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Abstract

We derive a new non-singular tree-level KLT relation for the n = 5-point am-

plitudes, with manifest 2(n − 2)! symmetry, using information from one-loop

amplitudes and IR divergences, and speculate how one might extend it to higher

n-point functions. We show that the subleading-color N = 4 SYM 5-point am-

plitude has leading IR divergence of 1/ǫ, which is essential for the applications of

this paper. We also propose a relation between the subleading-color N = 4 SYM

and N = 8 supergravity 1-loop 5-point amplitudes, valid for the IR divergences

and possibly for the whole amplitudes, using techniques similar to those used in

our derivation of the new KLT relation.
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1 Introduction

In the last several years there have been enormous advances in the methods for dealing

with the large N (i.e. planar) sector of N = 4 SU(N) SYM theory. There also has

been considerable progress in the understanding of N = 8 supergravity, in part because of

the surprisingly related structure of the two theories. One of the pioneering connections

between SYM and supergravity theories are the KLT relations [1], originally proved using

string theory methods [1, 2].

More recently, alternate versions of KLT relations have been presented based on field

theoretic techniques at the tree level [3, 4]. One form of these new relations has manifest

(n−3)! permutation symmetry for the n-point functions, and another has (n−2)! symmetry,

but requires regularization as a consequence of singularities. These are reviewed in section

2. They are part of a flurry of recent activity relating N = 4 SYM and N = 8 supergravity,

including [5, 6, 7, 8, 9, 10, 11, 12] (among older works see also [13, 14, 15]). Recent work

applying the KLT relations include [16, 17, 18, 19]. In section 3 we review the 1-loop

expansion of the 5-point N = 8 supergravity amplitudes, and the single and double trace

N = 4 SYM amplitudes; noting that A5;3 and the 1-loop supergravity amplitude both have

1/ǫ IR divergences.

In section 4 we present a new tree-level KLT relation for the n = 5-point amplitudes, us-

ing information from one-loop SYM and supergravity amplitudes and their IR divergences.

This results in a KLT relation for 5-point functions with 2(n − 2)! manifest symmetry,

without the need for regularization. Our KLT relations are proved explicitly in section 5

using the helicity spinor formalism and the Parke-Taylor formula. In section 6, in analogy

with our previous work [20, 21] on 4-point functions of N = 8 supergravity and subleading

color N = 4 SYM theories, both with the 1/ǫ IR divergence, we explore the possibility

that the 1-loop 5-point supergravity amplitude can be expressed as a linear combination

of the A5;3 SYM amplitudes. In particular we propose a linear relation among the 1/ǫ IR

divergences of the two theories. In section 7 we present suggestions for future work and

our conclusions in section 8.

2 KLT relations and amplitude basis

In this section, we quickly review what is known about SYM amplitudes and the KLT

relations at tree level.

At tree level, there are quadratic relations between the n-point amplitudes of N = 4

SYM and those of N = 8 supergravity, known as KLT relations. In these relations, the

helicity information is all contained within the amplitudes, and the coefficients are all

function of the kinematic invariants sij only.
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The color-dressed tree amplitude An of N = 4 SYM is related to the color-ordered tree

amplitude An by (using the notation in [10])

Atree
n (12...n) = gn−2

∑

σ∈Sn/Zn

Tr (T aσ(1) ...T aσ(n))Atree
n (σ(1)...σ(n))

= gn−2
∑

P (23...n)

Tr [T a1T aP (2) ...T aP (n) ]Atree
n (12...n) (2.1)

where 1 is fixed and P (23..n) is a permutation of 2, 3, ..., n. We define

f̃abc = i
√
2fabc = Tr ([T a, T b]T c) (2.2)

Note that from now on, we will drop the index tree from the SYM and supergravity

amplitudes, and keep the 1− loop index on the 1-loop amplitudes only.

For the n-point color-ordered tree amplitudes, there is a basis of (n − 2)! amplitudes

out of the total n!, called Kleis-Kuijf basis, and we can find the others easily in terms of it

[10]. It is based on the existence of the Kleis-Kuijf relations (KK), which are

An(1, {α}, n, {β}) = (−1)nβ

∑

{σ}i∈OP ({α},{βT })

An(1, {σ}i, n) (2.3)

where σi are ordered permutations, i.e. that keep the order of {α} and of {βT } inside σi.

Thus the KK basis is An(1,P(2, ..., n − 1), n) where P are arbitrary permutations.

Using cyclicity, reflection invariance,

An(12...n) = (−1)nAn(n...21) (2.4)

and the KK relations (2.3), we can reconstruct all the n! amplitudes from the KK basis.

