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Abstract

The integral octonions arise from the octonion XY-prodécparallel is shown to exist with the quater-
nion Z-product. Connections to the laminated lattices,As, A1¢ andAz4 (Leech), are developed.
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1. Octonion Multiplication and XY-Product Variants.

Given any multiplication table for the 8-dimensional odtomalgebraQ, one can construct an infinite num-
ber of variants, isomorphic tO itself, by replacing the original product with the XY-prozctu

Aoxy B = (AX)(Y'B), (1)

whereY X must be a unit octonion, and is the identity of the new muttgilon. The octonion identity is
left unchanged in the cade’ = X 1, giving rise to the X-product:

Aoy B=(AX)(X'B). 2)

in what follows, lete,, a = 0,...,7, represent the 8 octonion units, with= 1 the identity (in[1,2]
the indexoco is used for the identity, but the index choice 0 makes it easigorogram computers to do
calculations). Our starting multiplication table is thevamonly chosen cyclic multiplication:

€a€a+1 = €aq+3, A = 15"'777 (3)

where the indices are taken modulo 7, from 1 to 7. This pdetidable is invariant with respect to both index
cycling and index doubling. That is,

€q€h = €c == €44+1€p+1 = €c41,
€aqCh = €c == €24€2p = €2¢.

2. Ag Lattices.
Representations of thBs = Ag lattice arise from the X-product. In particular, define
EO = {:tea}v
By = {(fes ey te.teq)/2: a,b,c ddistinct
ea(ep(eceq)) = £1},
—even EO U 527

Eseven ; Spar{Eeven}’

E1 = {(%ea+ep)/V2: a,bdistinct, (4)
E3 = {(X7_, +eq)/V/3: even number of +}
a,b,c,d € {0,...,7},
Zodd — = U=
— —1 —3,
gé)dd — Spar{EOdd}

(spans over the integers, 25" has 16 + 224 = 240 elements, @&t has 112 + 128 = 240 elements, each
a representation of the inner shell of Bg lattice. (One may think of thesks lattices as discrete versions of
S7, the algebra of unit octonions.)

These elements have an interesting relation to our chogenion multiplication: for allX € =¢v¢" U
Z0dd and for all pairs of octonion units,, e;, there exists a unit, such that

€q Ox € = Ee. (%)



3. Integral Octonions and the X-Product.

Define

by = (1+€1+€2+€3+64+€5+€6+67). (6)

N | =

Note that/y, like our multiplication table, is invariant with respeotihdex cycling and doubling. Therefore,
the X-product
Aoy, B = (Aly)(¢;"'B) )

is also invariant with respect to index cycling and doubliitg multiplication table is in some sense dual to
that given above:
€a O¢y €a+2 = €a+3, A = 17 ey 7.

What about the X-product

Aoj1 B = (Aly 1) (4oB)? (8)
Sinceég1 = %(1 —e1 — ... — e7) has an odd number of plus signs (as coefficients of the umisdon’t
expect the product of any two units to be another unit usirgXkfproduct. For example,
1

€1 041 €2 = 5(63 —e5 + e+ e7).

While the value on the righthand side of this equality is nobatonion unit, it is an element §v“", as are
ey andes. This is a specific example of a more general result givervibelo

In section 5 we look at the laminated lattite over the quaternion algebka This algebra is known to be
closed with respect to quaternion multiplication, givimggerto the algebra of integral quaternions. However,
surprisingly, theAg lattice £§v™ does not close with respect to our given octonion multipigca Weirdly,
the set=c""[0 — «], derived from=<"*" by replacing each occurrence &f in elements oEc¢" with e,,
and vice versa, is multiplicatively closed. These repreg@ms of unit integral octonions are also derivable
from the promised general result.

X-Product Integral Octonion Result
X € 2°% andA, B € 29" — Aoy B € Z¢V", (9)

Proof:
To prove (9) we will set up a partial multiplication table fhie =,,, (since these sets are finite, proving these
results even with a computer is not difficult). In general,

A ez andY € E°9 — Y A € 209 Ayt ¢ Zoddf

and
X,V e 204 — yiXx ¢ meven,

(Interestingly these results are not commutative. For @tenX € =;, andY € Z3 =— Y X, XYT ¢
Eeven[0 — a], (a # 0).) Therefore,

X € 2°% andA, B € 29" — AXT € 2°4T andX B € 2°% — Aoy; B = (AXT)(XB) € 2",

That is,=<v¢", which is not multiplicatively closed with respect to the@m octonion product, is closed with
respect to these X-products.



