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Abstract

The integral octonions arise from the octonion XY-product.A parallel is shown to exist with the quater-
nion Z-product. Connections to the laminated lattices,Λ4, Λ8, Λ16 andΛ24 (Leech), are developed.
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1. Octonion Multiplication and XY-Product Variants.

Given any multiplication table for the 8-dimensional octonion algebra,O, one can construct an infinite num-
ber of variants, isomorphic toO itself, by replacing the original product with the XY-product,

A ◦XY B ≡ (AX)(Y †B), (1)

whereY X† must be a unit octonion, and is the identity of the new multiplication. The octonion identity is
left unchanged in the caseY † = X−1, giving rise to the X-product:

A ◦X B ≡ (AX)(X−1B). (2)

in what follows, letea, a = 0,...,7, represent the 8 octonion units, withe0 = 1 the identity (in[1,2]
the index∞ is used for the identity, but the index choice 0 makes it easier to program computers to do
calculations). Our starting multiplication table is the commonly chosen cyclic multiplication:

eaea+1 = ea+3, a = 1, ..., 7, (3)

where the indices are taken modulo 7, from 1 to 7. This particular table is invariant with respect to both index
cycling and index doubling. That is,

eaeb = ec =⇒ ea+1eb+1 = ec+1,
eaeb = ec =⇒ e2ae2b = e2c.

2. Λ8 Lattices.

Representations of theE8 = Λ8 lattice arise from the X-product. In particular, define

Ξ0 = {±ea},
Ξ2 = {(±ea ± eb ± ec ± ed)/2 : a, b, c, d distinct,

ea(eb(eced)) = ±1},
Ξeven = Ξ0 ∪ Ξ2,
Eeven
8 = span{Ξeven},

Ξ1 = {(±ea ± eb)/
√
2 : a, b distinct},

Ξ3 = {(∑7

a=0
±ea)/

√
8 : even number of +’s},

a, b, c, d ∈ {0, ..., 7},
Ξodd = Ξ1 ∪ Ξ3,
Eodd
8 = span{Ξodd}

(4)

(spans over the integers, Z).Ξeven has 16 + 224 = 240 elements, andΞodd has 112 + 128 = 240 elements, each
a representation of the inner shell of anE8 lattice. (One may think of theseΛ8 lattices as discrete versions of
S7, the algebra of unit octonions.)

These elements have an interesting relation to our chosen octonion multiplication: for allX ∈ Ξeven ∪
Ξodd, and for all pairs of octonion unitsea, eb, there exists a unitec such that

ea ◦X eb = ±ec. (5)



3. Integral Octonions and the X-Product.

Define

ℓ0 =
1

2
(1 + e1 + e2 + e3 + e4 + e5 + e6 + e7). (6)

Note thatℓ0, like our multiplication table, is invariant with respect to index cycling and doubling. Therefore,
the X-product

A ◦ℓ0 B = (Aℓ0)(ℓ
−1

0 B) (7)

is also invariant with respect to index cycling and doubling. Its multiplication table is in some sense dual to
that given above:

ea ◦ℓ0 ea+2 = ea+3, a = 1, ..., 7.

What about the X-product
A ◦ℓ−1

0

B = (Aℓ−1

0 )(ℓ0B)? (8)

Sinceℓ−1

0 = 1

4
(1 − e1 − ... − e7) has an odd number of plus signs (as coefficients of the units),we don’t

expect the product of any two units to be another unit using this X-product. For example,

e1 ◦ℓ−1

0

e2 =
1

2
(e3 − e5 + e6 + e7).

While the value on the righthand side of this equality is not an octonion unit, it is an element ofEeven
8 , as are

e1 ande2. This is a specific example of a more general result given below.
In section 5 we look at the laminated latticeΛ4 over the quaternion algebraH. This algebra is known to be

closed with respect to quaternion multiplication, giving rise to the algebra of integral quaternions. However,
surprisingly, theΛ8 latticeEeven

8 does not close with respect to our given octonion multiplication. Weirdly,
the setΞeven[0 − a], derived fromΞeven by replacing each occurrence ofe0 in elements ofΞeven with ea,
and vice versa, is multiplicatively closed. These representations of unit integral octonions are also derivable
from the promised general result.