The color-ordered amplitudes An(k) of the KK basis are written as sums over Feynman

diagrams, each giving a numerator and a multiple pole, of the generic type

An(k) =
∑

ak

nak

(
∏

sl)ak
(2.5)

Then the color-dressed amplitude is

An =
∑

i

sgnicini

(
∏

j sj)i
(2.6)

where sgni are signs, ci are color factors, made up of Feynman diagrams for f̃abc, satisfying

Jacobi-type identities,

ci + cj + ck = 0 (2.7)

One can then find, as Bern, Carrasco and Johansson (BCJ) showed [10], corresponding

numerators satisfying satisfying the same Jacobi-type identities,

ni + nj + nk = 0 (2.8)
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which can be solved in terms of (n−2)! independent numerators, leading to a linear relation

in the KK basis |A >= M |N >. Then one obtains graviton scattering amplitudes as

Mn,sugra =
∑

i

niñi

(
∏

j sj)i
(2.9)

where (c̃i, ñi) correspond to another or the same gauge theory. There are generalized gauge

invariances acting on the numerators which leave the Jacobi identities intact, such that one

can find (n− 3)! independent numerators or amplitude from which to generate the rest.

The KLT relations relate graviton tree amplitudes with sums of squares (products) of

gauge tree amplitudes. The original KLT relations were derived from string theory in the

α′ → 0 limit [1, 2], and can be expressed as (we use the notation of [13])

Mn(12...n) = (−1)n+1
[

An(12...n)
∑

perms

f(i1...ij)f̄(l1...lj′)×

×An(i1, ..., ij , 1, n − 1, l1, ..., lj′ , n)
]

+ P(2, ..., n − 2)

f(i1, ..., ij) = s(1, ij)

j−1
∏

m=1

(

s(1, im) +

j
∑

k=m+1

g(im, ik)
)

f̄(l1, ..., lj′) = s(l1, n− 1)

j′
∏

m=2

(

s(lm, n− 1) +

m−1
∑

k=1

g(lk, lm)
)

(2.10)

where ’perms’ are (i1, ..., ij) ∈ P(2, ..., n/2), (l1, ..., lj′ ∈ P(n/2 + 1, ..., n − 2), j = n/2 −
1, j′ = n/2− 2 and gi,j = sij if i > j and zero otherwise.

In [3] and [4], new forms of the KLT relations for any n-point function were found.

They are both written in terms of the functions

S[i1...ik|j1...jk] =
k
∏

t=1

(sit1 +

k
∑

q>t

θ(it, iq)sitiq)

S̃[i1...ik|j1...jk] =
k
∏

t=1

(sjtn +

k
∑

q<t

θ(jq, jt)sjqjt) (2.11)

where θ(it, iq) is zero in (it, iq) has the same order in both sets I = {i1, ..., ik} and J =

{j1, ..., jk} and is 1 otherwise, and similarly for θ(jq, jt).

A form of KLT relations was found in [3], but need to be regularized, due to a singular

denominator,

Mn = (−1)n
∑

γ,β

Ãn(n, γ2,n−1, 1)S[γ2,n−1, β2,n−1]p1An(1, β2,n−1, n)

s12...n−1

Mn = (−1)n
∑

β,γ

An(n, β2,n−1, 1)S̃ [β2,n−1, γ2,n−1]pnÃn(1, γ2,n−1, n)

s23...n
(2.12)
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however they have a large (n−2)! manifest symmetry. Another set was proven in [4] which

is non-singular,

Mn = (−1)n+1
∑

σ∈Sn−3

∑

α∈Sj−1

∑

β∈Sn−j−2

An(1, σ2,j , σj+1,n−2, n− 1, n)S[ασ(2),σ(j) |σ2,j]p1

×S̃[σj+1,n−2|βσ(j+1),σ(n−2), n]pnÃn(ασ(2),σ(j), 1, n − 1, βσ(j+1),σ(n−1) , n) (2.13)

but with only (n− 3)! manifest symmetry.

4-point

The color factors for the SYM 4-point functions are c(ij; kl) ≡ faiajbf bakal , or in an

obvious notation

cu ≡ f̃a4a2bf̃ ba3a1 ; cs ≡ f̃a1a2bf̃ ba3a4 ; ct ≡ f̃a2a3bf̃ ba4a1 (2.14)

satisfying cu = cs − ct (thus with a slightly different sign convention than in the general

case). One can also find numerators ns, nt, nu satisfying the same Jacobi identity nu =

ns − nt. Using cyclicity and reflection invariance one is left with 3 amplitudes, which can

be written in terms of the numerators as

A4(1234) =
ns

s
+

nt

t
A4(1342) = −nu

u
− ns

s
A4(1423) = −nt

t
+

nu

u
(2.15)

The color-dressed amplitude is then written as

Atree
4 (1234) = g2[f̃a2a3cf̃ ca4a1A4(1234) + f̃a1a3cf̃ ca4a2A4(2134)]

= g2
[ctnt

t
+

cunu

u
+

csns

s

]

(2.16)

and the gravity amplitude is

−iM4(1234) =
n2
s

s
+

n2
t

t
+

n2
u

u
(2.17)

The KK basis is made up of 2 amplitudes, Atree
4 (1234) and Atree

4 (1324), but using the

numerator gauge invariance, we can prove that only one is independent, i.e. Atree
4 (1234),

and we can isolate the helicity information in a factor K. The non-singular KLT relation

is

M4(1234) = −s12A(1234)A(1243) (2.18)

and can be rewritten as the fact that the helicity factor of M4 is the square of the helicity

factor of A4.