As a corollary, given the identity
A(BX) = (Aoxt B)X.

we see thaE*”*” closes as a set of actions on ea¢he =°%¢, and more generally od&°? itself [10]. Note
that of all the=y, only =3 is not invariant with respect to octonion conjugation.

4. Integral Octonions, the XY-Product and A L attices.

The set ofX, Y € O satisfying the property that for all units ande; there exists some unit such that,
€a OXY €bp = (eaX)(Y_leb) = *e,, (10)

gives rise to two copies of ¢ [6]. In particular, (10) is satisfied K € Z°¢ve™ U Z°?? and there exists some
uniteg such thal” = +¢,X. Inthe cas@ ~! = X—leg one can show using X-product identities that for all
A, Be€O,

(AX)((Xtel)B) = Aox (e}, ox B). (11)

If X! ¢ =99 thenZ=°"*" is closed with respect to X-product multiplication. Af, B € Z°v*", then
C = (el ox B) € 2", s0A ox C € Z°*", That s,

A B ez andX ! € 29 — (AX)((Xte})B) € Zevem.

So&gve™ are octavian integers with respect to this XY-product. Teitity of this set of integers is jusj;.
But (9) can clearly be generalized even further:

XY-Product Integral Octonion Result
A,B € =" andX,Y € 2% and| XY ! =1 = Aoxy B € Zv", (12)

Proof:
In general, and on the assumption my computer code was vtiéhoor;

—even=oddf _ =oddf
= = == s
—odd—even __ —odd
= = == R
—oddizodd _ —even

Therefore, generalizing the results above:

—even=oddf (':odd':even __ —oddi=odd _ —=even
= = = = == = == s
—odd—even :oddT:odd) _— moddzeven _ —odd

(EoddTEodd)(HevenEoddT) — EevenEoddT — EoédT.

So there exist XY-products under which each of these laitioer shells=¢v¢", Z°d¢ and=°44f, is multi-
plicatively closed

In [1] there are seven copies of the octavian integers definethgténam =¢v¢", but needing that strange
switching of indices in each case to make the set multipliebtclosed E<”“"[0 — a]). We see here that the
XY-product can be used to unravel the octavian integersa&owb need only usgc’¢", not a rotated copy.
This is reminiscent of the way the XY-product unravels ttyalln particular, for allg € SOg acting onO
there exist unit element¥, Y € O (not unique) such that for all, B € O,

glAoxy B] = g[A]g[B]. (13)



That is, replacing our starting product with the XY-prodootthe left hand side above means we needn't
perform triality rotations ory to achieve equality. I§ € G2, the automorphism group @, thenX =Y =
+1, sog[AB] = g[A]g[B].

As toZ°"*" [0 — a] being multiplicatively closed, note that if we defidg = (1 + e,)/v/2, then

EE'UE"L [O _ a] — daEE'Uenda.
Therefore, exploiting a Moufang identity and the result)(@Bove, noting thad,, € 2°?¢ andd, € Z°%f,
=even [O _ Q]Eeuen [O _ CL] — (daEevenda)(daEeuenda)
— da((Eevenda)(daEeven))da
— da (Eeven)da — Ee’uen [0 _ a]_

That is,=¢"¢"*[0 — a| are octavian integers as a consequence of a special afplica(12).

5. Integral Quaternions, the Z-Product and A, L attices.

The 4-dimensional quaternion algebk,is associative, so forall, B, X € H, X # 0, (AX)(X'B) =
AB. H hasn't got an X-product like that defined fOr. But the generalization of the XY-product leads to the
following definition of the quaternion Z-product:

(AX)(Y'B)=AXY'B= Aey; B= AZB, (14)

whereZ = XY must be s unit quaternion. The automorphism grould &f SO3. A general element of the
full SO, group of actions ot takes the form

glA|=UAV !, (15)
with V—1U a unit quaternion. LeZ = V~1U, then
g[A ez B] = g[Alg[B]. (16)

If g € SO3,thenZ = 1, andg[AB] = g[A]g[B]. So the quaternion Z-product bears the same relationship to
S03 andSOy as the octonion XY-product bearsd@ andSOs.
Letg.., m=0,1,2,3, be a quaternion basis, wjththe identity. Define

Ty = {:tQWL}a

Ty = {(£gm £ qn £ qr £ ¢5)/2 : m,n,r, s distinct

TE’UE"L — "I‘O U ’I‘2’