X-Product Integral Octonion Result

X ∈ Ξodd, andA,B ∈ Ξeven =⇒ A ◦X† B ∈ Ξeven. (9)

Proof:
To prove (9) we will set up a partial multiplication table fortheΞm (since these sets are finite, proving these
results even with a computer is not difficult). In general,

A ∈ Ξeven, andY ∈ Ξodd =⇒ Y A ∈ Ξodd, AY † ∈ Ξodd†,

and
X,Y ∈ Ξodd =⇒ Y †X ∈ Ξeven.

(Interestingly these results are not commutative. For example, X ∈ Ξ1, andY ∈ Ξ3 =⇒ Y X,XY † ∈
Ξeven[0− a], (a 6= 0).) Therefore,

X ∈ Ξodd, andA,B ∈ Ξeven =⇒ AX† ∈ Ξodd† andXB ∈ Ξodd =⇒ A ◦X† B = (AX†)(XB) ∈ Ξeven.

That is,Ξeven, which is not multiplicatively closed with respect to the given octonion product, is closed with
respect to these X-products.2



As a corollary, given the identity
A(BX) = (A ◦X† B)X.

we see thatΞeven closes as a set of actions on eachX ∈ Ξodd, and more generally onΞodd itself [10]. Note
that of all theΞk, onlyΞ3 is not invariant with respect to octonion conjugation.

4. Integral Octonions, the XY-Product and Λ16 Lattices.

The set ofX,Y ∈ O satisfying the property that for all unitsea andeb there exists some unitec such that,

ea ◦XY eb = (eaX)(Y −1eb) = ±ec, (10)

gives rise to two copies ofΛ16 [6]. In particular, (10) is satisfied ifX ∈ Ξeven ∪ Ξodd and there exists some
unit ed such thatY = ±edX . In the caseY −1 = X−1e†d one can show using X-product identities that for all
A,B ∈ O,

(AX)((X−1e†d)B) = A ◦X (e†d ◦X B). (11)

If X−1 ∈ Ξodd, thenΞeven is closed with respect to X-product multiplication. IfA,B ∈ Ξeven, then
C = (e†d ◦X B) ∈ Ξeven, soA ◦X C ∈ Ξeven. That is,

A,B ∈ Ξeven andX−1 ∈ Ξodd =⇒ (AX)((X−1e†d)B) ∈ Ξeven.

SoEeven
8 are octavian integers with respect to this XY-product. The identity of this set of integers is justed.

But (9) can clearly be generalized even further:

XY-Product Integral Octonion Result

A,B ∈ Ξeven andX,Y ∈ Ξodd† and|XY −1| = 1 =⇒ A ◦XY B ∈ Ξeven. (12)

Proof:
In general, and on the assumption my computer code was without error:

ΞevenΞodd† = Ξodd†,
ΞoddΞeven = Ξodd,
Ξodd†Ξodd = Ξeven.

Therefore, generalizing the results above:

(ΞevenΞodd†)(ΞoddΞeven) = Ξodd†Ξodd = Ξeven,
(ΞoddΞeven)(Ξodd†Ξodd) = ΞoddΞeven = Ξodd,
(Ξodd†Ξodd)(ΞevenΞodd†) = ΞevenΞodd† = Ξodd†.

So there exist XY-products under which each of these latticeinner shells,Ξeven, Ξodd, andΞodd†, is multi-
plicatively closed.2

In [1] there are seven copies of the octavian integers defined starting fromΞeven, but needing that strange
switching of indices in each case to make the set multiplicatively closed (Ξeven[0− a]). We see here that the
XY-product can be used to unravel the octavian integers so that we need only useΞeven, not a rotated copy.
This is reminiscent of the way the XY-product unravels triality. In particular, for allg ∈ SO8 acting onO
there exist unit elementsX,Y ∈ O (not unique) such that for allA,B ∈ O,

g[A ◦XY B] = g[A]g[B]. (13)



That is, replacing our starting product with the XY-producton the left hand side above means we needn’t
perform triality rotations ong to achieve equality. Ifg ∈ G2, the automorphism group ofO, thenX = Y =
±1, sog[AB] = g[A]g[B].