5-point

The color factors are defined as

c(ij; k; lm) ≡ f̃aiajbf̃ bakcf̃ clm (2.19)
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One can define corresponding numerators n(ij; k; lm) satisfying the relations

n(ij; k; lm) = −n(ji; k; lm) = −n(ij; k;ml)

n(ij; k; lm) = −n(ml; k; ji) (2.20)

besides the Jacobi identities

n(ij; k; lm) + n(ki; j; lm) + n(jk; i; lm) = 0 (2.21)

The color-dressed amplitude is

Atree
5 = g3

∑

15 terms

n(ij; k; lm)c(ij; k; lm)

sijslm
(2.22)

Then the gravity amplitude is

−iM5(12345) =
15
∑

i=1

(ni)
2

(sabscd)i
=

∑

15 terms

(n(ij; k; lm))2

sijslm
(2.23)

The usual KLT relation is

M5 = s12s34A(12345)Ã(21435) + s13s24A(13245)Ã(31425) (2.24)

and has (n− 3)! = 2! symmetry, whereas the KLT relations (2.13) become, explicitly,

M5 =
∑

σ,σ̃∈S2

Ã(45, σ̃23, 1)A(1, σ23, 45)S[σ̃2,3|σ2,3]p1

= s12s13(A(45231)A(12345) +A(45321)A(13245)) + s13(s12 + s23)A(45231)A(13245)

+s12(s13 + s23)A(45321)A(12345)

M5 =
∑

σ,σ̃∈S2

Ã(14, σ̃23, 5)A(1, σ23, 45)S̃[σ2,3|σ̃2,3]p4

= s24s34[A(12345)A(14235) +A(13245)A(14325)] + s34(s24 + s23)A(12345)A(14325)

+s24(s34 + s23)A(13245)A(14235) (2.25)

and have (n − 3)! = 2! symmetry.

3 1-loop expansion

In this section we define the 1-loop expansion of amplitudes and write relations among the

1-loop amplitudes.

At 1-loop, there are several possible trace structures, unlike at tree level, specifically

A1−loop
n (12...n) = gn

[n/2]+1
∑

j=1

∑

σ∈Sn/Sn;j

G2n;j(σ)An;j(σ(1)...σ(n))

Grn;1(1) = NcTr (T
a1 ...T an)
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Grn;j(1) = Tr (T a1 ...T aj−1)Tr (T aj ...T an)

An;j(12..., j − 1, j, j + 1, ...n) = (−1)j−1
∑

σ∈COP{α},{β}

An;1(σ) (3.1)

where αi ∈ {α} = {j−1, j−2, ..., 2, 1};βi ∈ {β} = {j, j+1, ..., n−1, n} and COP{α}, {β}
are permutations with the n fixed and keeping {α} and {β} fixed up to cyclic permutations.

Here An;j(12...n) are 1-loop color-ordered amplitudes.

But not all of the An;j are independent. In fact, there are relations among them, which

can be derived from group theory.

In particular, for 5-point amplitudes, one has a single-trace amplitudeA5;1 and a double-

trace amplitude A5;3 related by [22]

A5;3(45123) =
∑

σ∈COP 123
4

A5;1(σ(1), ..., σ(4), 5) (3.2)

The single-trace amplitude is given by

A
(1,0)
5 (12345) ≡ A5;1(12345) = −1

4
A5(12345)

∑

cyclic

F (1)(s, t,m2) (3.3)

where

F (1)(s, t,m2) = stI
(1)
5 (s, t,m2) (3.4)

is the dimensionless box, and I(1)(s, t,m2) is the 1-loop scalar box integral with momenta

3,4 in the same corner and m2 = P 2 = (p3 + p4)
2.

Substituting in (3.2), we find

A5;3(fg;hij) =
∑

abcde∈30 fixed terms

F (cde; ab)[sabcde;+;fghijA(abcde) + sabcde;−;fghijA(abedc)]

(3.5)

Here sabcde;±;fghij are signs, defined as follows. The relative sign is plus if ab belong to hij,

and minus otherwise, and the overall sign is plus if the permutation of hij inside abcde is

even, and minus if it is odd.

