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Abstract. We review the relation ofN=4 superconformal multi-particle models on the real line
to the WDVV equation and an associated linear equation for two prepotentials,F andU . The su-
perspace treatment gives another variant of the integrability problem, which we also reformulate as
a search for closed flat Yang-Mills connections. Three- and four-particle solutions are presented.
The covector ansatz turns the WDVV equation into an algebraic condition, for which we give a for-
mulation in terms of partial isometries. Three ideas for classifying WDVV solutions are developed:
ortho-polytopes, hypergraphs, and matroids. Various examples and counterexamples are displayed.
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1 Conformal quantum mechanics: Calogero system

This contribution builds on the recent progress in the construction ofN=4 superconformal multi-particle
mechanics (in one space dimension) [1]–[10]. As a warm-up, we introducen+1 identical particles with
unit mass, moving on the real line, with coordinatesxi and momentapi, wherei = 1, 2, . . . , n+1, and
define their dynamics by the Hamiltonian1

H = 1
2pipi + VB(x

1, . . . , xn+1) . (1)

For the quantum theory, we impose the canonical commutationrelations (~=1)

[xi, pj] = iδj
i . (2)

Together with the dilatation and conformal boost generators

D = −1
4(x

ipi + pix
i) and K = 1

2x
ixi , (3)

the Hamiltonian (1) spans the conformal algebraso(2, 1) in 1+0 dimensions,

[D,H] = −iH , [H,K] = 2iD , [D,K] = iK , (4)

if and only if (xi∂i +2)VB = 0, i.e. the potential is homogeneous of degree−2. If one further demands
permutation and translation invariance and allows only two-body forces, one ends up with the Calogero
model,

VB =
∑

i<j

g2

(xi−xj)2
. (5)

1 Equivalently, it describes a single particle moving inR
n+1 under the influence of the external potentialVB .

http://arxiv.org/abs/1011.2207v1
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2 N=4 superconformal extension:su(1, 1|2) algebra

Our goal is toN=4 supersymmetrize conformal multi-particle mechanics. Themost generalN=4
extension ofso(2, 1) is the superalgebraD(2, 1;α), but here we specialize toD(2, 1; 0) ≃ su(1, 1|2) B
su(2). Further, we break the outersu(2) tou(1) by allowing for a central chargeC. The set of generators
then gets extended [11]

(H,D,K) → (H,D,K,Qα, Sα, Ja, C) with α = 1, 2 and a = 1, 2, 3 (6)

and hermiticity properties(Qα)
† = Q̄α and(Sα)

† = S̄α.
The nonvanishing (anti)commutators ofsu(1, 1|2) read

[D,H] = − iH [H,K] = 2iD

[D,K] = +iK [Ja, Jb] = iǫabcJc

{Qα, Q̄
β} = 2Hδα

β {Qα, S̄
β} = +2i(σa)α

βJa − 2Dδα
β − iCδα

β

{Sα, S̄β} = 2Kδα
β {Q̄α, Sβ} = − 2i(σa)β

αJa − 2Dδβ
α + iCδβ

α

[D,Qα] = − i
2Qα [D,Sα] = + i

2Sα

[K,Qα] = +iSα [H,Sα] = −iQα

[Ja, Qα] = −1
2(σa)α

βQβ [Ja, Sα] = −1
2(σa)α

βSβ

[D, Q̄α] = − i
2Q̄

α [D, S̄α] = + i
2 S̄

α

[K, Q̄α] = +iS̄α [H, S̄α] = −iQ̄α

[Ja, Q̄
α] = 1

2Q̄
β(σa)β

α [Ja, S̄
α] = 1

2 S̄
β(σa)β

α .

(7)

To realize this algebra on the(n+1)-particle state space, we must enlarge the latter by adding Grassmann-

odd degrees of freedom,ψi
α andψ̄iα = ψi

α
†
, with i = 1, . . . , n+1 andα = 1, 2, and subject them to

canonical anticommutation relations,

{ψi
α, ψ

j
β} = 0 , {ψ̄iα, ψ̄jβ} = 0 and {ψi

α, ψ̄
jβ} = δα

βδij . (8)

In the absence of a potential (subscript ‘0’), the generators are given by the bilinears

Q0α = piψ
i
α , Q̄α

0 = piψ̄
iα and S0α = xiψi

α , S̄α
0 = xiψ̄iα ,

H0 = 1
2pipi , D0 = −1

4(x
ipi + pix

i) , K0 = 1
2x

ixi , J0a = 1
2 ψ̄

iα(σa)α
βψi

β ,
(9)

whereσa denote the Pauli matrices. Surprisingly however, the free generators fail to obey thesu(1, 1|2)
algebra, and interactions are mandatory! The minimal deformation touches only the supercharge and the
Hamiltonian,

Qα = Q0α − i [S0α, V ] , Q̄α = Q̄α
0 − i [S̄α

0 , V ] and H = H0 + V , (10)

keepingS = S0, S̄ = S̄0,D = D0,K = K0 andJ = J0.
Being a Grassmann-even function ofψ, ψ̄ andx, the potentialV may be expanded in even powers of

the fermionic variables. It turns out that we must go to fourth order for closing the algebra, i.e. [2, 4, 6]

V = VB(x) − Uij(x)〈ψi
αψ̄

jα〉 + 1
4Fijkl(x)〈ψi

αψ
jαψ̄kβψ̄l

β〉 , (11)

where the angle brackets〈. . .〉 denote symmetric (or Weyl) ordering. The functionsUij andFijkl are
totally symmetric in their indices and homogeneous of degree−2 in {x1, . . . , xn+1}. For completeness,
we also give the interacting supercharge,

Qα =
(

pj − ixi Uij(x)
)

ψj
α − i

2 x
i Fijkl(x) 〈ψj

β ψ
kβψ̄l

α〉 . (12)
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3 The structure equations for(F, U): WDVV, Killing, inhomogeneity

Inserting the minimal ansatz (11) forV into thesu(1, 1|2) algebra and demanding closure, one finds that

Uij = ∂i∂jU and Fijkl = ∂i∂j∂k∂lF (13)

are determined by two scalar prepotentialsU andF , which are subject to so-calledstructure equations[2,
4, 6],

(∂i∂k∂pF )(∂p∂l∂jF )− (∂i∂l∂pF )(∂p∂k∂jF ) = 0 , xi∂i∂j∂kF = −δjk , (14)

∂i∂jU − (∂i∂j∂kF ) ∂kU = 0 , xi∂iU = −C . (15)