As toΞeven[0− a] being multiplicatively closed, note that if we defineda = (1 + ea)/
√
2, then

Ξeven[0− a] = daΞ
evenda.

Therefore, exploiting a Moufang identity and the result (12) above, noting thatda ∈ Ξodd andda ∈ Ξodd†,

Ξeven[0− a]Ξeven[0− a] = (daΞ
evenda)(daΞ

evenda)
= da((Ξ

evenda)(daΞ
even))da

= da(Ξ
even)da = Ξeven[0− a].

That is,Ξeven[0− a] are octavian integers as a consequence of a special application of (12).

5. Integral Quaternions, the Z-Product and Λ4 Lattices.

The 4-dimensional quaternion algebra,H, is associative, so for allA,B,X ∈ H, X 6= 0, (AX)(X−1B) =
AB. H hasn’t got an X-product like that defined forO. But the generalization of the XY-product leads to the
following definition of the quaternion Z-product:

(AX)(Y †B) = AXY †B = A •Z B = AZB, (14)

whereZ = XY † must be s unit quaternion. The automorphism group ofH isSO3. A general element of the
full SO4 group of actions onH takes the form

g[A] = UAV −1, (15)

with V −1U a unit quaternion. LetZ = V −1U , then

g[A •Z B] = g[A]g[B]. (16)

If g ∈ SO3, thenZ = 1, andg[AB] = g[A]g[B]. So the quaternion Z-product bears the same relationship to
SO3 andSO4 as the octonion XY-product bears toG2 andSO8.

Let qm, m = 0,1,2,3, be a quaternion basis, withq0 the identity. Define

Υ0 = {±qm},
Υ2 = {(±qm ± qn ± qr ± qs)/2 : m,n, r, s distinct,
Υeven = Υ0 ∪Υ2,
Deven

4 = span{Υeven},

Υ1 = {(±qm ± qn)/
√
2 : m,n distinct},

Υodd = Υ1,
Dodd

4 = span{Υodd}

(17)

BothΥeven andΥodd have 24 elements, and constitute the inner shells ofD4 lattices. The elementsΥeven

are the Hurwitz units of the set of Hurwitz integers (see[1]). They are multiplicatively closed. That being
the case,Υeven is multiplicatively closed using the Z-product for allZ ∈ Υeven. If X,Y ∈ Υodd and the
Z-product withZ = XY † preserves quaternion units (qm •Z qn = ±qk), then there exists some indexj such
thatY = ±qjX . Above we saw that in expanding this unit preserving property from the X-product to the
XY-product led to an expansion of associatedE8 = Λ8 lattices toΛ16. Here we get an expansion ofD4 = Λ4

toE8 = Λ8. I will not work out the details here. They are similar to the more complicated case developed in
[6]. I conclude this section by noting thatΥeven is closed under the Z-product forZ = XY † ∈ Υeven.



6. Octonion Triples and the Leech Lattice.

Before proceeding we’ll define variations on theΞk:

A0 = {±ea},
A2 = {(±ea ± eb ± ec ± ed)/2 : a, b, c, d distinct,

ea(eb(eced)) = ±1},
Aeven = A0 ∪ A2,

A1 = {(±ea ± eb) : a, b distinct},

A3 = {(∑7

a=0
±ea)/2 : even number of +’s},

a, b, c, d ∈ {0, ..., 7},
Aodd = A1 ∪ A3.

The only change is to the odd elements, which now have rational coefficients1 and 1

2
. So these elements are

no longer unit octonions, andℓ0 ∈ Aodd. Still, in general, ifU ∈ Ak, any k, then for all basis elementsea
andeb there exists anec such that

(eaU)(U−1eb) = ±ec = (ea(ebU))U−1. (18)

The last equality follows from Moufang identities, and it implies by induction that for an arbitrary set of
octonion unitsea, eb, ... ed there exists a unitec such that

ea(eb(...(edU)...)) = ±ecU. (19)

That is, nested products of units from the left on anyU ∈ Aeven ∪Aodd collapse to a product of a single unit,
to within a sign. In each case, the resulting unit±ec depends uponU .