The 1-loop N = 8 supergravity amplitude is [23]

M1−loop
5 (12q3q2q1) = −1

2

∑

perms

sq2q1s
2
12s

2
2q3A(12q3q2q1)A(12q3q1q2)×

×
∫

dDl1
(2π)D

1

l21l
2
2l

2
3l

2
4

+O(ǫ) (3.6)

We can rewrite this in terms of the scalar 1m box I(123, 45) (with momenta 4,5 on the

same corner of the box) and the dimensionless box F (123; 45),

M1−loop
5,sugra(12q3q2q1) = −1

2

∑

30 perms

sq2q1s12s2q3A(12q3q2q1)A(12q3q1q2)[s12s2q3I(12q3; q2q1)]
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= −1

2

∑

30 perms

sq2q1s12s2q3A(12q3q2q1)A(12q3q1q2)F (12q3; q2q1) (3.7)

or

M1−loop
5,sugra(12345) = −1

2

∑

30perms

F (cde; ab)scdsdesabA(cdeab)A(cdeba) (3.8)

4 IR behaviour and KLT relation

In this section we derive the main result of the paper, a KLT relation obtained by comparing

1-loop divergences inN = 4 SYM andN = 8 supergravity. We will also use the information

described here in section 6, where we propose a relation between SYM and supergravity

amplitudes, valid at least in the IR.

The IR behaviour of the 1-loop 1m scalar box is

I4,1m(s, t,m2) =
rΓ

s12s23

{ 2

ǫ2
[(−s12)

−ǫ + (−s23)
−ǫ − (−s45)

−ǫ] + finite
}

⇒

F (cde; ab) ≃ rΓ
ǫ2

[(−scd)
−ǫ + (−sde)

−ǫ − (−sab)
−ǫ] + finite

rΓ =
Γ(1 + ǫ)Γ2(1− ǫ)

Γ(1− 2ǫ)
, (4.1)

where D = 4 − 2ǫ, giving for the IR behaviour of the double-trace 1-loop SYM

amplitude A5;3

A5;3(fg;hij) =
∑

abcd∈30 terms

F (cde; ab)[sabcde;+;fghijA(abcde) + sabcde;−;fghijA(abedc)]

∼ rΓ
ǫ2

∑

abcd∈30 terms

[s−ǫ
cd + s−ǫ

de − s−ǫ
ab ][sabcde;+;fghijA(abcde)

+sabcde;−;fghijA(abedc)] (4.2)

Organizing the coefficients of each divergence we find

A5;3(fg; lmn) ≃ rΓ
ǫ2

∑

i<j

(−sij)
−ǫ

∑

abc 6=i,j

ǫlmn[A(ijabc)] (4.3)

where ǫlmn[A(ijabc)] means A(ijabc) is multiplied by the sign of the permutation of l,m, n

inside i, j, a, b, c, and the sum over a, b, c contains all the 6 terms of the arbitrary permu-

tation of the a, b, c 6= i, j.

The leading (1/ǫ2) divergence of A5;3(45; 123) is given by

∑

i<j

∑

abc 6=i,j

ǫ123[A(ijabc)] (4.4)

which by explicit evaluation can be rewritten as

5[A(12345) +A(12354) +A(12435) +A(12453) +A(12534) +A(12543)
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−A(13254) −A(13245) +A(14235) +A(14253) +A(15234) +A(15243)] (4.5)

The leading IR divergence of A5;3 is 1/ǫ, as expected from a generalization of the subleading

color amplitude of the 4-gluon amplitude [21, 24]. Thus if there is no 1/ǫ2 divergence, (4.5)

must be zero, a fact that we will prove later in the paper.

For N = 8 supergravity, we obtain the IR behavior

M1−loop
5,sugra(12345) = −1

2

∑

30perms

F (cde; ab)scdsdesabA(cdeab)A(cdeba)

≃ − 1

2ǫ2

∑

30perms

[s−ǫ
cd + s−ǫ

de − s−ǫ
ab ]scdsdesabA(cdeab)A(cdeba) (4.6)

Organizing the terms by IR divergences, we obtain

M1−loop
5,sugra ≃ 1

ǫ2

∑

i<j

s1−ǫ
ij ×

[

∑

d

scdsdeA(ijcde)A(ijedc)

+
∑

c

sicsabA(ijabc)A(ijbac) +
∑

c

sjcsabA(ijcba)A(ijcab)
]

(4.7)

On the other hand, we know that the IR behaviour of the 1-loop n−point supergravity

amplitude is [25]

M1−loop
n (1...n) ≃ 1

ǫ2
M tree

n (1...n)
∑

i<j

s1−ǫ
ij (4.8)

which means that we must have the KLT relation

M tree
5 (12345) =

∑

d

scdsdeA(ijcde)A(ijedc) +
∑

c

sicsabA(ijabc)A(ijbac)

+
∑

c

sjcsabA(ijcba)A(ijcab), ∀(ij) (4.9)

This formula is the main result of our paper. Note that it has the larger manifest symmetry

of 2 × (n − 2)! = 2 × 3!, which is larger than that of (2.13), and even larger than that of

(2.12). Moreover (4.9) has no need to be regularized.