The left equations (14a) and (15a) are homogeneous quadratic inF (known as the WDVV equation) [12,
13] and homogeneous linear inU (a type of Killing equation). The right equations (14b) and (15b)
introduce well-defined inhomogeneities, so that the prepotential must be of the form

F = −1
2x

2 lnx+ Fhom and U = −C lnx+ Uhom (16)

with Fhom of degree−2 andUhom of degree0 in x. This also shows the redundancies

U ≃ U + constant and F ≃ F + quadratic polynomial, (17)

which forF is also apparent in the twice-integrated form of (14b),

(xi∂i − 2)F = −1
2 x

ixi . (18)

It is convenient to seperate the center-of-mass dynamics from the relative particle motion, since the
two decouple in all equations. The center-of-mass motion isalready nonlinear but explicitly solved by
(16) without homogeneous terms (the central charge is additive). In new relative-motion coordinates,
which again we namexi but with i = 1, 2, . . . , n, the configuration space is reduced toR

n. The Killing-
type equation (15a) implies, as its compatibility condition, the WDVV equation (14a) contracted with
∂jU . Furthermore, the contraction of (14a) withxi is trivially valid, thanks to (14b). This effectively
projects the WDVV equation ton−1 dimensions. Since its symmetry is that of the Riemann tensor, it
comprises as many independent equations, namely1

12n(n−1)2(n−2) in number. In particular, (14a) is
empty for up to three particles and a single condition for four particles.

The leading part of the potential is also determined byU andF ,2

VB = 1
2 (∂iU)(∂iU) + ~

2

8 (∂i∂j∂kF )(∂i∂j∂kF ) > 0 , (19)

and the expressions in (12) simplify to

xi Fijkl = −∂j∂k∂lF and xi Uij = −∂jU . (20)

Therefore, finding a pair(F,U) amounts to defining ansu(1, 1|2) invariant(n+1)-particle model. For
more than three particles, however, this is a difficult task,and very little is known about the space of
solutions.

2 Here and later, we sometimes reinstate~ to ease the interpretation.
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4 Superspace approach: inertial coordinates inRn+1

When analyzing supersymmetric systems, it is often a good idea to employ superspace methods. This is
also possible for the case at hand, where the construction ofa classical Lagrangian seems straightforward
in N=4 superspace [14]–[18].

For each particle, we introduce a standard untwistedN=4 superfielduA(t, θa, θ̄a) = uA(t) +O(θ, θ̄) with A = 1, . . . , n+1 , (21)

obeying the constraints3

D2uA = 0 = D
2uA −→ ∂t [D

a,Da]uA = 0 −→ [Da,Da]uA = 2 gA (22)

with constantsgA, which will turn out to be the coupling parameters. The generalN=4 superconformal
action for these fields takes the form4

S = −∫dt d2θ d2θ̄ G(u) = 1
2 ∫dt

[

GAB(u) u̇
Au̇B −GAB(u) g

AgB + fermions
]

(23)

already written in [1], with a superpotentialG(u) subject to the conformal invariance condition

G−GAu
A = 1

2cAu
A (24)

for arbitrary constantscA, so that it is of the formG = −1
2c u ln u+ terms of degree one.

Generically, such sigma-model-type actions do not admit a multi-particle interpretation, however,
unless the target space is flat. This requirement imposes a nontrivial condition on the target-space met-
ric GAB(u) [9],

Riemann(GAB) = 0 ←→ GA[BXG
XYGY C]D = 0 . (25)

Equivalently, there must exist so-calledinertial coordinatesxi, with i = 1, 2, . . . , n+1, such that

S = ∫dt
[

1
2δij ẋ

iẋj − V cl
B (x) + fermions

]

. (26)

The goal is, therefore, to find admissible functionsuA = uA(x) and compute the correspondingG and
V cl

B . The above flatness requirement leads to a specific integrability condition for uAi := ∂iu
A, namely

∂xi

∂uA
(

u(x)
)

≡
(

(u••)
−1
)i

A
=: wA,i

!
= ∂iwA ≡

∂wA

∂xi
(x) , (27)

which says that the transpose of the inverse Jacobian foru → x is again a Jacobian for a mapw → x.
This defines a set of functionswA(x) dual toua(x), in the sense that their Jacobians are inverses [9],

wA,i u
B
i = δ B

A ←→ wA,i u
A
j = δij . (28)

Equivalent versions of the integrability condition (27) are [9]

u
[A
i ∂ju

B]
i = 0 ←→ w[A,i ∂jwB],i = 0 , (29)

fijk := −wA,i ∂ku
A
j is totally symmetric, (30)

fijk = ∂i∂j∂kF and fim[k fl]mj = 0 , (31)

which includes the WDVV equation forF . In contrast, there is no formulation purely in terms ofU .

3The constantsgA can be SU(2)-rotated into the constraints, so thatD2uA = iga = −D
2uA but [Da, Da]uA = 0.

4Subscripts onG denote derivatives with respect tou, i.e.GA = ∂G/∂uA etc..
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Conformal invariance restrictsuA to be homogeneous quadratic inx, hencewA to be homogeneous
of degree zero (including logarithms!), thusfijk is of degree−1. The second prepotentialU is also
determined byuA(x) via

U(x) = −gAwA(x) so that C = −xi∂iU = cAg
A , (32)

and automatically fulfills the Killing-type equation (15a). The classical bosonic potential then reads

V cl
B = 1

2 (∂iU)(∂iU) = 1
2 g

AgBwA,iwB,i . (33)

Finally, for the superpotentialG(u) the integrability condition becomes

uAiu
B
jGAB = −δij ←→ GAB = −wA,iwB,i = −∂AwB = −∂BwA , (34)

so that, up to an irrelevantu-linear shift ofG,

wA = −GA ←→ G = −uAwA , (35)

and we have

U = gAGA and fijk = −1
2 u

A
iu

B
ju

C
kGABC −→ V cl

B = −1
2 g

AgBGAB . (36)

However, knowing the superpotential does not suffice: the relation betweenxi anduA is needed to
determineU(x) andF (x). On the other hand, if a solutionF to the WDVV equation can be found, this
problem reduces to a linear one [9]:

uAij + fijk u
A
k = 0 or wA,ij − fijkwA,k = 0 , with fijk = ∂i∂j∂kF . (37)

Finally, we remark again that the center-of-mass degree of freedom can be decoupled, so that all indices
may run form 1 ton only.