D" = spa{ T}, an
Ti=  {(£g¢m £ ¢n)/V2:m,ndistinct,

'rodd — Tl,

Dzdd — Spar{'rodd}

Both Yeve™ andY°? have 24 elements, and constitute the inner shell?,dhttices. The elemenfsever
are the Hurwitz units of the set of Hurwitz integers ($&p. They are multiplicatively closed. That being
the caseYev*" is multiplicatively closed using the Z-product for &l € Yev*", If X,Y € Y° and the
Z-product withZ = XY preserves quaternion uniig,( e~ ¢, = +q:), then there exists some indg¢such
thatY = +¢; X. Above we saw that in expanding this unit preserving propidm the X-product to the
XY-product led to an expansion of associateégd= Ag lattices toA;4. Here we get an expansionbf, = A4
to Es = As. | will not work out the details here. They are similar to thenmcomplicated case developed in
[6]. | conclude this section by noting th#tv*" is closed under the Z-product fé@r = X YT € Tever,



6. Octonion Triples and the Leech L attice.
Before proceeding we’ll define variations on thg:

Ao = {xeq},

Az = {(£eq ey £ec+eq)/2: a,b,c ddistinct
ea(ep(eceq)) = £1},

AG’UGTL J— AO U A27

A = {(eq £ ep) : a,bdistinct},

Az = {(ZZ:O +e,)/2 : even number of +%,
a,b,c,d €{0,...,7},
Aodd — A U As.

The only change is to the odd elements, which now have rdtaaradficientsl and%. So these elements are
no longer unit octonions, ant € A°%. Still, in general, ifU € A, any k, then for all basis elements
andey, there exists an,. such that

(eaU) (U ep) = +e. = (ea(epU))U L. (18)

The last equality follows from Moufang identities, and itphies by induction that for an arbitrary set of
octonion unitse,, e, ... e4 there exists a unit,. such that

ealep(...(eqlU)...)) = xe U. (19)

That s, nested products of units from the left on &hyg A°v*" U .4°% collapse to a product of a single unit,
to within a sign. In each case, the resulting uhit. depends upofy.

In [9] | introduced a representation of the Leech lattice d®ér Quite frankly, | no longer have much
of an idea how | arrived at this representation, but moremég®obert Wilson, applying more rigorous and
reproducible mathematical methods, independently deaveepresentation af,, overO? that | will show
verifies my initial guess.

In both our papers the final result breaks up the inner shelbef which is of order 196560, into three
subsets with order® x 240 = 720, 3 x 240 x 16 = 11520, and3 x 240 x 16 x 16 = 184320, the sum of all
three orders being 196560. The biggest of these subsets @nthl want to focus on. Translating Wilson’s
notation into my own, the elements of this subset take thma for

((Pl))eq, +Pe., £(Pegy)e.),

whereP ¢ A°%1, the two+ signs are independent, the indiags: € {0, ..., 7} are independent, and to
achieve the full subset we include all permutations of thbsee octonion components. As a first step in
connecting to my representation we take the conjugate ¢f efihe three components,

(ea(boP), Le.P, *e.le,P)),

where now it is understood thé& € .4°%, and although it may seem like | am playing fast and loose with
the signs, as long as we have two independesigns on two of these three terms all is ok. Next we cyclicly
permute these three terms to the left, keepdthgigns on the second two, and repldeavith e. P (keep in
mind, this result takes advantage of sign flexibility):

(P, tec(eq(ecP)), teq(bo(e.P)) ).



The twoe,. units appearing in the second component cancel (the neggitin change we absorb into th,
leaving us with
(P, +e,P, te,(bo(e.P))) = (P, te, P, £(eqloes)(enP) ), (20)

wheree;, depends or,, e., and P. To within multiplication by a scalar, this is now in the forof the
representation presented[i@] (and | owe a big debt to Robert Wilson for putting that repnéston on a
firm mathematical footing).
The remaining elements of this representation of the Leatticé, also conforming tf8] and[11], take
the forms,
(2Q, +2e,Q, 0) = (L€P, +e,(LiP), 0), (21)

whereQ € A", or P = £,Q € A°¥, and we include all permutation3 & 240 x 16 = 11520 elements,
and note that(})~" = 1¢,)), and
(2P, 0,0), (22)

whereP € A°% and we include all permutation3 & 240 = 720 elements).