5 Testing the new KLT relations

5.1 Explicit proof

We have derived the tree-level KLT formula (4.9) using the IR behavior of 1-loop compu-

tations. However it is useful to prove it explicitly. To do so, we use the helicity spinor

formalism and the Parke-Taylor formula [26], which states that

An(1
+2+...i−...j−...n+) =

〈ij〉4
〈12〉〈23〉...〈n1〉 (5.1)
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or for our case, for instance choosing 1−2−,

A5(1
−2−3+4+5+) =

〈12〉4
〈12〉〈23〉〈34〉〈45〉〈51〉 (5.2)

A similar formula exists for the supergravity amplitude [13]

M5(1
−2−3+4+5+) =

〈12〉8ǫ(1234)
N(5)

(5.3)

where

ǫ(ijkl) = 4iǫµνρσk
µ
i k

ν
j k

ρ
kk

σ
l

N(5) =
4
∏

i=1

5
∏

j=i+1

〈ij〉 (5.4)

We want to prove a specific case of (4.9), namely

M5(12345) =

= s34s45A(12345)A(12543) + s53s34A(12534)A(12435) + s45s53A(12453)A(12354)

+s23s45A(12345)A(12354) + s24s35A(12435)A(12453) + s25s34A(12534)A(12543)

+s13s45A(21345)A(21354) + s14s35A(21435)A(21453) + s15s34A(21534)A(21543)

(5.5)

The others follow from permutations and symmetry.

We make use of the helicity spinor identities

〈ij〉 = −〈ji〉; [ij] = −[ji]; sij = 〈ij〉[ji]
〈ij〉〈kl〉 = 〈ik〉〈jl〉 + 〈il〉〈kj〉; [ij][kl] = [ik][jl] + [il][kj]

n
∑

i=1,i 6=j,k

[ji]〈ik〉 = 0

〈ij〉[jk]〈kl〉[li] = 1

2
[sijskl − siksjl + silsjk − ǫ(ijkl)] ⇒

ǫ(ijkl) = [ij]〈jk〉[kl]〈li〉 − 〈ij〉[jk]〈kl〉[li] (5.6)

Then we find that the right hand side of (5.5) becomes

〈12〉8
〈12〉N(5)

[

[43][54]〈14〉〈24〉〈35〉 + [35][43]〈13〉〈23〉〈54〉 + [54][35]〈15〉〈25〉〈43〉
+[32][45]〈13〉〈25〉〈24〉 + [42][53]〈14〉〈23〉〈25〉 + [52][34]〈15〉〈24〉〈23〉
+[45][53]〈14〉〈23〉〈51〉 + [53][14]〈15〉〈24〉〈31〉 + [34][15]〈13〉〈25〉〈41〉

]

=
∑

9terms

〈12〉8[ij][kl]〈1i〉〈2l〉〈jk〉
〈12〉N(5)

(5.7)

Note that the denominator of (5.7) is an even function under 1 ↔ 2, as is the numerator.

To proceed, we make further use of the identities (5.6), but in doing so we encounter

the kinematic invariants sij, which are however not independent. At 5-points, there are 5
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independent kinematic invariants, which can be taken to be si,i+1. Using k1 + .. + k5 = 0

and k2i = 0, we can find the remaing sij’s in terms of them as

s13 = s45 − s12 − s23
s24 = s51 − s23 − s34
s35 = s12 − s34 − s45
s41 = s23 − s45 − s51
s52 = s34 − s51 − s12 (5.8)

Momentum conservation implies also that we have for instance ǫ(1235) = −ǫ(1234), etc.

Finally, after a long calculation, we find that the right hand side of (5.5) is equal to

〈12〉8ǫ(1234)
N(5)

= M5(1
−2−3+4+5+) (5.9)

proving our relation.

We note however that this proof is not algorithmic, so it is unclear how we could

generalize it to other cases, e.g. to higher n-point amplitudes.

5.2 Observations on the basis of independent amplitudes and other meth-

ods

It would be useful to present a different, algorithmic, proof, as that may be useful for

generalization to n > 5. A necessary first step for such a proof would be to find an inde-

pendent basis of tree-level amplitudes. Then, also having a basis of independent kinematic

invariants si,i+1, one should express the right hand side of our KLT relation (4.9) in terms

of it, do the same for right hand side of the usual KLT (2.24), and compare.