5 Structural similarity to closed flat Yang-Mills connections

It is instructive to rewrite our integrability problem in terms ofn×n-matrix-valued differential forms, in
a compact formulation closer to Yang-Mills theory. To this end, we define

(

uAi
)

:= u ,
(

−∂i∂jF
)

:= f and
(

−∂i∂j∂kF dxk
)

:= A = Akdx
k . (38)

Since Ak = ∂kf and ∂i∂j∂kF = wA,i ∂ku
A
j , we have

A = df → dA = 0 and A = u−1du → dA+A∧A = 0 , (39)

from which we learn that

0 = A ∧A = 1
2d [f , df ] = −du−1 ∧ du , (40)

which is nothing but the WDVV equation again. Hence, we are looking for connectionsA which are at
the same time closed and flat. Dealing with a topologically trivial configuration spaceRn, it implies that
A is simultaneously exact and pure gauge. The exactness is already part of the definition (38), and the
pure-gauge property is what relatesA with u. We remark thatA andf are symmetric matrices whileu
is not. Furthermore, the inhomogeneity (14b) demands thatxi∂if = 1. The task is to solve (40) forf
and foru, which then yield∂3F and ~∇U = −2u−1~g.
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Of course, we cannot ‘solve’ the WDVV equation by formal manipulations. But even given a solu-
tion A (and hencef ), it is nontrivial to construct an associated matrix function u. For this, we must
integrate the linear matrix differential equation (37),

du⊤ = Au⊤ , (41)

which qualifiesu as covariantly constant in the WDVV background. The formal solution reads

u⊤ =

∞
∑

k=0

f (k) with f (0) = 1 , f (1) = f and df f (k) = df (k+1) , (42)

up to right multiplication with a constant matrix. The matrix functionsf (k) are local because

d(df f (k)) = −df ∧ df (k) = −df ∧ df f (k−1) = −A ∧Af (k−1) = 0 (43)

due to the WDVV equation. Likewise, one has

f df (k) = f df f (k−1) = d(f f (k) − f (k+1)) . (44)

Note that the naive guessu⊤ = ef is wrong since[f ,df ] = d(f2 − 2f (2)) 6= 0.
We provide two explicit examples forn = 2, with the notation

xi=1 =: x , xi=2 =: y and x2 + y2 =: r2 . (45)

Starting from theB2 solution with a radial term [6, 9]

F = −1
2x

2 lnx− 1
2y

2 ln y − 1
4(x+y)

2 ln(x+y)− 1
4(x−y)2 ln(x−y) + 1

2r
2 ln r , (46)

we have

f =
1

2

(

ln
[

(x2−y2)x2

r2

]

ln x+y
x−y

ln x+y
x−y ln

[

(x2−y2)y2
r2

]

)

− 1

r2

(

x2 xy

xy y2

)

(47)

with (x∂x + y∂y)f = 1 and, hence,

A = df =
(x2−y2)2
x y r4

(

ydx 0

0 xdy

)

+
4x2y2

(x2−y2) r4

(

xdx−ydy xdy−ydx
xdy−ydx xdx−ydy

)

. (48)

It is easy to check that indeedA ∧A = 0 but [A,f ] 6= 0. The solution to (41) turns out to be

u =
Γ

r4

(

x r4 y r4

x y4 y x4

)

Γ=1−→ {

u1 = 1
2r

2

u2 = 1
2x

2y2/r2
(49)

with an arbitrary non-degenerate constant matrixΓ, as may be checked by inserting it into (41).
One may also begin with a purely radial WDVV solution [9],

F = −1
2r

2 ln r −→ f = 1
2 (ln r

2)1 + x2−y2

2 r2 σ3 + xy
r2 σ1 , (50)

and find

u = Γ

(

2x 2y
2x arctan y

x − y 2y arctan y
x + x

)

Γ=1−→ {

u1 = r2

u2 = r2 arctan y
x

. (51)

For more generic weight factors in (46),u2 is expressed in terms of hypergeometric functions [9].
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6 Three- and four-particle solutions

An alternative method for constructing solutions(F,U) attempts to find functionsuA(x) satisfying (29).
It is successful forn+1 = 3 since the WDVV equation is empty in this case. Imposing also permutation
invariance, a natural choice for three homogeneous quadratic symmetric functions of(xi) = (x, y, z) is

u1 = (x+y+z)2 ,

u2 = (x−y)2 + (y−z)2 + (z−x)2 ,

u3 = [(2x−y−z)(2y−z−x)(2z−x−y)]2/3 h(s) ,

(52)

whereh is an (almost) arbitrary function of the ratio

s = [(2x−y−z)(2y−z−x)(2z−x−y)]2

[(x−y)2+(y−z)2+(z−x)2]3 . (53)

Not surprisingly, (52) fulfils the integrability condition(29), so we are guaranteed to produce solutions.
It is straightforward to compute the JacobiansuAi andwA,i and proceed to the prepotentials. Writing
(gA) = (g1, g2, g3), the bosonic potential comes out as

V cl
B =

g21/24
(x+y+z)2 + 1

324

[

(1−2s)g22 + 2s (h g2−g3/3
√
s)2

(h+3sh′)2

]

(

1
(x−y)2+

1
(y−z)2+

1
(z−x)2

)

(54)

=
g21/24

(x+y+z)2 +
g22−4s

2
3
−δg2g3+2s

1
3
−2δg23

324 (1+3δ)2

(

1
(x−y)2+

1
(y−z)2+

1
(z−x)2

)

+ δ (2+3δ)
8 (1+3δ)2

g22
(x−y)2+(y−z)2+(z−x)2

where in the second line we specialized to

h(s) = sδ ←→ u3 = [(2x−y−z)(2y−z−x)(2z−x−y)]2/3+2δ

[(x−y)2+(y−z)2+(z−x)2]3δ
. (55)

Puttingg3=0 for simplicity, the corresponding prepotentials are

U = − g1
6 ln(x+y+z)− g2

18(1+3δ) ln(x−y)(y−z)(z−x)−
δ g2

4(1+3δ) ln[(x−y)2+(y−z)2+(z−x)2] , (56)

F = −1
6(x+y+z)

2 ln(x+y+z)− 1
4

[

(x−y)2 ln(x−y) + (y−z)2 ln(y−z) + (z−x)2 ln(z−x)
]

+ 1−6δ
36

[

(2x−y−z)2 ln(2x−y−z) + (2y−z−x)2 ln(2y−z−x) + (2z−x−y)2 ln(2z−x−y)
]

+ δ
4 [(x−y)2+(y−z)2+(z−x)2] ln[(x−y)2+(y−z)2+(z−x)2] .

