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Noncommutative Geometry and Supergravity.
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A spectral action associated with an Einstein-Cartan formulation of supergravity is proposed. To
construct this action we make use of the Seeley-DeWitt coefficients in a Riemann-Cartan space. For
consistency in its construction the Rarita-Schwinger action is added to the resulting spectral action.
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I. INTRODUCTION

The equivalence principle and gauge invariance are fun-
damental pillars of the two most successful theories in
physics, general relativity and Yang-Mills theory. By
means of them the basic interactions in our Universe can
be understood, however these theories seem to be incom-
patible at the quantum level. This incompatibility might
suggest that they are theories arising from some other
more fundamental formulation. One of the most inter-
esting proposals in the literature is the spectral action
of noncommutative geometry. It involves new spectral
geometry consistent with the physical measurements of
distances. The usual emphasis on the points x ∈ M on
a geometric space is replaced by the spectrum Σ of the
Dirac operator D. It is assumed that the spectral action
depends only on Σ. This is the spectral action principle.
The spectrum is a geometric invariant that replaces dif-
feomorphism invariance. By applying this basic principle
to the noncommutative geometry defined by the standard
model it has been shown [1] that the dynamics of all in-
teractions, including gravity are given by the spectral
action. Its heat kernel expansion in terms of the Seeley-
De Witt coefficients an results in an effective action up
to the coefficient considered. For the gravitational sector
of the spectral action, the first three terms on the expan-
sion correspond to a constant, the usual Einstein-Hilbert
action plus Weyl gravity and a Gauss-Bonnet topological
invariant.
The Dirac operator considered in the spectral action

principle proposal [1–4] is constructed with the Ricci ro-
tation coefficients, which are assumed to be an explicit
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function of the tetrads and their derivatives, namely the
ones resulting from solving the Riemannian torsion-free
condition in standard general relativity. However, if the
Ricci rotation coefficients were considered as independent
variables, one would need to write the action up to the
desired order of approximation in the Seeley-De Witt co-
efficients and then vary the action with respect to both
the connection and the metric (or tetrads) independently,
as in the Palatini first order formulation of general rela-
tivity. The Ricci connections would then be complicated
functions of the tetrads and would depend on the param-
eters that appear at each order in the action. The Rie-
mann tensor and tensors derived from it will depend on
these generalized connections and not on the usual Rie-
mannian connection of standard general relativity. It is
also well known that theories with higher order terms in
the Riemann, Ricci tensors or Ricci scalar do not provide
the same equations of motion obtained from the second as
opposed to those from the first order formalism [5]. The
gravity action arising from the spectral action is usually
given in terms of functions of the metric (or tetrads) and
its derivatives obtained from using the Ricci rotation co-
efficients as explicit functions of the metric or tetrads and
their derivatives as in the standard second order formu-
lation of general relativity [5]. In [1], the authors derive
this gravity spectral action. It is constructed as a func-
tion of the metric and its derivatives, by means of the
Ricci rotation coefficients corresponding to the standard
Riemannian connection.

