
metric construction of WDVV solutions is still missing.

12 Summary

We begin by listing the main points of this article:

e N'=4 superconformah-particle mechanics if=1 is governed by/ and F’

e U andF are subject to inhomogeneity, Killing-type and WDVV coralits

a geometric interpretation via flat superpotentials gave variants of the integrability conditions
there is a structural similarity to flat and exact Yang-Mdtmnections

the general 3-particle system is constructed and feathiree touplings and one free function
higher-particle systems exist but are tedious to consthygtergeometric functions appear

the covector ansatz fdr leads to partial isometry conditions with multipliexs
finite Coxeter root systems and certain deformations ttigtield WDVV solutions
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e certain solution families admit an ortho-polytope intetation

e hypergraphs and matroids are suitable concepts for afitasigin of WDVV solutions
e the generation of candidates can be computer programmed

e not all connected simple orthogori@tvector matroids are ‘good’

There remain a lot of open questions. First, can our hypphgnaatroid construction program detect new
WDVYV solutions not already in the list of [23, 24]? Secondyegi a ‘good’ matroid, can we generate
its moduli space, e.g. by linearizing the WDVV equation awit? Third, the explicit Hamiltonian of
the A'=4 four-particle Calogero system is still unknown. Fourthy cae construct: as a path-ordered
exponential ofd f in a practical way? Fifth, what happens if we allow for twistguperfields in the
superspace approach? We hope to come back to some of theseirsshe future.
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