(57)

We recognize the roots ofG2 plus a radial term in the coordinate differences. The potential simplifies in
two special cases:

δ = 0 ⇔ h = 1 : V cl
B (g1=g3=0) is pure Calogero,

δ = 1
6 ⇔ h = s1/6 : V cl

B (g1=g2=0) is pure Calogero.
(58)

In the full quantum potential,VB = V cl
B + ~

2

8 F
′′′F ′′′, the couplingsgA receive quantum corrections.

Stepping up to four particles, i.e.n+1 = 4, it becomes much more difficult to construct solutions,
since the integrability condition is no longer trivial. Ourattempts to take a known WDVV solution
and exploit the linear equations (37) foruAi have met with success only sporadically. In most cases, the
hypergeometric function2F1 turns up in the expressions. A simple permutation-symmetric example uses
theA3 solution with a radial term,

F = −1
8

(
∑

i x
i
)2

ln
∑

i x
i+ 1

8

∑

i<j

(xi−xj)2 ln(xi−xj)− 1
8

(
∑

i<j(x
i−xj)2

)

ln
∑

i<j(x
i−xj)2 , (59)
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for which we discovered [9]

u1 = (x+y+z+w)2 ,

u2 = (x−y)2 + (x−z)2 + (x−w)2 + (y−z)2 + (y−w)2 + (z−w)2 ,

u3 = u2 I(x+y−z−w
p q ) and u4 = u2 I(pq ) ,

(60)

with
p2 = (x−y+z−w) + 2

√

(w−x)(y−z)
q2 = (x−y−z+w) + 2

√

(w−y)(x−z)
and I(x) =

∫ x

0

dt√
1− t4

. (61)

The Jacobians and the bosonic potential are algebraic but not of Calogero type. It remains a challenge to
find (u2, u3, u4) for theA3 WDVV solution without radial term,

F = −1
8

(
∑

i x
i
)2

ln
∑

i x
i − 1

8

∑

i<j

(xi−xj)2 ln(xi−xj) . (62)

7 Covector ansatz for prepotentialF

For the rest of the presentation, we concentrate on the WDVV equation inRn,

(∂i∂k∂pF )(∂p∂l∂jF )− (∂i∂l∂pF )(∂p∂k∂jF ) = 0 with (xi∂i− 2)F = −1
2 x

ixi , (63)

since, together withU≡0, its solutions already produce genuineN=4 superconformal mechanics mod-
els. Leaving aside a possible radial term

Frad = −r2 ln r with r2 :=
∑

i(x
i)2 , (64)

we employ the standard ‘rank-one’ or ‘covector’ ansatz [2]

F = −1
2

∑

α

(α·x)2 lnα·x (65)

containing a set{α} of covectors

α = (α1, α2, . . . , αn) ∈ (Rn)∗ or ∈ i(Rn)∗ −→ α(x) = α·x = αix
i , (66)

subject to the normalization

∑

α

αiαj = δij ←→
∑

α

α⊗ α = 1 (67)

which takes care of the inhomogeneity in (64). The WDVV equation turns into an algebraic condition
on the set of covectors [19, 20, 6],

∑

α,β

α·β
α·xβ·x (αiβj−αjβi)(αkβl−αlβk) = 0 with α·β = δijαiβj . (68)

Apart from the normalization (67), the covectors are projective, so we may think of them as a bunch of
rays. Let us denote their number (the cardinality of{α}) by p. We may assume that no two covectors
are collinear. Since an orthogonal pair of covectors does not contribute to the double sum, two mutually
orthogonal subsets of covectors decouple in (68), and it suffices to consider indecomposable covector
sets. Inn=2 dimensions, (67) implies (68), but already for the lowest nontrivial dimensionn=3 only
partial results are known [2, 22, 4, 5, 23, 24, 6].
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8 Partial isometry formulation of WDVV

Let us gain a geometric understanding of (68). Each of the1
2p(p−1) pairs(α, β) in the double sum spans

some planeπ ∼ α∧β ∈ Λ2((Rn)∗), but not all of these planes need be different. When we group the
pairs according to these planes,5 the tensor structure(α ∧ β)⊗2 of (68) tells us that this equation must
hold separately for the subset of coplanar covectors pertaining to each planeπ,

∑

α,β∈π

α·β |α∧β|2
α·x β·x = 0 ∀ π . (69)

Depending on the numberq of covectors contained in a given planeπ, one of three cases occurs:

case (a) π contains zero or one covector −→ equation trivial
case (b) π contains two covectors,π ∼ α ∧ β −→ orthogonality α · β = 0
case (c) π containsq > 2 covectors −→ projector condition onπ:

∑

α∈π
α⊗α = λπ 1π =: λπ Pπ for λπ ∈ R and P 2

π = Pπ with rank(Pπ) = 2 . (70)

The latter is the proper covector normalization for the planar subsystem, which implies the (trival)
WDVV equation onπ to hold. Establishing the projector condition (70) simultaneously for all planes
is a nontrivial problem, since covectors usually lie in morethan one plane, which imposes conditions
linking the planes.

For a more quantitative formulation, we express (70) in terms of partial isometries. After introducing
a counting indexa = 1, . . . , p for the covectors{α} = {α1, . . . , αp}, we collect their components in an
n×p matrixA. This defines a map

A : R
p → R

n given by A =
(

αia

)i=1,...,n

a=1,...,p
with AA⊤ = 1n , (71)

encoding the total normalization (67). For each nontrivialplaneπ, we select allαas ∈ π, s = 1, . . . , q,
via

Bπ : R
p → R

q by {αa} 7→ {αas} (72)

and write the combination

Aπ : Rq → R
n by Aπ := AB⊤

π =
(

αias

)i=1,...,n

s=1,...,q
. (73)

Our projector condition then reads

AπA
⊤
π = λπ Pπ ←→ A⊤

πAπ = λπQπ (74)

with projectorsPπ on R
n andQπ on R

q of rank two and multipliersλπ, for any nontrivial planeπ.