In [9] I introduced a representation of the Leech lattice overO
3. Quite frankly, I no longer have much

of an idea how I arrived at this representation, but more recently Robert Wilson, applying more rigorous and
reproducible mathematical methods, independently derived a representation ofΛ24 overO3 that I will show
verifies my initial guess.

In both our papers the final result breaks up the inner shell ofΛ24, which is of order 196560, into three
subsets with orders3× 240 = 720, 3× 240× 16 = 11520, and3× 240× 16× 16 = 184320, the sum of all
three orders being 196560. The biggest of these subsets is the one I want to focus on. Translating Wilson’s
notation into my own, the elements of this subset take the form

( (Pℓ†0)ea, ±Pec, ±(Pea)ec ),

whereP ∈ Aodd†, the two± signs are independent, the indicesa, c ∈ {0, ..., 7} are independent, and to
achieve the full subset we include all permutations of thesethree octonion components. As a first step in
connecting to my representation we take the conjugate of each of the three components,

( ea(ℓ0P ), ±ecP, ±ec(eaP ) ),

where now it is understood thatP ∈ Aodd, and although it may seem like I am playing fast and loose with
the signs, as long as we have two independent± signs on two of these three terms all is ok. Next we cyclicly
permute these three terms to the left, keep the± signs on the second two, and replaceP with ecP (keep in
mind, this result takes advantage of sign flexibility):

( P, ±ec(ea(ecP )), ±ea(ℓ0(ecP )) ).



The twoec units appearing in the second component cancel (the resulting sign change we absorb into the±),
leaving us with

( P, ±eaP, ±ea(ℓ0(ecP )) ) = ( P, ±eaP, ±(eaℓ0ea)(ebP ) ), (20)

whereeb depends onea, ec, andP . To within multiplication by a scalar, this is now in the formof the
representation presented in[9] (and I owe a big debt to Robert Wilson for putting that representation on a
firm mathematical footing).

The remaining elements of this representation of the Leech lattice, also conforming to[9] and[11], take
the forms,

( 2Q, ±2eaQ, 0 ) = ( ℓ†0P, ±ea(ℓ
†
0P ), 0 ), (21)

whereQ ∈ Aeven, orP = ℓ0Q ∈ Aodd, and we include all permutations (3× 240× 16 = 11520 elements,
and note that(ℓ†0)

−1 = 1

2
ℓ0)), and

( 2P, 0, 0 ), (22)

whereP ∈ Aodd, and we include all permutations (3× 240 = 720 elements).

7. Motivation.

This paper has ostensibly nothing to do with physics, but my purpose in exploring these ideas does. For years
I pursued applications of the four division algebras,R, C, H andO, to physics, and these efforts met with
considerable success. The dimensions of these algebras, 1,2, 4, 8 (=2k, k = 0, 1, 2, 3), are mathematically
resonant. This finite sequence of integers is associated with myriad generative mathematical notions. But
this sequence does not include the integer 24, nor does it make sense that it should. There is another finite
sequence I suggest that is resonant in a different way: 1, 2, 8, 24. This tidbit from Wikipedia in speaking
about the Leech lattice:

”This arrangement of 196560 unit balls centred about another unit ball is so efficient that there
is no room to move any of the balls; this configuration, together with its mirror-image, is the
only 24-dimensional arrangement where 196560 unit balls simultaneously touch another. This
property is also true in 1, 2 and 8 dimensions, with 2, 6 and 240unit balls, respectively, based on
the integer lattice, hexagonal tiling andE8 lattice, respectively.”