Gravity theories with torsion have been of interest for
many years [6]. Torsion is usually associated with some
matter fields in the action. The Ricci rotation coefficients
in the theory are modified by adding the contorsion to
the standard connection. One associates this new connec-
tion with a Dirac operator. The presence of matter in the
action yields, after solving the torsion constraint, a par-
ticular dependence of the torsion on the matter content
of the theory. On the other hand, Seeley-De Witt coeffi-
cients have been calculated for connections in a Riemann-
Cartan manifold [7], by means of them the expansion of
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the spectral action can be constructed. Actually, N = 1
supergravity can be understood as a gravity theory with a
particular torsion. The action can be completely written
as a function of the tetrads (metric), the torsion Sµνρ and
the Rarita-Schwinger gravitino field ψµ. In this work we
will, in section II, consider the Ricci rotation coefficients
with the contorsion term Kµνρ and write the Seeley-De
Witt coefficients up to a4. On the other hand, if matter
is present in the action one should consider the solution
to the torsion constraint, for an action that consists of
general relativity, the torsion content in the action and
the matter action. This is the equivalent procedure as
the one followed in the spectral action when consider-
ing the Ricci rotation coefficients as given by solving the
standard torsion free condition in general relativity and
taking this connection to get the whole gravity action. A
similar procedure will be followed to obtain a spectral ac-
tion associated with N = 1 supergravity. In section III,
we will explicitly show how to construct supergravity as a
gravity theory with torsion [8] and solve the torsion con-
straint to get the generalized Ricci rotation coefficients.
These will be the appropriate coefficients to construct the
corresponding spectral action. After calculating the tor-
sion in terms of the matter fields, the Rarita-Schwinger
field ψµ, the action is given in section IV in terms of the
tetrads (metric) and the ψµ field. The Rarita-Schwinger
action is the appropriate and consistent fermionic matter
content to be added to the action.

II. SPECTRAL ACTION WITH TORSION

Instead of the well known geometry of space-time, the
basic data of noncommutative geometry consists of an
involutive algebra A of operators in a Hilbert space H,
which plays the role of the algebra of coordinates and
a self-adjoint operator D in H, which plays the role of
the inverse line element. A fundamental principle in
the noncommutative approach is that the usual empha-
sis on points in space-time is replaced by the spectrum
of the operator D. The spectral action principle states
that the physical action depends only on the spectrum
of the Dirac operator. These ideas were the origin of the
spectral action given in [1].
The bosonic part of the spectral action is

S = Tr[f(
D

Λ
)] , (1)

where D is a Dirac type operator acting on the Hilbert
space H = L2(M,S) of L2−spinors. The action is
uniquely defined and the coefficients in the spectral ex-
pansion are calculated from the heat kernel expansion.
For the gravitational Dirac operator we have

D = eµaγ
a(∂µ + ωµ) , (2)

where ωµ is the spin connection on M, ωµ = 1
2ω

ab
µ σab

with ωµ related to e a
µ by the vanishing of the covariant

derivative which allows us to express ω ab
µ as functions of

the tetrads as in standard Einstein tetradic gravity, the
Riemannian torsion free condition. The first Seeley-De
Witt coefficients for the pure gravitational Dirac operator
from the heat kernel expansion are

a0 =
1

4π2

∫
d4x

√
g , (3)

a2 = − 1

48π2

∫
d4x

√
gR ,

a4 =
1

4π2

1

360

∫
d4x

√
g (−18CµνρσC

µνρσ + 11R∗R∗) ,

where Cµνρσ is the Weyl tensor of conformal gravity
CµνρσC

µνρσ = RµνρσR
µνρσ−2RµνR

µν+ 1
3R

2 and the Eu-

ler characteristic χE is given by, χE = 1
32π

∫
d4x

√
gR∗R∗

with R∗R∗ = RµνρσR
µνρσ − 4RµνR

µν +R2. With these
results the action derived from the spectral triple of the
Dirac operator (2) is

S = (4)∫
d4
√
g {α+ βR + γ(−18CµνρσC

µνρσ + 11R∗R∗)} ,

where α, β and γ are constants. The spectral action
gives the Hilbert-Einstein action with corrections, this
approach is also valid for the standard model [9].

As already mentioned in the previous section our inter-
est is in a connection to supergravity that will be treated
as a torsion theory of gravity. For this reason we consider
a connection with torsion and show the corresponding
Seeley-DeWitt coefficients up to a4.