Therefore,A is a WDVV solution iff Aπ√
λπ

is a rank-2 partial isometry (74) for each nontrivial planeπ!
An alternative version of (74) is

AπA
⊤
πAπ = λπ Aπ . (75)

Note thatA 6= AπBπ . Since the projectors are of rank 2, we may splitAπ overR2:

∃ Dπ : R
q → R

2 and Cπ : R
2 ← R

n such that Aπ = C⊤
π Dπ . (76)

5 A given covector may occur in different pairs, thus in different groups. Covectors are not grouped, only their pairs.
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The situation can be visualized in the following noncommutative diagram:

?>=<89:;
R
p

Bπ

wwpppppppppppppp

A

#+NNNNNNNNNNNNN

NNNNNNNNNNNNN

Qπ
FF
?>=<89:;
R
q

Dπ
&&NNNNNNNNNNNNNN Aπ

+3 ?>=<89:;
R
n

Cπ
wwpppppppppppppp

PπXX

?>=<89:;
R
2

(77)

We illustrate the partial isometry formulation with the simplest nontrivial example, which occurs at
n=3 andp=6, by providing a one-parameter family of covectors{α, β, γ, α′, β′, γ′}(t) via

A =
1

6





α β γ α′ β′ γ′

6t −3t −3t 0 3w −3w
0 3

√
3t −3

√
3t −2

√
3w

√
3w

√
3w

0 0 0 2
√
3 2

√
3 2

√
3



 with w =
√

2− 3t2 . (78)

It is easily checked thatAA⊤ = 1. A quick analysis of linear dependence reveals that 12 of the15
covector pairs are grouped into 4 planes of 3 pairs each, leaving 3 pairs ungrouped. 3 coplanar pairs
imply 3 coplanar covectors, hence there are 4 nontrivial planes containingq=3 covectors, namely

〈αβ γ〉 , 〈αβ′γ′〉 , 〈α′β γ′〉 , 〈α′β′γ〉 , (79)

and 3 planes containing just two covectors, which are indeedorthogonal,

α · α′ = β · β′ = γ · γ′ = 0 . (80)

Let us test the projector condition (74) for two of the planes:

A〈αβ γ〉 =
1

2





2t −t −t
0
√
3 t −

√
3 t

0 0 0



 ⇒ AπA
⊤
π = 3

2 t
2 ·





1 0 0
0 1 0
0 0 0



 = 3
2t

2 · Pπ , (81)

A〈αβ′γ′〉 =
1

6





6t 3w −3w
0
√
3w

√
3w

0 2
√
3 2

√
3



 ⇒ AπA
⊤
π =

1−1
2t

2

6−3t2





6−3t2 0 0
0 2−3t2 2w
0 2w 4



 , (82)

where the matrices on the right are idempotent. Hence, in both cases,Aπ is proportional to a partial
isometry, with a (parameter-dependent) multiplierλπ. The other two nontrivial planes work in the same
way. We have proven that (78) produces a family of WDVV solutions. This scheme naturally extends to
include imaginary covectors as well.

9 Deformed root systems and polytopes

It is known for some time [19, 20] that the setΦ+ of positive roots of any simple Lie algebra (in fact, of
any Coxeter system) is a good choice for the covectors. So letus take

{α} = Φ† = Φ+
L ∪ Φ+

S with αL ·αL = 2 and αS·αS = 1 or 2
3 . (83)

where the subscripts ‘L’ and ‘S’ pertain to long and short roots, respectively. Having fixed the root
lengths, we must introduce scaling factors{fα} = {fL, fS} in

F = −1
2

(

fL

∑

α∈Φ+

L

+ fS

∑

α∈Φ+

S

)

(α·x)2 ln |α·x| . (84)
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The normalization condition (67) has a one-parameter solution,

(

fL

∑

α∈Φ+

L

+ fS

∑

α∈Φ+

S

)

α⊗α = 1 −→
{

fL = 1
h∨ + (h−h∨) t

fS = 1
h∨ + (h−rh∨) t

with t ∈ R , (85)

whereh andh∨ are the Coxeter and dual Coxeter numbers of the Lie algebra, respectively. The roots
define a family of over-complete partitions of unity. Amazingly, all simple Lie-algebra root systems
obey (69), and they do so separately for the pairs of long roots, for the pairs of short roots and for the
mixed pairs, of any planeπ. This leads to the freedom (t) to rescale the short versus the long roots
and provides a one-parameter family of solutions to the WDVVequation [21]. Thet=0 solution was
discovered first [19, 20]. (In the simply-laced case there isonly one solution, of course.)

For illustration we give two examples. Let{ei} be an orthonormal basis inRn+1. For

An ⊕A1 : {α} =
{

ei−ej ,
∑

iei | 1 ≤ i < j ≤ n+1
}

we find

FAn⊕A1
= − 1/2

n+1

∑

i<j

(xi−xj)2 ln(xi−xj) − 1/2
n+1 (

∑

ix
i)2 ln(

∑

ix
i)

(86)

with center-of-mass decoupling, while for the non-simply-laced case(n=2, p=6) without center of mass

G2 : {α} =
{

1√
3
(ei−ej) , 1√

3
(ei+ej−2ek)

∣

∣ (i, j, k) cyclic
}

one gets

FG2
= −1−24t

24 (x1−x2)2 ln(x1−x2) − 1+8t
24 (x1+x2−2x3)2 ln(2x1−x2−x3) + cyclic .

(87)

A natural question is whether one can deform the Lie algebraic root systems by changing the angles
between covectors but keep (69) valid. So which deformations respect the WDVV equation? Based
on a few examples, we conjecture that the (suitably rescaledand translated) covectors should form the
edges of some polytope inRn. Non-concurrent pairs of edges then have no reason to be coplanar with
other edges, thus better be orthogonal. Concurrent edge pairs, on the other hand, always belong to some
polytope face, hence automatically combine with further coplanar edges to a nontrivial planeπ. The
hope is that the polytope’s incidence relations take care ofthe WDVV equation, e.g. in the form of (74).
Forp ≥ 1

2n(n+1), there is enough scaling freedom to finally arrange the normalization (67) with{fα}.

 β’

γ ’

α ’

α

γ

 β

This expectation is actually bourne out in the case of theAn root system, which,
with p = 1

2n(n+1), is in fact the minimal irreducible system in each dimensionn
and uniquely fixes{fα}. Starting with an arbitrary bunch of12n(n+1) rays inRn,
we reduce the freedom in their directions by imposing firstlythen-simplex inci-
dence relations and secondly the orthogonality conditionsfor skew edges. Let us
do some counting of moduli (minus global translations, rotations and scaling):

ray moduli incidences simplex moduli orthogonality final moduli

# 1
2n

2(n−1) −1
2(n−2)(n2−1) 1

2 (n−1)(n+2) −1
2(n−2)(n+1) n

n=2, 3, 4 2, 9, 24 0,−4,−15 2, 5, 9 0,−2,−5 2, 3, 4

We find that the moduli spaceM(An) of these so-calledorthocentricn-simplices ist justn-dimensional.
It can be shown [25] that indeed it fits perfectly to a family ofWDVV solutions found earlier [22, 23,
24], lending support to our polytope idea. We remark that theprevious example (78) represents a one-
parameter subset inM(A3).