At 5-points, according to the general discussion, there should be (n− 3)! = 2 indepen-

dent amplitudes, once we take into account the numerator gauge invariances, out of the

(n− 2)! = 6 amplitudes of the KK basis.

We can take two directions at this point. One could choose a basis of two numerators,

or a basis of two amplitudes. For the basis of numerators, we can first solve the 9 Jacobi

identities to reduce the 15 numerators to 6, the same number as the KK basis. For instance,

we can choose them, same as [11], to be n1, n6, n9, n12, n14, n15. Then the procedure chosen

in [12] is to use an explicit helicity configuration (1−2+3+4+5−), in which case one has

n2 = n3 = n4 = n5 = n7 = n8 = n11 = 0; n10 = −n13 = n6 − n1 (5.10)

and from the KK basis above only 2 are independent

n1 = n15 = n12 = −i
< 15 >3

< 23 >< 34 >
[12][45]; n6 = n14 = n9 = −i

< 15 >3

< 23 >< 34 >
[14[25]

(5.11)

We can substitute these numerators in the KK basis written as in [12] and use the

KK relations (2.3) to then write down all the amplitudes in terms of n1, n6. Then we can
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immediately check that (4.5) is indeed zero. This proves that the leading IR divergence of

A5;3 is 1/ǫ.

But despite this fact, the basis of two numerators is not the minimal one, since we have

n1

n6
= −< 51 > [12] < 24 > [45]

< 51 > [14] < 42 > [25]
=

−s51s24 + s52s14 − s54s12 + ǫ(5124)

+s51s24 + s52s14 − s54s12 + ǫ(5124)
(5.12)

and since ǫ(ijkl) is a Lorentz invariant, it can be in principle expressed in terms of the

independent invariants si,i+1, therefore n1 is linear in n6, using only si,i+1, meaning there

is only one independent numerator.

In fact, we have checked that if we treat n1 and n6 as independent, we find that

the previously proven KLT relations (2.25) seem not to be satisfied, meaning that we

actually need to express everything in terms of a single independent numerator to obtain

the expected result.

We could then use (5.12) to express everything in terms of a single independent nu-

merator, and thus obtain an algorithmic method of checking relations, but unfortunately

in practice it appears excessively complicated.

An alternative, used in [11], is to write down a matrix constraint equation in the KK

basis of 6 amplitudes, written formally as the vector |A >, of the type C|A >= 0, but with

C of rank 4, meaning only 4 out of these 6 constraints are independent. We can then choose

two apparently independent amplitudes, for instance A1 ≡ A(12345) and A6 ≡ A(13245),

and express all the others terms of them.

We have checked that if we do that, we get now an apparent mismatch for our KLT

relation (4.9), which we have however already proven explicitly. That means that as seen

before, in fact only one amplitude is truly independent, a fact that to our knowledge has

not been appreciated before. However we are not sure how to write the extra independent

constraint on the vector |A > and obtain an alternative algorithmic method of checking

relations.

The existence of a single independent amplitude A5(12345) in turn means the possibility

of writing a KLT relation of the type M5(12345) = B[A5(12345)]
2 , with B depending only

on sij, exactly as in the case of 4-point amplitudes (2.18), but we will not pursue this

further.

In fact, as we already described in section 2, for general n−point amplitudes, on the

(n − 2)! KK basis of amplitudes |A >, there is a linear matrix constraint (obtained from

the generalized gauge invariances acting on numerators) C|A >= 0, given explicitly in

[11], where C has rank (n − 3)(n − 3)!, equaling 4 in our n = 5 case, and leaving (n − 3)!

independent amplitudes, 2 in our case. Since we saw that for n = 5 there is one more

constraint, it means the general case must also be modified. An interesting possibility that

should be explored is that in fact there is only a single independent amplitude for any n.

That in turn would present the possibility of a relation Mn(12...n) = B[An(12...n)]
2, with

B depending only on sij .
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6 Subleading SYM vs. supergravity relation

Let us recall the leading color, and subleading color-ordered, L-loop, 4-gluon amplitude

A4;1 = g2aL
[

A
(L,0)
4;1 +

1

N2
A

(L,2)
4;1 + ...

]

A4;3 = g2aL
[ 1

N
A

(L,1)
4;3 +

1

N3
A

(L,3)
4;3 + ...

]

a ≡ g2N

8π2

(

4πe−γ
)ǫ

(6.1)

with the series ending at the N -independent amplitude A(L,L). The leading-color term

A(L,0) comes from planar diagrams, while the subleading color amplitudes are A(L,1), ...,

A(L,L). It was shown in [21, 24] that the leading IR behavior of the subleading color

amplitude A
(L,k)
4;3 ∼ 1/ǫ2L−k, in contrast with the 1/ǫ2L IR behavior of A

(L,0)
4;1 . In particular

A
(1,1)
4;3 ∼ 1/ǫ. It was then shown [21] that after the tree amplitudes are factorized off,

the L = 1 subleading color N = 4 SYM 4-point amplitude is proportional to the L = 1,

4-graviton amplitude of N = 8 supergravity. That is, the 1-loop N = 8 supergravity

amplitude can be expressed in terms of A4;3, noting that they both have 1/ǫ IR behavior.