Lets start by adding an antisymmetric field Kµab to
the usual Ricci rotation coefficients

ωµab = ω̃µab +Kµab , (5)

here ω̃µab = 1
2e

ν
a∇µeνb is the usual spin connection [1]

and Kµab = Kµνρe
ν
ae

ρ
b, Kµνρ the contorsion tensor,

which in terms of the torsion Sµνρ is

Kµνρ = −Sµνρ + Sνρµ − Sρµν . (6)

The Dirac operator has the form

Dµψρ = ∂µψρ +
1

2
(ω̃µab +Kµab)σ

abψρ , (7)

the Riemann and Ricci tensors and the Ricci scalar in the
spectral action should now be constructed with this new
Dirac operator that depends on the modified connection.
The generalized Ricci scalar, Ricci tensor and Riemann
tensor are
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R = R̃+ 2∇µK
µν

ν +K
µ

µ dKν
dν −K

µ
ν dKµ

dν ,

Rµa = R̃µa +∇µKνa
ν −∇νKµa

ν +KµadKν
dν

− KνadKµ
dν , (8)

Rµνab = R̃µνab +∇µKνab −∇νKµab +KµadKν
d
b

− KνadKµ
d
b
.

We can now write the corresponding action by directly
substituting the expressions (8) in (4). R̃, R̃µν and R̃µνab

are the standard terms that depend on the usual spin con-
nection without torsion. Furthermore, we have not made
any assumptions about the dependence of the torsion on
a specific kind of matter. In the next section we will show
that N = 1 supergravity can be constructed as a gravity
theory with torsion, where the resulting torsion will be
given in terms of the Rarita-Schwinger field.

III. SUPERGRAVITY AS A TORSION

GRAVITY THEORY

Let us begin by briefly reviewing the second and the
first order formalisms of N = 1 supergravity. In the
second order formalism [10], the action of N = 1 super-
gravity is written as a function of the tetrads e a

µ and the
gravitino field ψa

µ, in the following manner

I =
1

2

∫
[eR({})− ǫλµνρψ̄λγ5γµDνψρ −

e (
1

4
ψ̄αγ

αψβ ψ̄
νγνψ

β +
1

8
ψ̄νγαψβ ψ̄αγ

βψν

− 1

16
ψ̄νγαψβ ψ̄

νγαψβ)− i

8
ǫλµνρψ̄λγ5γµσ

κσ ×

[ ψ̄νγσψκ − ψ̄κγνψσ + ψ̄σγκψν ]ψρ]d
4x , (9)

where R({}) is the Ricci scalar calculated using the
Christoffel symbols, ψα is a vector spinor (ψ̄α = ψT

αC
−1,

C the charge conjugation matrix), γα = eα bγ
b, where γb

are the flat space γ− matrices in the Majorana represen-
tation

σµν =
1

4
[γµ, γν ] , γ5 = γ0γ1γ2γ3 , (10)

we also define

Dµψρ = ∂µψρ +
1

4
eνa∇µeνbσ

abψρ . (11)

The variation of (9) with respect to e a
µ gives Einstein

equations of motion and variation respect to ψα yields
the Rarita-Schwinger equation

ǫµνρλγ5γνDρψλ = 0 , (12)

the third order terms that might be expected can be
shown to be zero by means of Fierz transformations.
One can also write N = 1 supergravity in the first order
formalism

I =
1

2

∫
[eR− iǫλµνρψ̄λγ5γµDνψρ]d

4x , (13)

the curvature is calculated as a function of the Ricci ro-
tation coefficients ωµab

Rµνab = ∂µωνab − ∂νωµab + ωµacων
c
b − ωνacωµ

c
b
, (14)

and the covariant derivative is

Dµψρ = ∂µψρ +
1

2
ωµabσ

abψρ , (15)

with

ωµab = ω̃µab +Kµab , (16)

where Kµab is given in terms of the torsion (6) which
after variation gives Sµνρ as

Sµνρ =
1

4
ψ̄µγρψν . (17)

This expression has the proper symmetry properties for
Sµνρ (Sµνρ = −Sνµρ) because of the antisymmetry of
products of ψρ. The action now can be varied with re-
spect to e a

µ to give a much simpler expression for the
gravitational field equations

Rµ
a −

1

2
eµaR = T µ

a , (18)

where T µ
a is the stress tensor for the spin- 32 field given

by

T µ
a = − i

2e
ǫλµνρψ̄λγ5γaDνψρ . (19)