Let us make this observation more explicit in the case ofn=4. Using the recursive construction
of orthocentricn-simplices presented in [6] forn=4 and computing the corresponding scaling factors
is feasible but algebraically involved. Therefore, we justpresent a ‘nice’ one-parameter subfamily of
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solutions, witht ∈ R+ andw2 = t2 − 1
4 ,

A =
1

2t













w
√
2 0 w

2

√
2 −w

2

√
2 −w

2

√
2 w

2

√
2 1

2

√
2 −1

2

√
2 0 0

0 −w
3

√
6 w

2

√
6 w

6

√
6 w

2

√
6 w

6

√
6 1

6

√
6 1

6

√
6 −1

3

√
6 0

0 2w
3

√
3 0 2w

3

√
3 0 2w

3

√
3 1

6

√
3 1

6

√
3 1

6

√
3 −1

2

√
3

0 0 0 0 0 0 t t t t













. (88)

For t2=5
4 we have the root system ofA4, at t2=1

4 the first six covectors disappear and leaveA4
1. When

0 < t2 < 1
4 , the first six covectors are imaginary, and in the singular limit t2→0 we obtain theA3 roots

and fundamental weights, but can no longer maintain our normalization.
A more familiar parametrization embeds theA4 root system intoR5, in the hyperplane orthogonal to

the center-of-mass covector
∑

i ei, with s ∈ R+ andu2 = 20s2−10s+1,

A =
1

(1−4s)
√
5



















u 0 u 0 u 0 1−s −s −s −s
−u 0 0 u 0 u − s 1−s −s −s
0 u −u 0 0 −u − s −s 1−s −s
0 −u 0 −u −u 0 − s −s −s 1−s
0 0 0 0 0 0 4s−1 4s−1 4s−1 4s−1



















. (89)

Now s=0 yields the roots ofA4, beyonds = 1
4 (1− 1√

5
) the first six covectors turn imaginary, and the

singular limits→1
4 (u→ i

2 ) gives theA3 roots and fundamental weights, orthogonal also to
∑

i ei − 5e5.
This pattern generalizes to an interpolation between theAn roots and theAn−1 roots and fundamental
weights.

What about deformations of other root or weight systems? We give two more
prominent examples inn=3 dimensions. First, consider thep=9 positive roots of
B3 and observe that, from four copies of them, we can assemble the edges of a
truncated cube. It is possible to deform the latter into a truncated cuboid while
keeping the orthogonalities and producing a six-parameterfamily of covectors,
{

α·x
}

=
{

d1x
1, d2x

2, d3x
3 ; c3(c2x

1±c1x2) , c1(c3x2±c2x3) , c2(c1x3±c3x1)
}

, ci, di ∈ R . (90)

The normalization
∑

α fα α⊗α = 1 can be achieved with
{

fα
}

=
{

c2
0
+c2

1
−c2

2
−c2

3

c2 d2
1

,
c2
0
−c2

1
+c2

2
−c2

3

c2 d2
1

,
c2
0
−c2

1
−c2

2
+c2

3

c2 d2
1

; 1
c2 c2

3

, 1
c2 c2

1

, 1
c2 c2

2

}

, c2 = c20+c
2
1+c

2
2+c

2
3 . (91)

One sees that the relevant combinations
√
fα α depend only the three ratioscic0 . It turns out that we have

constructed a three-dimensional moduli space of WDVV solutions [22, 23, 24].
Second, again usingA3, it is possible to combine four copies of its three pos-

itive vector weights with six copies of its four positive spinor weights to the edge
set of a rhombic dodecahedron, with each rhombic face being dissected into two
triangles. There exists a three-parameter family of deformations in line with the
orthogonalities, given by

α·x = d1x
1, β·x = d2x

2, γ·x = d3x
3 ; α+β+γ

2 , α−β−γ
2 , −α+β−γ

2 , −α−β+γ
2 , (92)

and re-normalization is achieved by

fα =
−d2

1
+d2

2
+d2

3

d2 d2
1

, fβ =
d2
1
−d2

2
+d2

3

d2 d2
2

, fγ =
d2
1
+d2

2
−d2

3

d2 d2
3

; fspinor=
2
d2
, d2 = d21+d

2
2+d

2
3 . (93)

In this case, the combinations
√
fα α depend only on the ratiosdidj , and we again discover a two-

dimensional family of WDVV solutions [23, 24]. It seems thatindeed the polytope’s incidence relations
imply the WDVV equation, thus allowing us to construct solutionsF purely geometrically, by guessing
appropriate polytopes with certain edge multiplicities.
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10 Hypergraphs

Sadly, our ortho-polytope concept fails, as may be seen fromthe first counterexample at(n, p) = (3, 10):

A =
1

4
√
3





1 2 3 4 5 6 7 8 9 10

2
√
3 2

√
3 2
√
2 0

√
2 −

√
2
√
6 −

√
6 0 0

2
√
2 −2

√
2 0 4

√
3

√
3 −1 −1 −

√
6
√
2

0 0 0 0
√
3

√
3 3 3

√
6 3
√
2



 (94)

2

2
2

1
1

1

7

10

10

4

4

4

9

5

5

7 8

6

3

is properly normalized,AA⊤ = 13, and may be checked to
fulfil the partial-isometry conditions (74) for each nontrivial
plane. It turns out, however, that there exists no polyhedron
whose edges are built from (suitably rescaled copies of) all
ten column vectors in (94). In the attempt shown to the
left, one of the would-be edges (labelled ‘9’) runsinsidethe
convex hull created by the others.

This lesson demonstrates that it may be better to restrict ourselves to the essential feature ofA, which
is the coplanarity property of its columnsα. Even though there is not always an ortho-polytope, we may
still hope that eachn×p matrixA with

AA⊤ = 1n and q(αa∧αb) = 2 ⇒ αa · αb = 0 ∀ a, b = 1, . . . , p (95)

already obeys the crucial conditions (74) for allq>2 planes.
Suppose we havem nontrivial planes and label them byµ = 1, . . . ,m. Theqµ>2 covectors in the

planeπµ are grouped in the subset{αaµs
} ⊂ {αa}, with s = 1, . . . , qµ. A shorter way of encoding this

coplanarity information is by using only thelabelsrather than denoting the covectors. Thus, we combine
the aµs for each nontrivial planeπµ in the subset{aµs |s=1, . . . , qµ} =: Πµ ⊂ {1, . . . , p}, and then
write down the collectionH(A) := {Π1,Π2, . . . ,Πm} ⊂ P({1, . . . , p}) of these (overlapping) subsets.