Similar results hold for L = 2 as well.

Motivated by the fact that the leading IR divergence of the n = 5-point supergrav-

ity amplitude and of A5;3 are both of order 1/ǫ at 1-loop, in this section we investigate

whether M1−loop
5 can be expressed as a linear combination of A5;3 amplitudes. We will use

information from section 4 and find a relation valid for IR divergences, and show how it

could extend for the full amplitudes.

The strategy is as follows. Based on what happened at 4−points at 1− and 2−loops,

we want to find M1−loop
5 as a linear combination of the A5;3 amplitudes. We will first

analyze such a relation, impose consistency conditions on it with the hope of obtaining a

unique formula valid for IR divergences. We will then write down the formula that would

be needed to be satisfied in order for our relation to extend to the full amplitudes.

In analogy with with the 4-point function, we would like to find a relation of the type

M1−loop
5,sugra(12345) =

∑

i∈fghij

βiA5;3(i)

=
∑

abcde∈30 fixed terms

F (cde; ab)
∑

i∈fghij

βi[sabcde;+;iA(abcde) + sabcde;−;iA(abedc)]

(6.2)

On the other hand, we know that

M1−loop
5,sugra(12345) =

∑

abcde∈30 fixed terms

F (cde; ab)αabcde (6.3)

where from (3.8),

αabcde = −1

2
scdsdesabA(cdeab)A(cdeba) (6.4)
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which means that we need

αabcde =
∑

i∈fghij

βi[sabcde;+;iA(abcde) + sabcde;−;iA(abedc)] (6.5)

to be satisfied, which are 30 equations for 10 unknowns (βi), so (6.5) are not guaranteed

to have solutions.

Let us understand the counting better. To start, there are 20 independent A5;3’s (terms

in (fghij)), corresponding to S5/(Z2 × Z3), i.e. 5!/(2 × 3) = 20. They can be found by

making a permutation of 12345. But we can reduce the amplitudes further. We note that

the rule for the overall sign of the coefficient of the box is plus if the permutation of hij

inside abcde is even and minus if it’s odd means that

A5;3(fg;hij) = −A5;3(fg; ihj) (6.6)

and since we have also Z2 × Z3 symmetry, there are only 10 independent A5;3’s, corre-

sponding to picking fg out of 1, 2, 3, 4, 5. Then indeed, there are 10 unknowns βi as well,

and we could also relabel βi as β(fg). As for the number of equations, there are as many as

there are coefficients of boxes F (cde; ab). Since the box has a symmetry under exchange

of a, b and of c, e, we have 5!/(2 × 2) = 30 terms, therefore 30 equations.

The 30 equations can then be rewritten, using the explicit form of αabcde, and a new

notation that will prove useful, as

−1

2
sabsbcsdeA(abcde)A(abced) =

∑

fg;hij

β(fg)ǫhij[A(abcde)]
(

1− ǫhij(de)
A(abced)

A(abcde)

)

(6.7)

where ǫhij(de) is plus if both d, e belong to h, i, j, and minus otherwise.

In order to see if a unique solution for the βi is possible, we will match the IR behaviours

on the two sides of (6.2). Expressing the IR behaviours of the lhs and the rhs, we get

1

ǫ2
M5(12345)

∑

i<j

sij(−sij)
−ǫ =

rΓ
ǫ2

∑

k∈fg;lmn

βk
∑

i<j

(−sij)
−ǫ

∑

abc 6=i,j

ǫlmn[A(ijabc)]] (6.8)

which means that we need, using the vanishing of (4.5),

M5(12345)sij =
∑

k∈fg;lmn

βk
∑

abc 6=i,j

ǫlmn[A(ijabc)] (6.9)

If we denote the M5(12345) by just M5, then the lhs is a vector column of (ij), M5sij.