As we have seen,Λ24 can be nicely represented in the 24-dimensionalO
3. Likewise,Λ8 = E8 has a nice

representation inH2 (as well as in simplyO), andΛ2 andΛ1 find their most natural expressions inC1 and
R

1, respectively. In[12], inspired by all of this, I took the algebraT = R⊗C⊗H⊗O, which in part found
a roll of my application of the division algebras to physics in my hyper-spinor spaceT2, and expanded this
to

T
6 = R

1 ⊗C
1 ⊗H

2 ⊗O
3.

The spinor spaceT2 elegantly accounts for one generation (family) of quarks and leptons (and their anti-
particles), but theoretical consensus puts the total number of families at three. Clearly, ifT2 accounts for
one family, thenT6 would account for three, but the dimensionality ofT

6 is wrong for a conventional spinor
space. I do not view this as a deterrence, but as indication that the mathematical tools needed to fully exploit
T

6 may not yet be available to us. My suspicion is that ternary algebras may be involved ([13]). Λ8, as we
have seen, can be given an algebraic structure, turning thislattice into the octavian integers. The question is:
canΛ24 be given its own algebraic structure, perhaps involving a ternary multiplication? No idea yet.



Finally, and to cement the notion that I may be barking mad, I present some possibly coincidental nu-
merology thoughts. The two finite sequences of resonant dimensions given above are

n 1 2 3 4
1

2
2n 1 2 4 8
Fn 1 1 2 3

1

2
Fn2

n 1 2 8 24

andFn are the first 4 numbers in the Fibonacci sequence, starting from n = 1.
Why should the Fibonacci sequence have anything to do with this finite sequence of dimensions associated

with special lattices? No idea, and I wouldn’t mention it at all except for the following coincidences relating
to the sequence of corresponding kissing numbers, 2, 6, 240,196560, for the associated latticesΛ1, Λ2, Λ8,
Λ24:

3∏

k=1

Fk = 2,
4∏

k=1

Fk = 6,
6∏

k=1

Fk = 240,
8∏

k=1

Fk =
196560

3
.

Why 3,4,6,8? Not sure, although each is 1 plus a prime for the first 4 primes, 2,3,5,7. So? Not sure. Haven’t
a clue. I’d like a clue, but - sadly - I don’t have one.

8. Some thoughts from the original version of this paper.

The setsΞk defined in (4) are associated with our chosen multiplicationtable defined in (3). Any change
in the multiplication table will result in a change in these sets. Each elementX in someΞk gives rise to an
X-product variant of our original multiplication table that takes octonion units to units (see (5)). Associated
with this new multiplication table will be an altered collection of sets like our originalΞk. We will denote
these altered sets

XΞk.

In particular, the setsXΞ0 andXΞ1 will not be altered, as they are independent of the multiplication table.
However,

XΞ2 = {(±ea ± eb ± ec ± ed)/2 : a, b, c, d distinct, ea ◦X (eb ◦X (ec ◦X ed)) = ±1},

andXΞ3 will be similar toΞ3, with the number of minus signs in the sum being odd or even, depending on
the product.

One of the remarkable properties of the octonions is that anysum of nested products from the left (or
right) can be expressed as a sum of nested products from the right (or left). In particular, for all X in some
Ξk, and all indices a = 1,...,7,

Xea =
1

2
(−eaX + ep(eqX) + er(esX) + eu(evX)), (23)

where the indices a,p,q,r,s,u,v are distinct, accounting for all the indices from 1 to 7, andepeq = eres =
euev = ea. Using the identity (20) we can rewrite (27):

Xea =
1

2
(−ea + ep ◦X eq + er ◦X es + eu ◦X ev)X.

By (5) this reduces to,

Xea =
1

2
(−ea ± eb ± ec ± ed)X = PX.



P must have a norm 1, and the only way for such a linear combination of octonion units to have norm 1 is if
eitherP = ±em (eg., this certainly occurs ifX = ±1), or if all the indices a,b,c,d are distinct. Because the
original set of 7 indices accounted for all the indices from 1to 7, in this latter case the remaining 4 indices
above must satisfy

ea ◦X (eb ◦X (ec ◦X ed)) = ±1.

So in general,
Xea = PX, with P ∈ XΞeven.
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