1

6

7

3 4

5 810

2

9

Such subset collections are known assimple hypergraphs[26]. They
are graphically represented by writing a vertex for each covector la-
bel and then, for eachµ, by connecting all vertices whose labels oc-
cur in Πµ. The resulting graph hasp vertices andm connectionsΠµ,
called hyperedges. Note that a vertex represents a covector, and a
hyperedge stands for a (nontrivial) plane, thus gaining us one dimen-
sion in drawing. 6 As an example, the hypergraph for (94) reads
{{1234}{1580}{2670}{179}{289}{356}{378}{457}{468}{490}} and is
represented on the left (with ‘0’=‘ 10’). To the mathematically inclined

reader, we note that our simple hypergraphs are not of the most general kind: they are also
• linear: the intersection of two hyperedges has at most one vertex (uniqueness of planes)
• irreducible: the hypergraph is connected (the covector set does not decompose)
• complete: when adding the trivial (qµ=2) planes, each vertex pair is contained in some hyperedge
• orthogonal: a nonconnected vertex pair is ‘orthogonal’ (property of the qµ=2 planes)

Of course, two hypergraphs related by a permutation of labels are equivalent. Thus, our program is
to construct, for a given value ofp, all orthogonal complete irreducible linear simple hypergraphs and
check the partial-isometry conditions (74) for each planeπ. Unfortunately, this is not so easy, because the
orthogonality is not a natural hypergraph property but depends on the dimensionn of a possible covector
realization. In fact, it is not guaranteed that such a realization exists at all. Therefore, the classification
of complete irreducible linear simple hypergraphs withp vertices has to be amended by the construction
of the corresponding covector sets inRn, subject to the orthogonality condition.

6 Our simple hypergraphs contain onlyqµ-vertex hyperedges withqµ > 2, hence no one- or two-vertex hyperedges.
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11 Matroids

Luckily, there is another mathematical concept which abstractly captures the linear dependence in a sub-
set of a power set, namely the notion of amatroid [27, 28, 29]. There exist several equivalent definitions
of a matroid, for example as the collection{Cµ} of all circuitsCµ ⊂ {1, . . . , p}, which are the minimal
dependent subsets of our ground set{1, . . . , p}:
• The empty set is not a circuit.
• No circuit is contained in another circuit.
• If C1 6= C2 share an elemente, then(C1 ∪ C2)\{e} is or contains another circuit.

Of course, we identify matroids related by permutations of the ground set.
The idea is that each circuit corresponds to a subset of linearly dependent covectors. Indeed, every

n×p matrixA produces a matroid. However, the converse is false: not every matroid is representable
in someRn. If so, it is called anR-vectormatroid, with rankr ≤ n. The rankrµ = |Cµ| − 1 of an
individual circuitCµ is the dimension of the vector space spanned by its covectors. Excluding one- and
two-element circuits qualifies our matroids assimple. It may happen that two rank-d circuits span the
same vector space, for example if they agree ind of their elements. Hence, it is useful to unite all rank-d
circuits spanning the samed-dimensional subspace in a so-calledd-flat Fd, with 2 ≤ d < r. We call such
ad-flat minimal if it arises from a single circuit, i.e.|Fd| = d+1. In this way, we may label the matroid
more efficiently by listing all 2-flats, 3-flats etc., all the way up tor−1. Needless to say, we are only
interested inconnectedmatroids, i.e. those which do not decompose as a direct sum. Also, for a given
dimensionn we study onlyR-vector matroids of rankr=n and ignore those of smaller rank, since they
can already be represented in a smaller vector space. Finally, we need to implement the orthogonality
property. So let us call a matroidorthogonal, if any pair of covectors which does not share a 2-flat is
orthogonal. Note that further orthogonalities (inside 2-flats) may be enforced by the representation.

A matroid of rankr can be represented geometrically inRr−1 as follows. Mark a node for every
element of the ground set (the covectors). Then, connect by aline all covectors in one 2-flat, for all
2-flats. Next, draw a two-surface containing all covectors in one 3-flat, for all 3-flats, and so on. We
illustrate this method on two examples, theA4 and theB3 matroid:

(35)

(23)

(12)

(15)

(45)

(14)

(13)

(34)

(24)

(25)

1

2

3

1

1

2

2

3

3

TheA4 case hasr=4, and it is natural to label the ten covectors by pairs(ij), with 1 ≤ i < j ≤ 5. Then,

{Cµ} = {{(ij)(ik)(jk)}, {(ij)(ik)(jℓ)(kℓ)}, {(ij)(iℓ)(jk)(kℓ)}, {(ik)(iℓ)(jk)(jℓ)},
{(1i)

(i
j

)(j
k

)(k
ℓ

)

(1ℓ)}} with
(i
j

)

= (ij) or (j i)
(96)

lists ten circuits of rank 2, fifteen circuits of rank 3 and twelve circuits of rank 4. The former represent
ten 2-flats, the middle unite in triples to five 3-flats and the latter combine to the trivial 4-flat,

{F2} = {{(ij)(ik)(jk)}} ,
{F3} = {{(ij)(ik)(iℓ)(jk)(jℓ)(kℓ)}} ,
{F4} = {{(12)(13)(14)(15)(23)(24)(25)(34)(35)(45)}} .

(97)
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Orthogonality is required between pairs with fully distinct labels. TheB3 example is of rank three but
less symmetric. We label the three short roots byi and the six long ones bŷi andǐ, with i = 1, 2, 3, and
obtain sixteen rank-2 circuits grouping into seven 2-flats and thirty-nine rank-3 circuits combining into
the unique 3-flat (i 6= j 6= k 6= i),

{Cµ} = {{ijk̂}, {ijǩ}, {iĵ ǰ}, {̂iĵk̂}, {̂iǰǩ},
{ij îĵ}, {ij ǐǰ}, {ij îǰ}, {i î ǐĵ}, {i î ǐǰ}, {i îĵǩ}, {i ǐĵk̂}, {i ǐǰǩ}, {̂i ǐĵǰ}} ,

(98)

{F2} = {{1, 2, 3̂, 3̌}, {1, 3, 2̂, 2̌}, {2, 3, 1̂, 1̌}, {1̂, 2̂, 3̂}, {1̂, 2̌, 3̌}, {1̌, 2̂, 3̌}, {1̌, 2̌, 3̂}} ,
{F3} = {{1, 2, 3, 1̂, 2̂, 3̂, 1̌, 2̌, 3̌}} .