Also denote
∑

abc 6=i,j ǫlmn[A(ijabc)] as N(ij),(fg), so that

N(ij),(fg)β(fg) = M5sij ⇒ [β(fg)] = [N(ij),(fg)]
−1M5sij (6.10)

Note that the index (fg) on the matrix N has 10 values, and these values can also be

identified by the lmn of ǫlmn[A(ijabc)], since it corresponds to the same 10 terms, picking
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out a group (fg) or (lmn) out of 1, 2, 3, 4, 5. In ǫlmn[A(ijabc)], l,m, n can be put in the

order they appear in 1, 2, 3, 4, 5. Since the notation is quite dense, let us give a few examples

N(12),(12) =
∑

perm.of(345)

ǫ345[A(12(345))]

= A(12345) −A(12543) −A(12435) +A(12534) −A(12354) +A(12453)

N(12),(13) =
∑

perm.of(345)

ǫ245[A(12(345))]

= A(12345) −A(12543) +A(12435) −A(12534) −A(12354) +A(12453)

N(13),(13) =
∑

perm.of(245)

ǫ245[A(13(245))]

= A(13245) −A(13542) −A(13425) +A(13524) −A(13254) +A(13452)

(6.11)

At this point however we note that the vanishing of the leading IR divergence in (4.4)

means that
∑

(ij)

N(ij),(fg) = 0 (6.12)

i.e., that the matrix N has rank 9 instead of 10. But, since
∑

(ij) sij = 0 as we can check

by summing over (5.8), in fact one of the 10 equations in (6.10) is the sum of the other 9,

and can be dropped. We need then to work with the corresponding 9 × 9 reduced matrix

Nred;(ij),(fg) and give the 10th coefficient β(fg) an arbitrary value.

Therefore we have found a linear relation, (6.2), with coefficients obtained from (6.10),

which is satisfied by the IR divergences, and containing an arbitrary parameter. Of course,

it is still not clear that the remaining β(fg) are unique. For that, one must calculate the

rank of Nred. If its rank is less than 9, the solution is parametrized by more than one

parameter, since then some of the remaining β’s will be undetermined. As the algebra is

quite involved, we will leave this for further work.

In order to see if (6.2) is satisfied also for the full amplitude, one must substitute the

solution for β(fg) back in (6.7) and see if these equations are satisfied, since now we need to

check whether the 30 equations are satisfied by substituting the 10 unknowns β(fg) solved

as in (6.10). That is, we need to check whether

−1

2
s12s23s45A(12345)A(12354) =

∑

fg;hij

[N(ij),(fg)]
−1M5sij [s45123;+;(fg)A(12345) − s45123;−;(fg)A(12354)] (6.13)

and 29 other equations. In the notation of (6.7), we have

−1

2
sabsbcsdeA(abcde)A(abced) =

= M5

∑

fg;lmn

[N(ij),(fg)]
−1sijǫlmn[A(abcde)]

(

1− ǫhij(de)
A(abced)

A(abcde)

)

N(ij),(fg) ≡
∑

abc 6=i,j

ǫlmn[A(ijabc)] (6.14)
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Here when we write [N(ij),(fg)]
−1sij we mean [Nred;(ij),(fg)]

−1sij for 9 of the 10 values, and

an arbitrary value for the tenth. Note that if these relations are true, they will also be

of KLT type, since N−1 ∼ 1/A, thus the relations are of the type αM5 = AA, with α a

coefficient containing A/A terms. The relation looks however quite complicated, and we

will leave it for further work.

7 Comments on higher n−point amplitudes

In principle the strategy used in this paper can be applied to higher n−point amplitudes

by analogous methods. What is needed is an n-point generalization of the starting point;

the relation between subleading color-ordered amplitudes and the leading color-ordered

amplitude at 1-loop, which was eq. (3.2), and a relation between the 1-loop supergravity

amplitude and the tree SYM amplitudes and scalar boxes, eq. (3.6).

Then the same logic will apply. Namely one can analyze the IR behaviour of the

results for N = 4 SYM and N = 8 supergravity at 1-loop, and compare these to the

known behaviour, which would imply a relation among tree amplitudes from SYM, and

a KLT-type relation from the supergravity. Finally, one can relate the subleading-color

SYM and supergravity amplitudes, and use the consistency of the IR behaviour to fix the

proposed relation.

We see that in order to complete this program, we need both the generalization of (3.2)

and of (3.6), which are not yet available in the needed form, though it should be possible

to obtain it. We hope to come back to this issue later.

8 Conclusions

We have written a new kind of non-singular KLT relation for the 5−point amplitudes,

based on the analysis of 1-loop amplitudes. It has manifest 2(n − 2)! symmetry, which is

greater than previous known KLT relations, and also does not require regularization. We

have also explicitly checked it using helicity spinor identities. We observed for SYM that at

5-points there is a single independent tree amplitude, but using this fact in an algorithmic

method for checking identities turns out to be quite involved. Using these methods, we have

proposed that the 5-point IR divergences of N = 4 SYM and N = 8 supergravity satisfy a

linear relation: the ones of the 1-loop 5-point gravity amplitude are a linear combination

of those of the subleading-color 1-loop SYM amplitudes A5;3, in analogy with the known

4-point case [21, 24]. The consideration of this relation for the full amplitudes needs further

study.
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