However, the action of supergravity can also be written
as function of the tetrads (metric), the gravitino field and
the torsion Sµνρ, all these formalisms give the same equa-
tions of motion. This last formalism is not well known
and we present it here [8]. We begin with the Lagrangian
density (13) which by using ωµab, Kµab and Dµψρ can be
expressed as

L =
1

2
eR({}) + 1

2
e(−4Sαβ

αSνβ
ν − 2Sν

β
α
Sαν

β + SνβαS
νβα)

− 1

2
iǫλµνρψ̄λγ5γµDνψρ −

1

4
iǫλµνρψ̄λγ5γµe

κ
ae

σ
bσ

ab ×
[ Sνκσ − Sκσν + Sσνκ]ψρ . (20)
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If we were to vary (20) with respect to e a
µ we would

obtain

Rµ
a −

1

2
eµaR = T µ

a , (21)

with R a
µ as a function of the affine connection Γσ

µν which
contains derivatives of the torsion tensor Sµνρ. However
this expression does not possesses derivatives of Sµνρ and
up to this point it is not clear how to handle (20) in
order to get (21). To clear up this point and explain the
procedure let us begin by varying (20) with respect to
the torsion Sµνρ. Defining

V νcd = −1

4
iǫσβνρψ̄σγ5γβσ

cdψρ , (22)

we get

δL = δSλµν{e [4eνae
[λaSµ]ρ

ρ − 2Sν[λµ] + Sλµν ]

+ V λµν − V νλµ + V µνλ} , (23)

now using the definition of σγδ and the well known alge-
bra of the γ′s we can write

V νγδ =
1

2
ǫσβνρǫabcdeβae

γ
be

δ
ce

µ
dSσρµ , (24)

with Sσρµ = 1
4 ψ̄σγµψρ , (23) gives zero if and only if

Sσρµ = −Sρσµ. (25)

This result is the same as in the first order formalism
and in the first order explicit torsion procedure. The
second step is to vary with respect to tetrads and to
show how the derivatives of the torsion Sσρµ appear in
the Lagrangian. Defining

R({}) = R̃, Rµν({}) = R̃µν , (26)

and using | for the covariant derivative not including the
torsion, we find

δ L =
δL

δe a
µ

δe a
µ =

δ e a
µ [

1

2
e(−R̃νβ +

1

2
eνae

βaR̃)
δ(eνbe

b
β )

δe a
µ

− 1

2
iǫλµνρψ̄λγ5γaDνψρ − V νµσ[Sνκσ − Sκσν + Sσνκ]e

κ
a − V νκµ[Sνκσ − Sκσν + Sσνκ]e

σ
a

+ V νcd
δ(eσceσd|ν)

δe a
µ

+
1

2
eeµa(−4Sαβ

αSνβ
ν − 2Sν

β
α
Sαν

β + SνβαS
νβα) +

1

2
e(4Sµδ

λ S
β

βδ eλa + 4S δµ
τ S

β
βδ eτa + 4Sρµ

ρ S
β

βδ eδa

+ 4Sρ
κρ S

µβ
β eκa + 4Sρδ

ρ S
µ
δσ e

σ
a + 4Sρδ

ρ S
µ

βδ eβa + 2Sµσρ Sρδσ e
δ
a + 2S σβ

ρ S
µ

β σ e
ρ
a + 2Sδσµ Sβδσ e

β
a + 2Sσδ

λ S
µ
δσ e

λ
a

+ 2Sδµβ Sβδσ e
σ
a + 2Sδ β

κ S
µ

βδ eκa − Sµδσ Sβδσ e
β
a − S δσ

ρ S
µ
δσ e

ρ
a − Sβµσ Sβδσ e

δ
a − Sβ σ

κ S
µ

β σ e
κ
a − Sβδµ Sβδσ e

σ
a

− S
βδ
λ S

µ
βδ eλa)] , (27)