(99)

Here, we see thati ⊥ î andi ⊥ ǐ, but the realization inR3 actually enforcesi ⊥ j as well.
The task then is to classify all connected simple orthogonalR-vector matroids for given data(n, p).

There are tables in the literature which, however, do not select for orthogonality. Another disadvantage
is the fact that matroids capture linear dependencies of covector subsets at any rank up tor, while
the WDVV equation sees only coplanarities. Therefore, it isenough to write down only the 2-flats,
which brings us back to the complete irreducible linear simple hypergraphs again. Still, the advantage
of matroids over hypergraphs is that they provide a natural setting for the orthogonality property and the
partial-isometry condition (74). Once we have constructeda parametric representation of anR-vector
matroid as a family ofn×p matricesA, we may implement the orthogonalities and directly test (74)
for all nontrivial planesπ. A good matroidis one which passes the test and thus yields a (family of)
solution(s) to the WDVV equation.

Another bonus is the possibility to reduce a good matroid to asmaller good one by graphical methods.
The two fundamental operations on a matroidM are the deletion and the contraction of an elementa ∈
{1, . . . , p} (corresponding to a covector). In the geometrical representation these look as follows.

• deletionof a, denotedM\{a}: remove the nodea and all miminald-flats it is part of

• contractionof a, denotedM/{a}: remove the nodea and identify all nodes on a line witha,
then remove the loops and identify the multiple lines created

Both operations reducep by one. Deletion keeps the rank while contraction lowers it by one. On the
matrixA, the former means removing the columna (corresponding to the covectorαa) while the latter
in addition projects orthogonal toαa. Connectedness has to be rechecked after deletion, but simplic-
ity and theR-vector property are hereditary for both actions! Furthermore, contraction preserves the
orthogonality, but deletion may produce a non-orthogonal matroid. Since the contraction of a good ma-
troid corresponds precisely to the restriction of∨-systems introduced by [23, 24], we are confident that
it generates another good matroid. A similar statement holds for the multiple deletion which produces a
∨-subsystem in the language of [23, 24].

The first nontrivial dimension isd=r=3, where simple matroids (determined by{F2}) are identical
with complete linear simple hypergraphs (given by{Hµ}). Their number grows rapidly with the cardi-
nality p:

numberp of covectors 2 3 4 5 6 7 8 9 10 11 12

how many simple matroids? 0 1 2 4 9 23 68 383 5249 232928 28872972

of the above are connected 0 0 0 1 3 12 41 307 4844 227612 28639649

of the above areR-vector 0 0 0 1 3 11 38 ? ? ? ?

of the above are orthogonal 0 0 0 0 1 1 1 1 3 ? ?

Below, we list all good (X) and a few bad ( ) cases up top=10, with graphical/geometric representation
and name. Parameterss, t, u indicate continuous moduli.
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{{123}, {145}} A3\{6} R-vector but not orthogonal 

{{123}, {1456}} B3\{4, 5, 9} R-vector but not orthogonal 

{{123}, {145}, {356}} D(2, 1;α)\{7} R-vector but not orthogonal 

{{123}, {145}, {356}, {246}} = A3(s, t, u) X

{{123}, {145}, {356}, {347}, {257}, {167}} 6⊕ 4 of A3 = D(2, 1;α)(s, t) X

{{123}, {145}, {356}, {347}, {257}, {167}, {246}} Fano matroid – notR-vector 

{{123}, {145}, {356}, {347}, {257}, {248}, {1678}} B3\{9}(s, t) X

{{123}, {145}, {347}, {257}, {2489}, {1678}, {3569}} B3(s, t, u) X

{{150}{167}{259}{268}{456}{479}{480}{1234}{3578}{3690}} ⊂ AB(1, 3)(t) X

{{179}{289}{356}{378}{457}{468}{490}{1234}{1580}{2670}} ⊂ AB(1, 3)(t) X

We have developed a Mathematica program which automatically generates all hypergraphs subject
to the simplicity, linearity, completeness and irreducibility properties up to a givenp. Furthermore,
hypergraphs that admit no orthogonal covector realizationare ruled out, thereby drastically reducing
their number. For a generated hypergraph we then gradually build a parametrization of the most general
admissible set of covectors whereby it turns out whether thehypergraph is representable. A major step
forward would be to completely automate this process also; we are confident that this is feasible. Finally,
on the surviving familiesA(s, t, . . .) of covector sets, the program tests the partial-isometry property (74)
equivalent to the WDVV equation, for all nontrivial planesπ.

A natural conjecture is that our class of hypergraphs or
matroids always produces WDVV solutions, rendering this
final test obsolete. However, running the program for a
while reveals a counterexample at(n, p) = (3, 10), given
by the hypergraph to the right. In this diagram, the hol-
low nodes indicate additional orthogonality inside a plane
spanned by four covectors. We must conclude that a geo-
metric construction of WDVV solutions is still missing.

12 Summary

We begin by listing the main points of this article:

• N=4 superconformaln-particle mechanics ind=1 is governed byU andF

• U andF are subject to inhomogeneity, Killing-type and WDVV conditions

• a geometric interpretation via flat superpotentials gave new variants of the integrability conditions

• there is a structural similarity to flat and exact Yang-Millsconnections

• the general 3-particle system is constructed and features three couplings and one free function

• higher-particle systems exist but are tedious to construct; hypergeometric functions appear

• the covector ansatz forF leads to partial isometry conditions with multipliersλπ
• finite Coxeter root systems and certain deformations thereof yield WDVV solutions
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• certain solution families admit an ortho-polytope interpretation

• hypergraphs and matroids are suitable concepts for a classification of WDVV solutions

• the generation of candidates can be computer programmed

• not all connected simple orthogonalR-vector matroids are ‘good’

There remain a lot of open questions. First, can our hypergraph/matroid construction program detect new
WDVV solutions not already in the list of [23, 24]? Second, given a ‘good’ matroid, can we generate
its moduli space, e.g. by linearizing the WDVV equation around it? Third, the explicit Hamiltonian of
theN=4 four-particle Calogero system is still unknown. Fourth, can one constructu as a path-ordered
exponential ofdf in a practical way? Fifth, what happens if we allow for twisted superfields in the
superspace approach? We hope to come back to some of these issues in the future.
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