7. Motivation.

This paper has ostensibly nothing to do with physics, but mppse in exploring these ideas does. For years
| pursued applications of the four division algebrBs,C, H andO, to physics, and these efforts met with
considerable success. The dimensions of these algeb®s},18 (=2%, k = 0, 1,2, 3), are mathematically
resonant. This finite sequence of integers is associatédmytiad generative mathematical notions. But
this sequence does not include the integer 24, nor does it sakse that it should. There is another finite
sequence | suggest that is resonant in a different way: 1, 24.8This tidbit from Wikipedia in speaking
about the Leech lattice:

"This arrangement of 196560 unit balls centred about amathi ball is so efficient that there
is no room to move any of the balls; this configuration, togethith its mirror-image, is the

only 24-dimensional arrangement where 196560 unit baitsiBaneously touch another. This
property is also true in 1, 2 and 8 dimensions, with 2, 6 andudtballs, respectively, based on
the integer lattice, hexagonal tiling atid lattice, respectively.”

As we have seen\,, can be nicely represented in the 24-dimensi@l Likewise,Ag = Ex has a nice
representation if? (as well as in simplyD), andA; and A, find their most natural expressions@' and
R!, respectively. 1f12], inspired by all of this, | took the algebfa = R ® C ® H® O, which in part found
a roll of my application of the division algebras to physiesiy hyper-spinor spacg&?, and expanded this
to

T°=R'®C'9H*® O°.

The spinor spac&? elegantly accounts for one generation (family) of quarks keptons (and their anti-
particles), but theoretical consensus puts the total numbfamilies at three. Clearly, i’? accounts for
one family, theril'® would account for three, but the dimensionalityKsf is wrong for a conventional spinor
space. | do not view this as a deterrence, but as indicatairttile mathematical tools needed to fully exploit
TS may not yet be available to us. My suspicion is that ternagglalas may be involvedi3]). Ag, as we
have seen, can be given an algebraic structure, turningathice into the octavian integers. The question is:
canAy4 be given its own algebraic structure, perhaps involvingeey multiplication? No idea yet.



Finally, and to cement the notion that | may be barking madekent some possibly coincidental nu-
merology thoughts. The two finite sequences of resonantrdiifors given above are

n 12 3 4
2" 1 2 4 8
F, 1.1 2 3

1F2" 1 2 8 24

andF;, are the first 4 numbers in the Fibonacci sequence, starimg fr= 1.

Why should the Fibonacci sequence have anything to do wiliitlite sequence of dimensions associated
with special lattices? No idea, and | wouldn’t mention it bheacept for the following coincidences relating
to the sequence of corresponding kissing numbers, 2, 6,1B38%560, for the associated latticks, Az, As,

A24:
3 4 6 8
H F, =2, HFk =6, H F), = 240, H F, = 196560
k=1 k=1 k=1 k=1 3

Why 3,4,6,8? Not sure, although each is 1 plus a prime for thediprimes, 2,3,5,7. So? Not sure. Haven't
a clue. I'd like a clue, but - sadly - I don’t have one.

8. Some thoughtsfrom the original version of this paper.

The setsty, defined in (4) are associated with our chosen multiplicatadsie defined in (3). Any change
in the multiplication table will result in a change in thesgss Each element in someE,, gives rise to an
X-product variant of our original multiplication table thimkes octonion units to units (see (5)). Associated
with this new multiplication table will be an altered coltem of sets like our originak,. We will denote

these altered sets
X—

—

iy
In particular, the set§ =, and* =, will not be altered, as they are independent of the multion table.
However,

X2y = {(Fe, + ey +e.Feq)/2: a,b,c,ddistinct e, ox (e ox (ecox eq)) = +1},

andX =3 will be similar to =3, with the number of minus signs in the sum being odd or evepedging on
the product.

One of the remarkable properties of the octonions is thatsamy of nested products from the left (or
right) can be expressed as a sum of nested products fromgthe(oir left). In particular, for all X in some
=k, and all indicesa =1,...,7,

Xe, = %(—eaX + 6p(€qX) + er(esX) + eu(evX))v (23)

where the indices a,p,q,r,s,u,v are distinct, accountimgll the indices from 1 to 7, and,e, = e,es =
ew€y = €4. Using the identity (20) we can rewrite (27):

1
Xe, = 5(—ea—|—ep Ox €q+€r0x s+ €y, 0x €y)X.

By (5) this reduces to,
1
Xe, = 5(—(3@ +epte.teq)X =PX.



P must have a norm 1, and the only way for such a linear conibimat octonion units to have norm 1 is if
eitherP = +e,, (eg., this certainly occurs iX = +1), or if all the indices a,b,c,d are distinct. Because the
original set of 7 indices accounted for all the indices frono I, in this latter case the remaining 4 indices
above must satisfy

€q ox (€pox (ecox €q)) = £1.

Soin general,
Xe, = PX, with P e Xzever,
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