to be able to perform this calculation it is necessary to
know how to handle the fifth term in the last expression.
For this purpose it is useful to notice that (22) can be
transformed by means of the substitution

eǫβωφσg
ωγgφδgσµ = −ǫabcdeβaeγbeδce

µ
d , (28)

then one rewrites the product ǫβωφθǫ
σβνρ in terns of prod-

ucts of δ ν
µ which can be expressed as products of the

metric gµν to give

V νγδ = −e T νγδ , (29)

with

T νγδ = eνae
δaSγµ

µ + Sδγν − eνae
γaSδµ

µ , (30)

to vary

V νcd
δ(eσceσd|ν)

δe a
µ

, (31)

one expands the covariant derivative, integrates by parts
and interchanges derivatives of V νγσ in the following
form

V νcd
δ(eσceσd|ν)

δe a
µ

= V νµσeσa|ν − V νµσ
,νeσa (32)

− V νµσeσa,ν − V νµσeδa{ δ
σ ν}+ V νγµ

,γeνa

+ V µγτ
,γeτa ,

the use of (30) in (32) gives
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V νcd
δ(eσceσd|ν)

δe a
µ

= −e eρa[Sµρσ

|σ + S
µσρ

|σ + S
ρσµ

|σ

+ 2eρbe
µbS

σγ

γ|σ − 2eρbe
σbS

µγ

γ|σ] . (33)

In this form the derivatives of the torsion that are neces-
sary to obtain the Einstein equations appear. Substitut-
ing (25) and (33) in (27), one obtains

R̃ µ
a −

1

2
eµaR̃− eκa[−Sµ ρ

κ |ρ − S
µρ

κ|ρ − S
ρµ

κ |ρ + 2Sµρ

ρ|κ]

+
1

2
eµa[4S

σρ

ρ|σ + S
ρ

ρβ Sνβ
ν − SνβαS

νβα + 2Sν ρ
β S β

ρν ]

− eκa[−2Sσρ
ρS

µ
κσ + 2Sσρ

ρS
µ

σ κ − 2Sσρ
ρS

µ
κσ (34)

+ 2SδσµSκδσ − SβδµSβδκ] = − i

2e
ǫλµνρψ̄λγ5γaDνψρ ,

with Sµνρ given by (17), expression (34) can be identified
with the usual equations of motion. As is well known,
and was mentioned above, variation with respect ψµ gives
the Rarita-Schwinger equation. If we want to relate our
procedure to standard Einstein-Cartan torsion theory we
would need to know how to vary the action (20) with
respect to the metric. It is then necessary to chose a
gauge; one possibility [11] is the so called Brill-Wheeler
(Pauli) condition δe b

µ = 1
4 [e

τbδ σ
µ + eσbδ τ

µ ]δgστ .
In the next section we will use the torsion (17) and

substitute it in (8) to get the appropriate terms that will
build the spectral action associated to N = 1 supergrav-
ity.

IV. SPECTRAL ACTION ASSOCIATED TO

SUPERGRAVITY

In the following we will then consider supergravity as
an Einstein-Cartan theory. The Dirac operator is given
by

DSG = γaeµa [∂µ +
1

2
(ω̃µbc +Kµbc)σ

bc] , (35)

where the contorsion term Kµνρ is constructed from the
torsion that arises in the supergravity expression (17).
The expansion of action (1) will be given by the action (4)
with the Ricci scalar, the Ricci and Riemann tensors (8)
and Kµνρ (6) constructed from Sµνρ = 1

4 ψ̄µγρψν . Notice
that, as we mentioned in the Introduction, we could cal-
culate the spectral action leaving the contorsion as simply
the form given in (6), and then vary the resulting action
with respect to Sµνρ as in [8]. This would give different
equations of motion than those obtained by substituting
Sµνρ by 1

4 ψ̄µγρψν . We have decided that this would not
make contact with the concepts of [1] where the action
depends only on torsion-free gravity and the Dirac field,
so we will not attempt it here. Furthermore, the appro-
priate matter action consistent with the torsion (17) to

be added to the spectral action is the Rarita-Schwinger
action and the final action will then be

Tr[f(
DSG

Λ
)] + (ψ,DSGψ)RS , (36)

and the Dirac operator DSG is then

Dµ = ∂µ (37)

+
1

2
[ω̃µab −

1

4
(ψ̄µγρψν − ψ̄νγµψρ + ψ̄ργνψµ)e

ν
ae

ρ
b]σ

ab,

therefore we will get an action of the form

S =

∫
d4xe(α+ βR) + (ψ,DSGψ) (38)

+

∫
d4xeγ{ −18(RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2)

+ 11R∗R∗ }
where the first terms correspond to the standard N=1
supergravity action and

R =R̃+∇µ(ψ̄
µγνψ

ν)− 1

4
ψ̄αγ

αψβψ̄
νγνψ

β (39)

− 1

8
ψ̄νγαψβψ̄αγ

βψν +
1

16
ψ̄νγαψβψ̄

νγαψβ ,

R µν = R̃µν +
1

2
∇µ(ψ̄νγ

αψα)

− 1

4
∇α(ψ̄νγ

αψµ + ψ̄νγµψ
α + ψ̄µγνψ

α) (40)

+
1

8
(ψ̄νγβψµψ̄

βγαψα + ψ̄νγµψβψ̄
βγαψα + ψ̄µγνψβψ̄

βγαψα)

− 1

16
(ψ̄νγβψαψ̄

βγαψµ + ψ̄νγβψαψ̄
βγµψ

α + ψ̄νγβψαψ̄µγ
βψα

+ ψ̄νγαψβψ̄
βγαψµ + ψ̄νγαψβψ̄

βγµψ
α + ψ̄νγαψβψ̄µγ

βψα

+ ψ̄αγνψβψ̄
βγαψµ + ψ̄αγνψβψ̄

βγµψ
α + ψ̄αγνψβψ̄µγ

βψα) ,

R µνρσ = R̃µνρσ +
1

4
∇µ(ψ̄ργσψν + ψ̄ργνψσ + ψ̄νγρψσ) (41)

− 1

4
∇ν(ψ̄ργσψµ + ψ̄ργµψσ + ψ̄µγρψσ)

+
1

16
(ψ̄ργαψµψ̄

αγσψν + ψ̄ργαψµψ̄
αγνψσ + ψ̄ργαψµψ̄νγ

αψσ

+ ψ̄ργµψαψ̄
αγσψν + ψ̄ργµψαψ̄

αγνψσ + ψ̄ργµψαψ̄νγ
αψσ

+ ψ̄µγρψαψ̄
αγσψν + ψ̄µγρψαψ̄

αγνψσ + ψ̄µγρψαψ̄νγ
αψσ)

− 1

16
(ψ̄ργαψν ψ̄

αγσψµ + ψ̄ργαψνψ̄
αγµψσ + ψ̄ργαψν ψ̄µγ

αψσ

+ ψ̄ργνψαψ̄
αγσψµ + ψ̄ργνψαψ̄

αγµψσ + ψ̄ργνψαψ̄µγ
αψσ

+ ψ̄νγρψαψ̄
αγσψµ + ψ̄νγρψαψ̄

αγµψσ + ψ̄νγρψαψ̄µγ
αψσ) .

The last term in (38) is given by the Euler characteris-

tic and R̃, R̃µa and R̃µνab correspond to the standard
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Riemannian connection ω̃µab = 1
2e

ν
a∇µeνb. It has been

shown that the Dirac operators can be considered as dy-
namical variables of Euclidean supergravity restricted by
certain conditions [12]. The physical meaning of the in-
teraction terms involved in (38-41), subject to those re-
strictions is beyond the scope of this work and is left for
future study. A similar possible construction of spectral
actions corresponding to extended supergravities is also

a matter of further research.
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